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Abstract. The main purpose of this paper is to introduce the notion of p-bounded variation neutrosophic
real number sequences bvN

p , for 1≤ p < ∞. We shall provide suitable counter examples to justify the sequence
space bvN

p is not symmetric. We shall also prove with suitable examples that the classes of sequences bvN
p is

neither monotone nor symmetric. We shall study some of its properties like completeness, monotonicity,
convergence free and symmetricity. Also, we have established some inclusion results.

1. Introduction:

We are facing problems in reality due to uncertainties. These uncertainties cannot always be explained
by classic methods. Zadeh [19] introduced fuzzy set (FS) theory to overcome such uncertainties. But it is not
sufficient to address indeterminancy as it contains membership function. Thereafter, Atanassov [1] talked
on intuitionistic fuzzy sets (IFS) which deals with membership and non-membership functions. Finally
neutrosophic set theory was revealed by Smarandache [13] and further investigated by Smarandache [14]
where truth, falsity and indeterminancy are defined as independent of each other.

The investigation of sequence spaces was successfully carried out with the help of FS. the notion of the
fuzzy number sequences bvF

p was introduced by Tripathy and Das [15]. Beside this, lots of work have been
contributed by the researchers [2, 3, 6, 7, 8, 11, 16, 17, 18]. IFS was used in all areas where FS theory was
developed. Park [12] defined IF metric space (IFMS) as generalization of FMSs. Kocinac et al [10] studied
on some topological properties of intuitionistic 2-fuzzy n-normed linear spaces.

Bera and Mahapatra [4] defined the neutrosophic soft linear spaces (NSLSs). Later, neutrosophic soft
normed linear spaces (NSNLS) has been defined by Bera and Mahapatra [5]. In [5], neutrosophic norm,
Cauchy sequence in NSNLS, convexity of NSNLS, metric in NSNLS were studied. In this paper, we shall
introduce the notion of the class of neutrosophic number sequences bvN

p . We will study some of their basic
properties. In section 2 , we will mention some known basic definitions and results for ready reference. In
section 3 , we shall introduce and study basic properties of the class of neutrosophical number sequences
bvN

p .
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2. Some basic definitions and results:

In this section, some basic definitions and results would be defined.

Definition 2.1.
[16] The neutrosophic real number is denoted by RN such that RN = {(x, TR(x),FR(x), IR(x)) : x ∈ R}

where TR : R→ [0, 1],FR : R→ [0, 1], IR : R→ [0, 1].

Definition 2.2
A neutrosophic real number sequence (Xk) is said to be bounded if |TXk| ≤ µ, |FXk| ≤ µ and |IXk| ≤ µ, for

some µ ∈ R∗(I).

Definition 2.3
A class of sequences EN is said to be normal (or solid) if (Yk) ∈ EN, whenever d̄

(
TYk, 0N

)
≤ d̄
(
TXk, 0N

)
, d̄
(
FYk, 0N

)
≤

d̄
(
FXk, 0N

)
and d̄

(
IYk, 0N

)
≤ d̄
(
IXk, 0N

)
for all k ∈ N and (Xk) ∈ EN, where 0N is the real number having 1 at

0 and zero elsewhere.

Definition 2.4
. Let K = {k1 < k2 < k3 . . . . . . .} ⊆ N and EN be a class of sequences. A K-step set of EN is a set of

sequences λEN

k =
{
(Xk) ∈WN : (Xn)

)
∈ EN

}
.

Definition 2.5
A canonical pre-image of a sequence

(
Xkn

)
∈ λEN

k is a sequence (Yn) ∈ ωN, defined as follows:

Yn =

 Xn,n ∈ k;
0N, otherwise.

Definition 2.6
A canonical pre-image of a step set λEN

k is a set of canonical pre-images of all elements in λEN

k , i.e., Y is
in canonical pre-image λEN

k if and only if Y is canonical pre-image of some X ∈ λEN

k .

Definition 2.7
A class of sequences EN is said to be monotone if EN contains the canonical pre-images of all its step sets.

Remark 2.8
A class of sequences EN is solid⇒ EN is monotone. (One may refer to Kamthan and Gupta [12]).

Definition 2.9
A class of sequences EN is said to be symmetric if

(
Xπ(n)

)
∈ EN, whenever (Xk) ∈ EN, where π is a

permutation ofN.

Definition 2.10
A class of sequences EN is said to be convergence free if (Yk) ∈ EN, whenever (Xk) ∈ EN and Xk = 0N

implies Yk = 0N.
Throughout the article ωN, ℓN∞ and cN denote the class of all, bounded and convergent sequences of

neutrosophic real numbers respectively. The class of sequences ℓNp , for 1 ≤ p < ∞ of neutrosophic real
numbers is introduced as follows:

lNp =
{
X = (Xk) ∈ ωN :

∑
∞

k=1

[{
d̄
(
TXk, 0N

)p}
+
{
d̄
(
FXk, 0N

)p}
+
{
d̄
(
IXk, 0N

)p}]
< ∞
}
.
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3. Main Results:

In this section, we state and prove the results of this article.

Definition 3.1.
We introduce the class of p-bounded variation sequences of neutrosophic real numbers bvN

p , for 1 ≤ p < ∞
as follows:

bvN
p =
{
X = (Xk) ∈ ωN :

∑
∞

k=1

[{
d̄
(
T∆Xk, 0N

)}p
+
{
d̄
(
F∆Xk, 0N

)}p
+
{
d̄
(
I∆Xk, 0N

)}p]
< ∞
}
, where ∆Xk = Xk −

Xk+1, for all k ∈N.

Lemma 3.2.
R(I) is complete metric space with respect to the metric ρ(X,Y) = Sup

{∣∣∣XαL − YαL
∣∣∣ , ∣∣∣XαR − YαR

∣∣∣} for 0 ≤ α ≤ 1.

Theorem 3.3.
The class of sequences bvN

p , 1 ≤ p < ∞ is a complete metric space with the metric

p(X,Y) = d̄ (X1,Y1) +

 ∞∑
k=1

{
d̄ (T∆Xk,T∆Yk)

}p
1/p

+

 ∞∑
k=1

{
d̄ (F∆Xk,F∆Yk)

}p
1/p

+

 ∞∑
k=1

{
d̄ (I∆Xk, I∆Yk)

}p
1/p

where X = (Xk) ,Y = (Yk) ∈ bvN
p .

Proof.
Let
(
X(n)
)

be a Cauchy sequence in bvN
p , where X(n) =

(
X(n)

k

)
=
(
X(n)

1 ,X
(n)
2 ,X

(n)
3 , . . .

)
∈ bvN

p , for all n ∈N.
Then, for each 0 < ε < 1, there exists a positive integer n0 such that for all m,n ≥ n0,

ρ
(
X(n),X(m)

)
= d̄
(
X(n)

1 ,X
(m)
1

)
+
[∑
∞

k=1

{
d̄
(
T∆X(n)

k ,T∆X(m)
k

)}p] 1
p
+[∑

∞

k=1

{
d̄
(
F∆X(n)

k ,F∆X(m)
k

)}p] 1
p
+
[∑
∞

k=1

{
d̄
(
I∆X(n)

k , I∆X(m)
k

)}p]1/p
< ε

It follows that

d̄
(
X(n)

1 ,X
(m)
1

)
< ε, for all m,n ≥ n0 (1)

and

 ∞∑
k=1

{
d̄
(
T∆X(n)

k ,T∆X(m)
k

)}p
1/p

< ε, for all m,n ≥ n0 . . . . . . (2)

⇒ d̄
(
T∆X(n)

k ,T∆X(m)
k

)
< ε, for all k ∈N and m,n ≥ n0 (3)

Thus
(
X(n)

1

)
and
(
∆X(n)

k

)
, belong to R(I) for all k ∈N are Cauchy sequences in R(I).

Since, R(I) is complete, so
(
X(n)

1

)
and
((
∆X(n)

k

)
, for all k ∈N are convergent in R(I).

Let lim
n→∞

X(n)
1 = X1 (4)

and

lim
n→∞
∆X(n)

k = Zk, for all k ∈N (5)
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From equations (4) and (5), we have

lim
n→∞

X(n)
k = Xk, for all k ∈N.

Now, fix n ≥ n0 and let m→∞ in equations (1) and (2), we have

d̄
(
X(n)

1 ,X1

)
< ε and

 ∞∑
k=1

{
d̄
(
T∆X(n)

k ,T∆Xk

)}p
1/p

< ε for all n ≥ n0 (6)

This implies ρ
(
X(n),X

)
< ε, for all n ≥ n0.

i.e., X(n)
→ X, as n→∞, where X = (Xk) .

Next, we show that X ∈ bvN
p .

From equation (6), we have for all n ≥ n0,

∞∑
k=1

{
d̄
(
T∆X(n)

k ,T∆Xk

)}p
< ∞

Again, for all n ∈ N,X(n) =
(
X(n)

k

)
∈ bvN

p

⇒

∞∑
k=1

{
d̄
(
T∆X(n)

k , 0N

)}p
< ∞.

Now for all n ≥ n0, we have

∞∑
k=1

{
d̄
(
T∆Xk, 0N

)}p
=

 ∞∑
k=1

{
d̄
(
T∆Xk,T∆X(n)

k

)}p
+

∞∑
k=1

{
d̄
(
T∆X(n)

k , 0N

)}p < ∞
Similarly, we can show that

∞∑
k=1

{
d̄
(
F∆Xk, 0N

)} 1
p
=

 ∞∑
k=1

{
d̄
(
F∆Xk,F∆X(n)

k

)}p
+

∞∑
k=1

{
d̄
(
F∆X(n)

k , 0N

)}p < ∞ and

∞∑
k=1

{
d̄
(
I∆Xk, 0N

)} 1
p
=

 ∞∑
k=1

{
d̄
(
I∆Xk, I∆X(n)

k

)}p
+

∞∑
k=1

{
d̄
(
I∆X(n)

k , 0N

)}p < ∞
Hence X ∈ bvN

p . This proves the completeness of bvN
p .

Theorem 3.4.

The class of sequences bvN
p , p > 1 is not symmetric.

Proof.

The result follows from the following example.
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Example 3.5.
Consider a sequence (Xk) ∈ bvF

p be defined as follows:

X1(t) =
{

1, for − 1
2 ≤ t ≤ 0,

0, otherwise

and for k ≥ 2,

X2(t) =
{

1, for −
{∑k−1

r=1

(
1
r

)
+ 1

2k

}
≤ t ≤ −

∑k−1
r=1

(
1
r

)
0, otherwise.

Then [X1]α =
[
−

1
2 , 0
]

and for k ≥ 2,

[Xk]α =

−
 k−1∑

r=1

(1
r

)
+

1
2k

 ,− k−1∑
r=1

(1
r

)
Now, for all k ∈N, [∆Xk]α =

[
−

{
1
2k −

1
k

}
,
{

1
k +

1
2(k+1)

}]
=
[

1
2k ,
{

1
k +

1
2(k+1)

}]
.

For p > 1 we have,∑
∞

k=1

{
d̄
(
T∆Xk, 0N

)}p
=
∑
∞

k=1

{
1
k +

1
2(k+1)

}p
≤ 2p∑∞

k=1

{
1
kp +

1
2p(k+1)p

}
< ∞.

Similarly, we can show that
∑
∞

k=1

{
d̄
(
F∆Xk, 0N

)}p
< ∞ and

∑
∞

k=1

{
d̄
(
I∆Xk, 0N

)}p
< ∞.

Thus, (Xk) ∈ bvN
p , p > 1.

Let (Yk) be a rearrangement of the sequence (Xk), defined by
(Yk) = (X1,X2,X3,X4,X5,X6,X7,X8,X9,X10, . . .)
i.e., YK = X( k+1

2 )2 , for k odd,

= X(n+ k
2 )2 , for k even and n ∈ N, satisfying n(n − 1) <

k
2
≤ n(n + 1)

Then for k = 1, we have
[T∆Yk]α = [T∆Y1]α = [X1]α − [X2]α = [0.5, 1.25].
Again
for k odd with k > 1 and n ∈N, satisfying n(n − 1) < k+1

2 ≤ n(n + 1),

[T∆Yk]α =
[
X( k+1

2 )2

]α
−

[
X(n+ k+1

2

]α
=

−


( k+1
2 )2
−1∑

r=(n+ k+1
2 )

1
r
+

1

2
(

k+1
2

)2
 ,−


( k+1

2 )2
−1∑

r=(n+ k+1
2 )

1
r

 + 1

2
(
n + k+1

2

)


and
for k even and n ∈N, satisfying n(n − 1) < k

2 ≤ n(n + 1),

[T∆Yk]α =
[
X(n+ k

2 )

]α
−

[
X( k+2

2 )

]α
=




( k+1
2 )2
−1∑

r=(n+ k
2 )

1
r

 − 1

2
(
n + k

2

) ,


( k+1
2 )2
−1∑

r=(n+ k
2 )

1
r
+

1

2
(

k+2
2

)2



It is observed that the distance of [T∆Yk]α from [0N]α, for all (odd and even) k ∈N is numerically greater
than 0.1 .

Therefore,
∑
∞

k=1

{
d̄
(
T∆Yk, 0N

)}p
is unbounded for p > 1.

Thus (Yk) < bvF
p , p > 1.

Hence bvN
p , p > 1 is not symmetric.
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Theorem 3.6.
(a) bvN

q ⊂ bvN
p , for 1 ≤ q < p < ∞ and the inclusion is strict.

(b) bvN
⊂ bvN

p , for 1 < p < ∞ and the inclusion is strict.

Proof.
(a) Let (Xk) ∈ bvN

q . Then
∑
∞

k=1

[{
d̄
(
T∆Xk, 0N

)}q
+
{
d̄
(
F∆Xk, 0N

)}q
+
{
d̄
(
F∆Xk, 0N

)}q]
< ∞. Since, T∆Xk →

0N, as k→∞, so there exists a positive integer n0 such that

d̄
(
T∆Xk, 0N

)
≤ 1, for all k > n0.

We have

∞∑
k=1

{
d̄
(
T∆Xk, 0N

)}p
=

n−1∑
k=1

{
d̄
(
T∆Xk, 0N

)}p
+

∞∑
k=n0

{
d̄
(
T∆Xk, 0N

)}p
(7)

Clearly,
∑
∞

k=n0

{
d̄
(
T∆Xk, 0N

)}p
≤
∑
∞

k=n0

{
d̄
(
T∆Xk, 0N

)}q
< ∞, for p > q

and
∑n0−1

k=1

{
d̄
(
T∆Xk, 0N

)}p
is a finite sum.

Hence (7) implies
∑
∞

k=n0

{
d̄
(
T∆Xk, 0N

)}p
< ∞.

Similarly, we can show that
∑
∞

k=n0

{
d̄
(
F∆Xk, 0N

)}p
< ∞ and

∑
∞

k=n0

{
d̄
(
I∆Xk, 0N

)}p
< ∞.

Hence (Xk) ∈ bvN
p and thus bvN

q ⊂ bvN
p .

The strictness of the inclusion follows from the following example.

Example 3.7.

Consider the sequence (Xk) such that T∆Xk = k
−1
q , for all k ∈N.

Then,∑
∞

k=1

{
d̄
(
T∆Xk, 0N

)}q
= 1 +

(
2−

1
q
)q
+
(
3−

1
q
)q
+ · · · =

∑
∞

k=1
1
k , which is unbounded.

Hence, we have (Xk) < bvN
q .

But,∑
∞

k=1

{
d̄
(
T∆Xk, 0N

)}p
=
(
1−

1
q
)p
+
(
2−

1
q
)p
+
(
3−

1
q
)p
+ · · · =

∑
∞

k=1
1
kr < ∞, where r = p

q > 1.
Similarly,∑
∞

k=1

{
d̄
(
F∆Xk, 0N

)}p
< ∞ and

∑
∞

k=1

{
d̄
(
I∆Xk, 0N

)}p
< ∞.

Hence, we have (Xk) ∈ bvN
p .

Thus, the inclusion is strict.
(b) Let (Xk) ∈ bvN. Then

∑
∞

k=1

{
d̄
(
T∆Xk, 0N

)}
< ∞.

Since T∆Xk → 0N, as k→∞,
so there exists a positive integer n0 such that

d̄
(
T∆Xk, 0N

)
≤ 1, for all k > n0

We have

∞∑
k=1

{
d̄
(
T∆Xk, 0N

)}p
=

n−1∑
k=1

{
d̄
(
T∆Xk, 0N

)}p
+

∞∑
k=n0

{
d̄
(
T∆Xk, 0N

)}p
(8)

Clearly,∑
∞

k=n0

{
d̄
(
T∆Xk, 0N

)}p
≤
∑
∞

k=n0

{
d̄
(
T∆Xk, 0N

)}p
< ∞

and
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k=1

{
d̄
(
T∆Xk, 0N

)}p
, is a finite sum.

Hence, equation (8) implies
∑
∞

k=n0

{
d̄
(
T∆Xk, 0N

)}p
< ∞. This implies (Xk) ∈ bvN

p

and thus bvN
⊂ bvN

p .
The strictness of the inclusion follows from the following example.

Example 3.8.
Consider the sequence (Xk) ∈ bvN

p , where TXk = FXk = IXk defined by

TX1(t) =
{

1, for − 1
q ≤ t ≤ 0

0, otherwise

and for k ≥ 2,

TXk(t) =
{

1, for −
{∑k−1

r=1

(
1
r

)
+ 1

2k

}
≤ t ≤ −

∑k−1
r=1

(
1
r

)
0, otherwise

Then

∞∑
k=1

{
d̄
(
T∆Xk, 0N

)}
=

∞∑
k=1

{
1
k
+

1
2(k + 1)

}
, which is unbounded.

Hence, (Xk) < bvN.
But,

∑
∞

k=1

{
d̄
(
T∆Xk, 0N

)}p
=
∑
∞

k=1

{
1
k +

1
2(k+1)

}p
≤ 2p∑∞

k=1

{
1
kp +

1
2p(k+1)p

}
< ∞.

Similarly, we can get∑
∞

k=1

{
d̄
(
F∆Xk, 0N

)}p
< ∞ and

∑
∞

k=1

{
d̄
(
I∆Xk, 0N

)}p
< ∞.

Thus, (Xk) ∈ bvN
p .

Hence, the inclusion is proper.

Theorem 3.9.
The class of sequences bvN

p is neither monotone nor solid.

Proof.
This result follows from the following example.

Example 3.10.
Let us consider the sequence (Xk ), defined as follows:

Xk(t) =
{

1 − 5−1k
2
p (t − 2), for 2 ≤ t ≤ 2 + 5k−

2
p ;

0, otherwise.
Then

[T∆Xk]α =
[
5(α − 1)(k + 1)−

2
p , 5(1 − α)k−

2
p
]

= [Xk − Xk+1]α =
[
aα1 − bα2 , b

α
1 − aα2

]
.

X2(t) ≥ α⇒ 1 − 5−1k
2
p (t − 2) ≥ α.

⇒ −
1
5

k
2
p (t − 2) ≥ α − 1.

⇒ k
2
p (t − 2) ≤ 5(1 − α).

⇒ t − 2 ≤ 5(1 − α)k−
2
p .

⇒ t ≤ 2 + 5(1 − α)k−
2
p .
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Similarly, we can show that

Xk+1(t) ≥ α

⇒ t ≤ 2 + 5(1 − α)(1 + k)−
2
p

Thus,∑
∞

k=1

{
d̄
(
T∆Xk, 0N

)}p
=
∑
∞

k=1

{
5(1 − α)k−

2
p
}p
< ∞.

Similarly it can be shown that
∑
∞

k=1

{
d̄
(
F∆Xk, 0N

)}p
< ∞ and

∑
∞

k=1

{
d̄
(
I∆Xk, 0N

)}p
< ∞.

Therefore,

(Xk) ∈ bvN
p

Let J = {k ∈ N : k = 2i − 1, i ∈ N} be a subset ofN and let
(
bvN

p

)
be the canonical preimage of the J- step

set
(
bvN

p

)
J

of
(
bvN

p

)
, defined as follows:

Yk =

{
Xk, for k ∈ J
0N, for k < J

Then, we have

[Yk]α =
{ [

2,
{
2 + 5(1 − α)k−

2
p
}]
, for k ∈ J;

[0, 0] for k < J.

and

[T∆Yk]α =


[
2,
{
2 + 5(1 − α)k−

2
p
}]
, for k ∈ J;[

−

{
2 + 5(1 − α)(k + 1)−

2
p
}
,−2
]
, for k < J.

Therefore,
∑
∞

k=1

{
d
(
T∆Yk, 0N

)}p
=
∑

k∈J

{
2 + 5(1 − α)k−

2
p
}p
+
∑

k<J{2+5(1−α)(k+1) )
−2
p
}p
≥ 2p∑

k∈J

{
2p + 5(1 − α)pk−2

}
,

which is unbounded.
Thus, (Yk) < bvN

p .
Hence, bvN

p is not monotone.
The class bvN

p is not solid which follows from the remark 2.8.

Theorem 3.11.
The class of sequences bvN

p is not convergent free.

Proof.
The result follows from the following example.

Example 3.12.
Consider the sequence (Xk) ∈ bvN

p defined as follows:
For k even,

Xk(t) =


1 + k

3
p t, for − k−

2
p ≤ t ≤ 0

1 − k
3
p t, for 0 < t ≤ k−

2
p

0, otherwise

and for k odd, Xk = 0N.
Then
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[Xk]α =
{ [

(α − 1)k−
3
p , (1 − α)k−

3
p
]
, for k even

[0, 0], for k odd

and

[T∆Xk]α =


[
(α − 1)(k + 1)−

3
p , (1 − α)(k + 1)−

3
p
]
, for k odd ;[

(α − 1)k−
3
p , (1 − α)k−

3
p
]
, for k even.

Therefore,

∞∑
k=1

{
d̄
(
T∆Xk, 0N

)}p
= 2

∞∑
i=1

1 − α

(2i)
3
p


p

< ∞

Thus, (Xk) ∈ bvN
p .

Let us define a sequence (Yk) as follows:
For k odd, (Yk) = 0N,
and for k even,

Yk(t) =


1 + k

1
p t, for − k−

1
p ≤ t ≤ 0

1 − k
1
p t, for 0 < t ≤ k−

1
p

0, otherwise.

Then

[Yk]α =
{

[0, 0], for k odd;[
(α − 1)k−

1
p , (1 − α)k−

1
p
]
, for k even

and

[T∆Yk]α =

 [α − 1)k−
1
p , (1 − α)k−

1
p
]

for k even,[
(α − 1)(k + 1)−

1
p , (1 − α)(k + 1)−

1
p
]

for odd.

Thus
∑
∞

k=1

{
d
(
T∆Yk, 0N

)}p
= 2
∑
∞

i=1

{
1−α

(2i)
1
p

}p

, which is unbounded

i.e., (Yk) < bvN
p .

Hence bvN
p , is not convergent free.

4. Conclusions:

This paper has provided the notion of p-bounded variation neutrosophic real number sequences bvN
p ,

for 1 ≤ p < ∞. We have investigated some of its properties like completeness, monotonicity, convergence
free and symmetricity. Some inclusion results have also been provided. This paper will definitely helpful
for further investigation on neutrosophic sequence spaces.
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