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Abstract. This paper aims to investigate sufficiency and duality of a multiobjective fractional programming
problem in complex space. The functions involved are ratio of two functions and the constraints are
defined in cones. Firstly, the result asserting the ratio invexity in complex space has been discussed and the
same has been supported by examples. This is followed by sufficiency conditions for the problem under
consideration. Further, to illustrate this result, an example has been provided. It is worth mentioning that
an efficient solution of the problem considered in the example is also obtained using Multiobjective Genetic
Algorithm (MOGA) which alongwith the sufficiency conditions become more reliable. In the literature,
various forms of duals for a fractional programming problem have been studied. Here, we have formulated
a Bector type dual corresponding to a fractional programming problem in complex space and important
duality results relating the solutions of primal and dual problems have been proved under generalized
convexity assumptions which widen its application in diverse fields.

1. Introduction

Recently, there has been a lot of focus on the development of complex programming problems as these are
formed while dealing with earthly situations in several branches of engineering and science including signal
processing, electromagnetism, vibration analysis, control theory, etc. For example, in electromagnetism,
electric and magnetic field can be represented as real and imaginary parts of complex numbers, respectively.

Levinson [1] developed the idea of complex programming problem by extending the linear programming
in complex space. In [2], Bhatia and Kaul derived the duality results for a complex nonlinear programming
problem. The duality theory for linear problem defined on polyhedral cones was discussed by Ben-Israel
[3]. Subsequently, the duality theorems were demonstrated for a wider range of nonlinear functions satis-
fying the linear constraints in [4].
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In nonlinear programming, Abrams and Ben-Israel [5] and Abrams [6] generalized the renowned Kuhn-
Tucker optimality conditions and associated duality theorems to complex space. The complex variant of
the Fritz John necessary conditions were presented in [7]. The optimality conditions and duality theory
were developed by Smart and Mond [8] for nonlinear programming problems using invexity of involved
functions in complex space. There is more analysis on complex programming problems which can be seen
in [9–11].

The vector valued linear programming problem in complex space was put forth by Duca [12]. Elbrolosy
[13] took into account multi-objective programming problems in complex space in generalized form in
which the objective function consists of both the components of complex number. By introducing the gen-
eralized Charnes-Cooper transformation, an analogy between fractional and non-fractional programming
problems was discovered by Chen et al [14] in complex space. The parametric duality and the important
duality theorems in this framework were developed by Lai et al. [15]. More work on complex fractional
programming problems can be seen in [16, 17].

Furthermore, Huang and Ho [18] used generalized convexity assumptions to develop the optimality cri-
teria for a multiobjective fractional problem and the duality theorems were established by constructing
parametric type dual. The duality results for the symmetric duals of first and second order over general
polyhedral cones were developed by Ahmad et al. [19]. For a multiobjective problem in complex space,
Huang and Tanaka [20] presented characteristics of the efficient solution by developing a scalarization
method to determine the optimality criteria, and established the important duality theory. Chen et al.
[21] obtained Fritz John-type and Karush-Kuhn-Tucker optimality conditions by incorporating the robust
counterpart of complex non-differentiable fractional problem by considering uncertainty in the objective
function.

Motivated by the work of Bector et al. [22] in which a lagrangian approach to duality is provided to a non-
linear fractional programming problem in complex space, here a novel complex multiobjective fractional
problem is presented which seeks wider application in real life situations. Moreover, the dual studied by
handful authors, that is, Bector type dual is formulated and the sufficiency duality results are established.
While deriving the results, we extend the concept of ratio of invexity presented in [23] to complex space
by proving that ratio of real part of invex functions in complex space is invex. Additionally some results
obtained are verified through examples which depicts the existence of the problem under study.

This paper comprises of diverse sections as different components of the work. In Section 2, preliminaries
and basic notations are presented. In Section 3, the concept of ratio invexity is extended to complex space
from real space. Then a complex multiobjective fractional programming problem is considered and the suffi-
ciency conditions are established using the generalized convexity of the functions involved. The illustration
for the same is also provided. In Section 4, the Bector type dual is formulated for the given programming
problem and the fundamental duality results namely weak, strong and strict converse duality theorems
are developed. In the last section, the conclusion of the work done in this paper and its future scope is given.

2. Preliminaries and Basic Notations

Let Cp represents the complex space having dimension p, Cm×p be the space of m × p matrices having
complex entries, Rq

+ be the nonnegative orthant of Rq defined by

Rq
+ = {x ∈ Rq : x j ≧ 0, j = 1, 2, . . . , q}.

For x, y ∈ Rq, x ≧ y⇔ x j ≧ y j ( j = 1, 2, . . . , q); x ≥ y⇔ x ≧ y and x , y; x > y⇔ x j > y j ( j = 1, 2, . . . , q).
The real component of ϱ ∈ Cp is denoted by Re(ϱ) and the imaginary component by Im(ϱ). Denote the
conjugate of ϱ as ϱ̄ = Re(ϱ) − i Im(ϱ). For the given matrix A ∈ Cm×p, AT, Ā, and AH are respectively the
transpose, conjugate, and conjugate transpose of A.
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Consider ⟨ϱ1, ϱ2⟩ = ϱH
1 ϱ2 as the inner product of ϱ1, ϱ2 ∈ Cp. Define the polyhedral cone with matrix N ∈ Ck×p

as S = {ϱ ∈ Cp : Re(Nϱ) ≧ 0}, k being a positive integer. The dual cone S∗ of S will be

S∗ = {ϑ ∈ Cp : Re⟨ϱ, ϑ⟩ ≧ 0, ∀ ϱ ∈ C}

and the linear manifold M is defined as

M = {(ϱ, ϱ̄) : ϱ ∈ Cp
} ⊂ C2p.

The following complex multiobjective fractional programming problem is examined in this work :

(MOFP) Minimize φ(ϱ, ϱ̄) =
(

Re f1(ϱ, ϱ̄)
Re h1(ϱ, ϱ̄)

, . . . ,
Re fm(ϱ, ϱ̄)
Re hm(ϱ, ϱ̄)

)
subject to χ =

{
(ϱ, ϱ̄) ∈ K :

1(ϱ, ϱ̄)
Re hi(ϱ, ϱ̄)

∈ S
}

where fi(·, ·), hi(·, ·) : C2p
→ C for i = 1, 2, . . . ,m and 1(·, ·) : C2p

→ Cp are analytic functions defined on the
linear manifold M ⊂ C2p, K being a convex subset of M. Also, Re hi(·, ·) , 0 and is bounded for all (ϱ, ϱ̄) ∈ C2p.

Now, we recall some definitions of efficient solution and generalized convex functions in complex space as
follows which is crucial for establishing the results in the subsequent sections :

Definition 2.1. A feasible point (ϱ0, ϱ̄0) is called an efficient solution of (MOFP), if ∃ no other (ϱ, ϱ̄) ∈ χ s.t.

φ(ϱ0, ϱ̄0) ≥ φ(ϱ, ϱ̄).

Definition 2.2. [8] Consider the function fi : C2p
→ C. Then the real part of fi is defined to be, respectively,

(i) convex w.r.t. R+, if ∀ ϱ, ϱ0 ∈ Cp,

Re[ fi(ϱ, ϱ̄) − fi(ϱ0, ϱ̄0) − (ϱ − ϱ0)T
∇ϱ fi(ϱ0, ϱ̄0) − (ϱ − ϱ0)H

∇ϱ̄ fi(ϱ0, ϱ̄0)] ≧ 0.

(ii) pseudoconvex w.r.t. R+, if ∀ ϱ, ϱ0 ∈ Cp,

Re[(ϱ − ϱ0)T
∇ϱ fi(ϱ0, ϱ̄0) + (ϱ − ϱ0)H

∇ϱ̄ fi(ϱ0, ϱ̄0)] ≧ 0,

implies

Re[ fi(ϱ, ϱ̄) − fi(ϱ0, ϱ̄0)] ≧ 0.

(iii) invex w.r.t. R+ if ∃ a function η : C2p
→ Cp s.t.

Re[ fi(ϱ, ϱ̄) − fi(ϱ0, ϱ̄0) − ηT(ϱ, ϱ0)∇ϱ fi(ϱ0, ϱ̄0) − ηH(ϱ, ϱ0)∇ϱ̄ fi(ϱ0, ϱ̄0)] ≧ 0.

(iv) pseudoinvex w.r.t. R+, if ∃ a function η : C2p
→ Cp s.t.

Re[ηT(ϱ, ϱ0)∇ϱ fi(ϱ0, ϱ̄0) + ηH(ϱ, ϱ0)∇ϱ̄ fi(ϱ0, ϱ̄0)] ≧ 0,

implies

Re[ fi(ϱ, ϱ̄) − fi(ϱ0, ϱ̄0)] ≧ 0.

Definition 2.3. [8] The analytic function −1 : C2p
→ Cp is called, respectively
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(i) convex w.r.t. S, if for all ν ∈ S∗ and ϱ, ϱ0 ∈ Cp

Re⟨ν,−1(ϱ, ϱ̄) + 1(ϱo, ϱ̄0) + ∇ϱ1(ϱ0, ϱ̄0)(ϱ − ϱ0) + ∇ϱ̄1(ϱ0, ϱ̄0)(ϱ − ϱ0)⟩ ≧ 0.

(ii) quasiconvex w.r.t. S, if for all ν ∈ S∗ and ϱ, ϱ0 ∈ Cp,

Re⟨ν,−1(ϱ, ϱ̄) + 1(ϱ0, ϱ̄0)⟩ ≦ 0.

implies

Re⟨ν,∇ϱ1(ϱ0, ϱ̄0)(ϱ − ϱ0) + ∇ϱ̄1(ϱ0, ϱ̄0)(ϱ − ϱ0)⟩ ≧ 0.

(iii) invex w.r.t. S, for all ν ∈ S∗ and ϱ, ϱ0 ∈ Cp, ∃ a function η : C2p
→ Cp s.t.

Re⟨ν,−1(ϱ, ϱ̄) + 1(ϱ0, ϱ̄0) + ∇ϱ1(ϱ0, ϱ̄0)η(ϱ, ϱ0) + ∇ϱ̄1(ϱ0, ϱ̄0)η(ϱ, ϱ0)⟩ ≧ 0.

(iv) quasiinvex w.r.t. S, if ∃ a function η : C2p
→ Cp s.t.

Re⟨ν,−1(ϱ, ϱ̄) + 1(ϱ0, ϱ̄0)⟩ ≦ 0,

implies

Re⟨ν,∇ϱ1(ϱ0, ϱ̄0)η(ϱ0, ϱ0) + ∇ϱ̄1(ϱ0, ϱ̄0)η(ϱ, ϱ0)⟩ ≧ 0.

3. Necessary and Sufficiency Conditions

Now we present necessary and sufficiency conditions for the problem (MOFP) under generalized convexity
of the functions involved as follows:

Theorem 3.1 (Necessary Conditions). For the given problem (MOFP), consider (ϱ0, ϱ̄0) to be an efficient solution
and suppose that the constraint qualification is satisfied at (ϱ0, ϱ̄0). Then ∃ 0 < γi ∈ R, and Yi ∈ S∗ ⊂ Cp for
i = 1, 2, . . . ,m, s.t.

m∑
i=1

γi

(
∇ϱ

fi(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

+ ∇ϱ̄
fi(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
− YT

i ∇ϱ
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
− YH

i ∇ϱ̄
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)

)
= 0, (1)

Re
〈
Yi,

1(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

〉
= 0, i = 1, 2, . . . ,m, (2)

where

Y =


y11 y12 · · · y1m
y21 y22 · · · y2m
...

...
. . .

...
yp1 yp2 · · · ypm


Y ∈ Cp×m is the matrix which contains Lagrange multipliers for the ith set of constraints as its ith column.

At the moment, some results in the form of lemmas are given, which play a significant role in deriving
sufficiency conditions and important duality theorems. The proofs of the following Lemmas 3.2-3.4 can be
easily derived on the lines of [22, 24].
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Lemma 3.2. [24] The problem (MOFP) has a constraint qualification at (ϱ0, ϱ̄0), if for any Λ (, 0) ∈ S∗ ⊂ Cp,

ΛT
∇ϱ
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
+ ΛH

∇ϱ̄
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
, 0.

Lemma 3.3. [22] If fi(ϱ, ϱ̄) and hi(ϱ, ϱ̄) have convex and concave real part, respectively, where Re fi(ϱ, ϱ̄) ≧ 0,
Re hi(ϱ, ϱ̄) > 0, then the real part of function fi(ϱ, ϱ̄)/Re hi(ϱ, ϱ̄) is pseudoconvex w.r.t. R+ on K.

Lemma 3.4. [22] If (ϱ0, ϱ̄0) ∈ K, Re hi(·, ·) and 1(·, ·) are concave with respect to R+ and S on K, respectively, Yi ∈ S∗

and Re
〈
Yi, 1(ϱ0, ϱ̄0)

〉
≦ 0. Then the real part of YH

i

1(ϱ, ϱ̄)
Re hi(ϱ, ϱ̄)

is quasiconcave w.r.t. R+ at (ϱ0, ϱ̄0) on K.

Lemma 3.5. For Re fi(ϱ, ϱ̄) ≦ 0, Re hi(ϱ, ϱ̄) > 0, if Re fi(ϱ, ϱ̄) and−Re hi(ϱ, ϱ̄) are invex w.r.t. η(ϱ, ϱ0), then
fi(ϱ, ϱ̄)

Re hi(ϱ, ϱ̄)
has invex real part w.r.t.

η̃(ϱ, ϱ0) =
Re hi(ϱ0, ϱ̄0)
Re hi(ϱ, ϱ̄)

η(ϱ, ϱ0)

Proof. Taking (ϱ, ϱ̄) = ϱ and (ϱ0, ϱ̄0) = ϱ0 for the sake of simplicity. By differential calculus, we have

∇ϱ
fi(ϱ)
hi(ϱ)

=
1

hi(ϱ)
(∇ϱ fi(ϱ) + ∇ϱ̄ fi(ϱ)) −

fi(ϱ)

(hi(ϱ))2 (∇ϱhi(ϱ) + ∇ϱ̄hi(ϱ))

and

fi(ϱ)
hi(ϱ)

−
fi(ϱ0)
hi(ϱ0)

=
1

hi(ϱ)
( fi(ϱ) − fi(ϱ0)) − fi(ϱ0)

(hi(ϱ) − hi(ϱ0))
hi(ϱ)hi(ϱ0)

.

Since Re fi(ϱ) and −Re hi(ϱ) are invex functions with respect to η(ϱ, ϱ0), we get the following :

Re fi(ϱ)
Re hi(ϱ)

−
Re fi(ϱ0)
Re hi(ϱ0)

=
Re( fi(ϱ) − fi(ϱ0))

Re hi(ϱ)
−

Re fi(ϱ0) Re(hi(ϱ) − hi(ϱ0))
Re hi(ϱ) Re hi(ϱ0)

≧
1

Re hi(ϱ)
Re[ηT(ϱ, ϱ0)∇ϱ fi(ϱ0) + ηH(ϱ, ϱ0)∇ϱ̄ f (ϱ0)]

−
Re fi(ϱ0)

Re hi(ϱ) Re hi(ϱ0)
Re[ηT(ϱ, ϱ0)∇ϱhi(ϱ0) + ηH(ϱ, ϱ0)∇ϱ̄hi(ϱ0)]

=
Re hi(ϱ0)
Re hi(ϱ)

Re
(
ηT(ϱ, ϱ0)

( 1
Re hi(ϱ0)

∇ϱ fi(ϱ0) −
Re fi(ϱ0)

(Re hi(ϱ0))2∇ϱhi(ϱ0)
)

+ηH(ϱ, ϱ0)
( 1
Re hi(ϱ0)

∇ϱ̄ fi(ϱ0) −
Re fi(ϱ0)

(Re hi(ϱ0))2∇ϱ̄hi(ϱ0)
))

+ =
Re hi(ϱ0)
Re hi(ϱ)

Re
(
ηT(ϱ, ϱ0)∇ϱ

fi(ϱ0)
Re hi(ϱ0)

+ ηH(ϱ, ϱ0)∇ϱ̄
fi(ϱ0)

Re hi(ϱ0)

)
Thus,

fi(ϱ)
Re h(ϱ)

has invex real part with respect to η̃(ϱ, ϱ0) =
Re hi(ϱ0)
Re hi(ϱ)

η(ϱ, ϱ0).

Here we give two illustrations which provides the validation of Lemma 3.5 .
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Example 3.6. Let f1, h1 : C2p
→ C be defined by

f1(ϱ, ϱ̄) = −ϱϱ̄, h1(ϱ, ϱ̄) = ln
(ϱ + ϱ̄

2

)
on the convex set K = {(ϱ, ϱ̄) : ϱ ∈ C, 2 ≤ Re ϱ ≤ 3, 4 ≤ Im ϱ ≤ 5} ⊂M = {(ϱ, ϱ̄) : ϱ ∈ C, Re ϱ , {0, 1}, Im ϱ , 0}.

Clearly, Re f1(ϱ, ϱ̄) < 0 and Re h1(ϱ, ϱ̄) > 0 for (ϱ, ϱ̄) ∈ M. Firstly using Definition 2.2 (iii), we show that
Re f1(., .) and −Re h1(., .) are invex w.r.t. the function η : C2p

→ Cp defined by η(ϱ, ϱ0) = (1 + ϱ) at (ϱ0, ϱ̄0) =
(x0 + iy0, x0 − iy0) = (3 + 4i, 3 − 4i). So, consider

F1 = Re[ f1(ϱ, ϱ̄) − f1(ϱ0, ϱ̄0) − ηT(ϱ, ϱ0)∇ϱ f1(ϱ0, ϱ̄0) − ηH(ϱ, ϱ0)∇ϱ̄ f1(ϱ0, ϱ̄0)]

= Re
[
− ϱϱ̄ + ϱ0ϱ̄0 − (1 + ϱ)(−ϱ̄0) − (1 + ϱ̄)(−ϱ0)

]
= −(x2 + y2) + 25 + 6(1 + x) + 8y (by taking ϱ = x + iy)
> 0 (From Fi1ure 1(a))

and

F2 = Re[h1(ϱ, ϱ̄) − h1(ϱ0, ϱ̄0) − ηT(ϱ, ϱ0)∇ϱh1(ϱ0, ϱ̄0) − ηH(ϱ, ϱ0)∇ϱ̄h1(ϱ0, ϱ̄0)]

= Re
[
ln

(ϱ + ϱ̄
2

)
− ln

(ϱ0 + ϱ̄0

2

)
− (1 + ϱ)

1
2x0
− (1 + ϱ̄)

1
2x0

]
= lnx − ln3 −

(1 + x)
3

< 0 (From Fi1ure 1(b))

As, F1 > 0 and F2 < 0, the real parts of both f1(ϱ, ϱ̄) and −h1(ϱ, ϱ̄) are invex, thus by Lemma 3.5, we must have that

(a) (b)

Figure 1: Plot of F1 and F2 in (a) and (b) respectively

Re f1(ϱ, ϱ̄)
Re h1(ϱ, ϱ̄)

is invex.

Therefore next, we show that
Re f1(ϱ, ϱ̄)
Re h1(ϱ, ϱ̄)

is invex at (ϱ0, ϱ̄0) with respect to

η̃1(ϱ, ϱ̄0) =
(1 + ϱ)ln

(ϱ0 + ϱ̄0

2

)
ln

(ϱ + ϱ̄
2

) .
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Taking

F3 = Re
[

f1(ϱ, ϱ̄)
h1(ϱ, ϱ̄)

−
f1(ϱ0, ϱ̄0)
h1(ϱ0, ϱ̄0)

− η̃T
1 (ϱ, ϱ0)∇ϱ

f1(ϱ0, ϱ̄0)
h1(ϱ0, ϱ̄0)

− η̃H
1 (ϱ, ϱ0)∇ϱ̄

f1(ϱ0, ϱ̄0)
h1(ϱ0, ϱ̄0)

]
= Re

[
−ϱϱ̄

ln
(ϱ + ϱ̄

2

) + ϱ0ϱ̄0

ln
(ϱ0 + ϱ̄0

2

) − (1 + ϱ)
lnx

(
−2x0lnx0ϱ̄0 + ϱ0ϱ̄0

2x0lnx0

)
−

(1 + ϱ̄)
lnx

(
−2x0lnx0ϱ0 + ϱ0ϱ̄0

2x0lnx0

)]

=
−(x2 + y2)

lnx
+

x2
0 + y2

0

lnx0
+

36(lnx0) + (36x + 48y)(lnx0) − 50 − 50x
6(lnx)(lnx0)

> 0 (From Fi1ure 2)

Thus, F3 > 0, which implies the invexity of
Re f1(ϱ, ϱ̄)
Re h1(ϱ, ϱ̄)

at (ϱ0, ϱ̄0).

Figure 2: Plot of F3 against x and y

Example 3.7. Let f2 and h2 : C2p
→ C be defined by

f2(ϱ, ϱ̄) = (1 − ϱ) and h2(ϱ, ϱ̄) = iϱ̄2

on the same K and M as in Example 3.6. We first show that Re f2(ϱ, ϱ̄) and Re h2(ϱ, ϱ̄) are invex w.r.t. η(ϱ, ϱ0) = (1+ϱ)
at (ϱ0, ϱ̄0) = (x0 + iy0, x0 − iy0) = (3 + 4i, 3 − 4i).
It may be noted that Re f2(ϱ, ϱ̄) < 0 and Re h2(ϱ, ϱ̄) > 0 for (ϱ, ϱ̄) ∈M. Consider

F4 = Re[ f2(ϱ, ϱ̄) − f2(ϱ0, ϱ̄0) − ηT(ϱ, ϱ0)∇ϱ f2(ϱ0, ϱ̄0) − ηH(ϱ, ϱ0)∇ϱ̄ f2(ϱ0, ϱ̄0)]
= Re[1 − ϱ − (1 − ϱ0) − (1 + ϱ)(−1) − (1 + ϱ̄0)(0)]
= Re[x0 + iy0 + 1]
= 4 > 0

and

F5 = Re[h2(ϱ, ϱ̄) − h2(ϱ0, ϱ̄0) − ηT(ϱ, ϱ0)∇ϱh2(ϱ0, ϱ̄0) − ηH(ϱ, ϱ0)∇ϱ̄h2(ϱ0, ϱ̄0)]
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= Re[iϱ̄2
− iϱ̄0

2
− (1 + ϱ)(0) − (1 + ϱ̄)2iϱ0]

= Re[2xy − 2x0y0 − 2i(1 + x)x0 − 2(1 + x)y0 − 2x0y + 2iyy0]
= 2xy − 24 − 8(1 + x) − 6y
< 0 (From Fi1ure 3(a))

Hence, real part of f2(ϱ, ϱ̄) and −h2(ϱ, ϱ̄) are invex.

Lastly, we need to check the invexity of
Re f2(ϱ, ϱ̄)
Re h2(ϱ, ϱ̄)

=
Re(1 − ϱ)
Re(iϱ̄2)

at (ϱ0, ϱ̄0) w.r.t.

η̃2(ϱ, ϱ̄0) =
(1 + ϱ)iϱ2

0

iϱ2 =
(1 + ϱ)12

xy
.

Therefore, taking

F6 = Re
[1 − ϱ

iϱ̄2 −
1 − ϱ0

iϱ̄0
2 −

(1 + ϱ)12
xy

(
−1
iϱ̄0

2

)
−

(1 + ϱ̄)12
xy

(
−2(1 − ϱ0)

iϱ̄3
0

)]
= Re

[ 1 − x − iy
2xy + i(x2 − y2)

−
1 − x0 − y0

2x0y0 + i(x2
0 − y2

0)
−

(1 + x + iy)12(i)
xy(x0 − iy0)2 −

( (1 + x − iy)12
xy

)( (1 − x0 − iy0)2i
(x0 − iy0)3

)]
=

(1 − x)2xy
4x2y2 + (x2 − y2)2 −

y(x2
− y2)

4x2y2 + (x2 − y2)2 −
(1 − x0)2x0y0

4x2
0y2

0 + (x2
0 − y2

0)2
−

y0(x2
0 − y2

0)

4x2
0y2

0 + (x2
0 − y2

0)2

+
12(−7y + 24(1 + x))

625xy
−

0.58(1 + x)
xy

+
0.63

x
> 0 (As from Fi1ure 3(b))

(a) (b)

Figure 3: Plot of F5 and F6 in (a) and (b) respectively

Thus,
Re f2(ϱ, ϱ̄)
Re h2(ϱ, ϱ̄)

is invex at (ϱ0, ϱ̄0).

Therefore, by the above illustrations it can be seen that the ratio of two invex functions is invex and thus Lemma 3.5
holds.
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Theorem 3.8 (Sufficiency Conditions). Let fi(·, ·), hi(·, ·) : C2p
→ C, i = 1, 2, . . . ,m and 1(·, ·) : C2p

→ Cp be
analytic functions on χ. Let there exists 0 < γi ∈ R and Yi ∈ S∗ ⊂ Cp such that conditions (1) and (2) are satisfied at
a feasible point (ϱ0, ϱ̄0). Moreover, if any of the following conditions are true :

(i) for Re fi(·, ·) ≧ 0 and Re hi(·, ·) > 0; the functions Re fi(·, ·) and Re hi(·, ·) are convex and concave, respectively
w.r.t. R+ on K for each i = 1, 2, . . . ,m. Also, consider 1(·, ·) to be convex w.r.t. S on K at (ϱ0, ϱ̄0) ∈ K;

(ii) for Re fi(·, ·) ≦ 0 and Re hi(·, ·) > 0; the functions Re fi(·, ·),−Re hi(·, ·) for i = 1, 2, . . . ,m, and 1(·, ·) are invex
w.r.t. η(ϱ, ϱ0) at (ϱ0, ϱ̄0) ∈ K;

then, (ϱ0, ϱ̄0) is an efficient solution of (MOFP).

Proof. Assuming that (ϱ0, ϱ̄0) is not an efficient solution of the primal problem (MOFP). Then, ∃ (ϱ, ϱ̄) ∈ χ
such that(

Re f1(ϱ, ϱ̄)
Re h1(ϱ, ϱ̄)

, . . . ,
Re fm(ϱ, ϱ̄)
Re hm(ϱ, ϱ̄)

)
≤

(
Re f1(ϱ0, ϱ̄0)
Re h1(ϱ0, ϱ̄0)

, . . . ,
Re fm(ϱ0, ϱ̄0)
Re hm(ϱ0, ϱ̄0)

)
As γi > 0 for i = 1, 2, . . . ,m, we have

m∑
i=1

γi

(
Re fi(ϱ, ϱ̄)
Re hi(ϱ, ϱ̄)

−
Re fi(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

)
< 0 (3)

Assume that hypothesis (i) holds true. Then by Lemma 3.3,
fi(·, ·)

Re hi(·, ·)
has pseudoconvex real part w.r.t. R+

on K. Therefore by definition of pseudoconvexity and (3), we get

Re

 m∑
i=1

γi

(
(ϱ − ϱ0)T

∇ϱ
fi(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
+ (ϱ − ϱ0)H

∇ϱ̄
fi(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)

) < 0

or

Re
〈
ϱ − ϱ0,

m∑
i=1

γi

(
∇ϱ

fi(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

+ ∇ϱ̄
fi(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)

)〉
< 0 (4)

For Yi ∈ S∗ ⊂ Cp, i = 1, 2, . . . ,m,

Re
〈
Yi,
−1(ϱ, ϱ̄)

Re hi(ϱ, ϱ̄)

〉
≦ 0 = Re

〈
Yi,
−1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)

〉
(5)

using the definition of dual cone and (2).

By hypothesis (i) and Lemma 3.4, −YH
i

1(·, ·)
Rehi(·, ·)

has quasiconcave real part at (ϱ0, ϱ̄0) which on using the

above inequality and γi > 0 yields,

Re
〈
ϱ − ϱ0,

m∑
i=1

γi

(
− YT

i ∇ϱ
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
− YH

i ∇ϱ̄
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)

)〉
≦ 0 (6)

Adding (4) and (6), we obtain

Re
〈
ϱ − ϱ0,

m∑
i=1

γi

(
∇ϱ

f (ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

+ ∇ϱ̄
f (ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
−

YT
i ∇ϱ

1(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

− YH
i ∇ϱ̄

1(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

)〉
< 0
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which contradicts equation (1). Hence, (ϱ0, ϱ̄0) is an efficient solution of (MOFP).

Now, assume that hypothesis (ii) holds true. Then by Lemma 3.5 , we have that real part of
fi(·, ·)

Re hi(·, ·)
is also

an invex function w.r.t. η̃(ϱ, ϱ0), i.e.,

Re
(

fi(ϱ, ϱ̄)
Re hi(ϱ, ϱ̄)

−
fi(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)

)
≧ Re

〈
η̃(ϱ, ϱ0),∇ϱ

fi(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

+ ∇ϱ̄
fi(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)

〉
(7)

Since 1(·, ·) is also an invex function, then again by using Lemma 3.5 , we have that −YH
i

1(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

is an

invex function w.r.t η̃(ϱ, ϱ0). Thus, by (5) we get

0 ≧ Re
〈
Yi,
−1(ϱ, ϱ̄)

Re hi(ϱ, ϱ̄)

〉
− Re

〈
Yi,
−1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)

〉
≧ Re

〈
Yi, η̃

T(ϱ, ϱ0)∇ϱ
−1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
+ η̃H(ϱ, ϱ0)∇ϱ̄

−1(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

〉
= Re

〈
η̃(ϱ, ϱ0),−YT

i ∇ϱ
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
− YH

i ∇ϱ̄
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)

〉
Adding this inequality to (7) and using the fact that γi > 0 for i = 1, 2, . . . ,m,we have

m∑
i=1

γi

(Re fi(ϱ, ϱ̄)
Re hi(ϱ, ϱ̄)

−
Re fi(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

)
≧ Re

〈
η̃(ϱ, ϱ̄0),

m∑
i=1

γi

(
∇ϱ

f (ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

+ ∇ϱ̄
f (ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
− YT

i ∇z
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
− YH

i ∇ϱ̄
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)

)〉
= 0 (using (1)), which is a contradiction to (3).
Therefore, (ϱ0, ϱ̄0) is an efficient solution for (MOFP).

We now proceed to present the example which demonstrates the sufficiency conditions derived above.

Example 3.8. Consider S = {ϱ ∈ C : Re(ϱ) ≧ 0} be the polyhedral cone, K and M be defined as in Ex-
ample 3.6. Let the multiobjective fractional programming problem (MOFPP) be as below:

(MOFPP) Minimize φ(ϱ, ϱ̄) =
(

Re−ϱϱ̄

Re ln
(ϱ + ϱ̄

2

) , Re(1 − ϱ)
Re iϱ̄2

)

subject to χ =
{
(ϱ, ϱ̄) ∈ K :

ϱ

Re ln
(ϱ + ϱ̄

2

) ∈ S,
ϱ

Re iϱ̄2 ∈ S
}
.

To check the validity of sufficiency theorem 3.8 we need to have 0 < γi ∈ R and Yi ∈ S∗ ⊂ Cp such that
(1) and (2) are satisfied at a feasible point (ϱ0, ϱ̄0)= (x0 + iy0, x0 − iy0) = (3 + 4i, 3 − 4i). Taking Y1 = (a1 + ib1)
and using condition (2), we obtain

Re
〈
a1 + ib1,

x0

ln(x0)
+ i

y0

ln(x0)

〉
= 0

⇒ a1x0 − b1y0 = 0
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⇒ b1 = 0.75a1

If a1 = −2, then b1 = −1.5. Thus, we have Y1 = −2 − 1.5i ∈ S∗.

Similarly, taking Y2 = (a2 + ib2) and using condition (2), we have

Re
〈
a2 + ib2,

ϱ

Re iϱ̄2

〉
= 0

we obtain b2 = 0.75a2. If a2 = −3,we get b2 = −2.25. Thus, Y2 = −3 − 2.25i ∈ S∗.

Now using Y1,Y2 obtained above and equation (1), we have

2∑
i=1

γi

(
∇ϱ

fi(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

+ ∇ϱ̄
fi(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
− YT

i ∇ϱ
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)
− YH

i ∇ϱ̄
1(ϱ0, ϱ̄0)

Re hi(ϱ0, ϱ̄0)

)
= 0,

⇒ γ1

(−2ϱ0

ln3
−

Y1

ln3

)
+ γ2

(−1
24
−

Y2

24

)
= 0

⇒ γ1 = 0.02γ2
If γ2 = 1 > 0, then γ1 = 0.02 > 0.

Hence, there exists 0 < γi ∈ R and Yi ∈ S∗ ⊂ Cp such that (1) and (2) are satisfied at a feasible point
(ϱ0, ϱ̄0). Also, note that both the objective functions are invex as proved earlier in examples 3.6 and 3.7.
Consequently, (ϱ0, ϱ̄0) = (3 + i4, 3 − i4) is an efficient solution of (MOFPP) by Theorem 3.8.

Many algorithms are presented by authors in literature to find the optimal solution of an optimization
problem where the objective functions are highly nonlinear. But the multiobjective programming problems
fabricated to study the real life model are mostly solved using Multiobjective Genetic Algorithm (MOGA)
in MATLAB. It was introduced by Fonseca and Fleming [25] and is based on the concepts of biological
evolution via natural selection and genetics. It can explore various areas of the solution space, making
it useful for solving multiobjective optimization problems. To see its application in various fields refer
[26–28]. It is noteworthy that we attained (ϱ0, ϱ̄0) = (3 + i4, 3 − i4) as an efficient solution of (MOFPP) using
MOGA. However in this study, as the sufficiency conditions are taken into account and verified under
generalized convexity assumptions, the solution obtained using MOGA is efficient undoubtedly.

4. Bector Type Dual Formulation and Duality Results

In the literature, various types of duals have been discussed. Here we have studied the Bector type dual
in order to explore its application to various mathematical programming problem. Acknowledging that
the development of conceptual and computational elements of real mathematical programming problems
has benefited by the use of Lagrangian functions, we formulate Bector type dual for the primal problem
(MOFP) and then establish important duality results. These theorems relate the optimal solutions of both
the problems.

The Bector type dual to the primal (MOFP) is formulated as follows :

(BD) Maximize B(ϑ, ϑ̄, γ,Y) =(Re( f1(ϑ, ϑ̄) − ⟨Y1, 1(ϑ, ϑ̄)⟩)
Re h1(ϑ, ϑ̄)

, . . . ,
Re( fm(ϑ, ϑ̄) − ⟨Ym, 1(ϑ, ϑ̄)⟩)

Re hm(ϑ, ϑ̄)

)
subject to
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m∑
i=1

γi

(
∇ϱ

fi(ϑ, ϑ̄)
Re hi(ϑ, ϑ̄)

+ ∇ϱ̄
fi(ϑ, ϑ̄)

Re hi(ϑ, ϑ̄)
− YT

i ∇ϱ
1(ϑ, ϑ̄)

Re hi(ϑ, ϑ̄)
− YH

i ∇ϱ̄
1(ϑ, ϑ̄)

Re hi(ϑ, ϑ̄)

)
= 0, (8)

(ϑ, ϑ̄) ∈ K, 0 < γi ∈ R, Yi ∈ S∗ ⊂ Cp for i = 1, 2, . . . ,m.

We proceed to the major component of this section, where the duality results are developed for the aforesaid
Bector type dual (BD).

Theorem 4.1 (Weak Duality Theorem). Consider (ϱ, ϱ̄) ∈ χ i.e., a feasible solution of (MOFP) and (ϑ, ϑ̄, γ,Y) to
be a feasible solution of (BD). In addition, suppose that any of the conditions (i) or (ii) of Theorem 3.8 holds, then
ϕ(ϱ, ϱ̄) ≧ B(ϑ, ϑ̄, γ,Y).

Proof. Consider ϕ(ϱ, ϱ̄) − B(ϑ, ϑ, γ,Y), i.e., for each i = 1, 2, . . . ,m,

Re fi(ϱ, ϱ̄)
Re hi(ϱ, ϱ̄)

−
Re( fi(ϑ, ϑ̄) −

〈
Yi, 1(ϑ, ϑ̄)

〉
)

Re hi(ϑ, ϑ̄)
≧

Re fi(ϱ, ϱ̄) − Re
〈
Yi, 1(ϱ, ϱ̄)

〉
Re hi(ϱ, ϱ̄)

−
Re fi(ϑ, ϑ̄) − Re

〈
Yi, 1(ϑ, ϑ̄)

〉
Re hi(ϑ, ϑ̄)( 〈

Yi,
1(ϱ, ϱ̄)

Re hi(ϱ, ϱ̄)

〉
being non-negative.

)
(i) Consider

Re fi(ϱ, ϱ̄) − Re
〈
Yi, 1(ϱ, ϱ̄)

〉
Re hi(ϱ, ϱ̄)

−
Re fi(ϑ, ϑ̄) − Re

〈
Yi, 1(ϑ, ϑ̄)

〉
Re hi(ϑ, ϑ̄)

=
1

Re hi(ϱ, ϱ̄) Re hi(ϑ, ϑ̄)

[
Re hi(ϑ, ϑ̄) Re

(
fi(ϱ, ϱ̄) −

〈
Yi, 1(ϱ, ϱ̄)

〉 )
− Re hi(ϱ, ϱ̄) Re

(
fi(ϑ, ϑ̄) −

〈
Yi, 1(ϑ, ϑ̄)

〉 )]
≧

1
Re hi(ϱ, ϱ̄) Re hi(ϑ, ϑ̄)

[
Re hi(ϑ, ϑ̄) Re{∇ϱ( fi(ϑ, ϑ̄) −

〈
Yi, 1(ϑ, ϑ̄)

〉
)(ϱ − ϑ) + ∇ϱ̄( fi(ϑ, ϑ̄) −

〈
Yi, 1(ϑ, ϑ̄)

〉
)(ϱ̄ − ϑ̄)} −

Re( fi(ϑ, ϑ̄) −
〈
Yi, 1(ϑ, ϑ̄)

〉
) Re{∇ϱhi(ϑ, ϑ̄)(ϱ − ϑ) + ∇ϱ̄hi(ϑ, ϑ̄)(ϱ̄ − ϑ̄)}

]
(using hypothesis (i) of Theorem 3.8)

≧
1

Re hi(ϱ, ϱ̄) Re hi(ϑ, ϑ̄)
Re

[
{Re hi(ϑ, ϑ̄)

(
∇ϱ( fi(ϑ, ϑ̄) −

〈
Yi, 1(ϑ, ϑ̄)

〉 )
− ( fi(ϑ, ϑ̄)

〈
Yi, 1(ϑ, ϑ̄)

〉
)

∇ϱ Re hi(ϑ, ϑ̄)}(ϱ − ϑ)+{Re hi(ϑ, ϑ̄)∇ϱ̄( fi(ϑ, ϑ̄) −
〈
Yi, 1(ϑ, ϑ̄)

〉
) − ( fi(ϑ, ϑ̄) −

〈
Yi, 1(ϑ, ϑ̄)

〉
)∇ϱ̄ Re hi(ϑ, ϑ̄)}(ϱ̄ − ϑ̄)

]
≧

Re hi(ϑ, ϑ̄)
Re hi(ϱ, ϱ̄)

Re
[
∇ϱ

 fi(ϑ, ϑ̄) − YH
i 1(ϑ, ϑ̄)

Re hi(ϑ, ϑ̄)

 (ϱ − ϑ) + ∇ϱ̄

 fi(ϑ, ϑ̄) − YH
i 1(ϑ, ϑ̄)

Re hi(ϑ, ϑ̄)

 (ϱ̄ − ϑ̄)
]

=
Re hi(ϑ, ϑ̄)
Re hi(ϱ, ϱ̄)

Re
〈
ϱ − ϑ,∇ϱ

 fi(ϑ, ϑ̄) − YH
i 1(ϑ, ϑ̄)

Re hi(ϑ, ϑ̄)

 + ∇ϱ̄  fi(ϑ, ϑ̄) − YH
i 1(ϑ, ϑ̄)

Re hi(ϑ, ϑ̄)

〉
= 0 (by dual constraint (8) and γi > 0, i = 1, 2, . . . ,m)
Therefore, φ(ϱ, ϱ̄) ≧ B(ϑ, ϑ̄, γ,Y).

(ii) By invexity of
fi(·, ·) −

〈
Yi, 1(·, ·)

〉
Re hi(·, ·)

, the result can be obtained by replacing ϱ − ϑ with η̃(ϱ, ϱ0) in the proof

of part (i) above.

Corollary 4.2. Consider (ϱ0, ϱ̄0) to be a feasible solution of (MOFP) and (ϑ0, ϑ̄0, γ,Y) be a feasible solution of (BD)
with φ(ϱ0, ϱ̄0) = B(ϑ0, ϑ̄0, γ,Y). Further, assume that the assumptions of Theorem 4.1 holds true. Then (ϱ0, ϱ̄0) and
(ϑ0, ϑ̄0, γ,Y) are the efficient solutions of (MOFP) and (BD) respectively.

Proof. Assuming that (ϱ0, ϱ̄0) is not an efficient solution of (MOFP). Then there exists (ϱ̂0, ¯̂ϱ0) ∈ χ such that(
Re f1(ϱ̂, ¯̂ϱ)
Re h1(ϱ̂, ¯̂ϱ)

, . . . ,
Re fm(ϱ̂, ¯̂ϱ)
Re hm(ϱ̂, ¯̂ϱ)

)
≤

(
Re f1(ϱ0, ϱ̄0)
Re h1(ϱ0, ϱ̄0)

, . . . ,
Re fm(ϱ0, ϱ̄0)
Re hm(ϱ0, ϱ̄0)

)



R. Bagri et al. / Filomat 38:26 (2024), 9127–9141 9139

= B(ϑ0, ϑ̄0, γ,Y),
or φ(ϱ̂, ¯̂ϱ) ≤ φ(ϱ0, ϱ̄0) = B(ϑ0, ϑ̄0, γ,Y)

which contradicts Theorem 4.1.
Thus, (ϱ0, ϱ̄0) is an efficient solution of (MOFP). The efficiency of (ϑ0, ϑ̄0, γ,Y) follows similarly.

Theorem 4.3 (Strong Duality Theorem). Consider (ϱ0, ϱ̄0) to be an efficient solution of (MOFP) and the constraint
qualification hold at (ϱ0, ϱ̄0). Then ∃ γ̂i > 0, Ŷi ∈ S∗, i = 1, 2, . . . ,m, such that (ϱ0, ϱ̄0, γ̂, Ŷ) is a feasible solution of
(BD). If in addition hypotheses of Theorem 4.1 holds true, then (ϱ0, ϱ̄0, γ̂, Ŷ) is an efficient solution of (BD).

Proof. Assume (ϱ0, ϱ̄0) is an efficient solution of (MOFP). Then by Theorem 3.1,∃ γ̂i > 0, Ŷi ∈ S∗, i = 1, 2, . . . ,m
such that (ϱ0, ϱ̄0, γ̂i, Ŷi) satisfies (8). Hence, (ϱ0, ϱ̄0, γ̂, Ŷ) is a feasible solution of (BD).
As

Re
〈
Ŷi,

1(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

〉
= 0, i = 1, 2, . . . ,m,

and so, the optimal value of the primal (MOFP) and dual (BD) problems are equal at (ϱ0, ϱ̄0, γ̂, Ŷ), i.e.,
φ(ϱ0, ϱ̄0) = B(ϱ0, ϱ̄0, γ̂, Ŷ). Thus, by Corollary 4.2, (ϱ0, ϱ̄0, γ̂, Ŷ) is an efficient solution of (BD).

Theorem 4.4 (Strict Converse Duality Theorem). Consider (ϱ0, ϱ̄0) to be an efficient solution of (MOFP) and
(ϑ0, ϑ̄0, γ̂, Ŷ) be an efficient solution of (BD) and suppose that any of the following condition holds true

(i) for Re fi(·, ·) ≧ 0,Re hi(·, ·) > 0,
fi(·, ·) −

〈
Yi, 1(·, ·)

〉
Re hi(·, ·)

, i = 1, 2, . . . ,m, has strictly convex real part at (ϑ0, ϑ̄0),

(ii) for Re fi(·, ·) ≦ 0,Re hi(·, ·) > 0,
fi(·, ·) −

〈
Yi, 1(·, ·)

〉
Re hi(·, ·)

, i = 1, 2, . . . ,m, has strictly invex real part w.r.t. η̃(ϱ, ϱ0)

at (ϑ0, ϑ̄0),

Then (ϱ0, ϱ̄0) = (ϑ0, ϑ̄0), i.e., (ϑ0, ϑ̄0) is an efficient solution of (MOFP) and φ(ϱ0, ϱ̄0) = B(ϑ0, ϑ̄0, γ̂, Ŷ).

Proof. Let us assume that (ϱ0, ϱ̄0) , (ϑ0, ϑ̄0). Now since (ϱ0, ϱ̄0) is an efficient solution for the problem
(MOFP), then by Theorem 4.3, ∃ γ̃ and Ỹ > 0 s.t. (ϱ0, ϱ̄0, γ̃, Ỹ) is an efficient solution of (BD).
Also by the assumption of the theorem, (ϑ0, ϑ̄0, γ̂, Ŷ) is also an efficient solution of (BD) and hence for each
i = 1, 2, . . . ,m,

Re
(

fi(ϱ0, ϱ̄0) −
〈
Ỹi, 1(ϱ0, ϱ̄0)

〉 )
Re hi(ϱ0, ϱ̄0)

=

Re
(

fi(ϑ0, ϑ̄0) −
〈
Ŷi, 1(ϑ0, ϑ̄0)

〉 )
Re hi(ϑ0, ϑ̄0)

(9)

By strictly convexity of real part of
fi(·, ·) −

〈
Yi, 1(·, ·)

〉
Re hi(·, ·)

for each i = 1, 2, . . . ,m at (ϑ0, ϑ̄0), we obtain,

Re
(

fi(ϱ0, ϱ̄0) −
〈
Ŷi, 1(ϱ0, ϱ̄0)

〉 )
Re hi(ϱ0, ϱ̄0)

−

Re
(

fi(ϑ0, ϑ̄0) −
〈
Ŷi, 1(ϑ0, ϑ̄0)

〉 )
Re hi(ϑ0, ϑ̄0)

> Re
〈
ϱ0 − ϑ0,∇ϱ

fi(ϑ0, ϑ̄0)
Re hi(ϑ0, ϑ̄0)

+ ∇ϱ̄
fi(ϑ0, ϑ̄0)

Re hi(ϑ0, ϑ̄0)
− ŶT

i ∇ϱ
1(ϑ0, ϑ̄0)

Re hi(ϑ0, ϑ̄0)
− ŶH

i ∇ϱ̄
1(ϑ0, ϑ̄0)

Re hi(ϑ0, ϑ̄0)

〉
(10)

= 0 (by (8) and γi > 0, i = 1, 2, . . . ,m)
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which contradicts (9). Thus, (ϱ0, ϱ̄0) = (ϑ0, ϑ̄0) or (ϑ0, ϑ̄0) is an efficient solution of (MOFP).
Using (2), (9) becomes

Re fi(ϱ0, ϱ̄0)
Re hi(ϱ0, ϱ̄0)

=
Re

(
fi(ϑ0, ϑ̄0) −

〈
Ŷi, 1(ϑ0, ϑ̄0)

〉)
Re hi(ϑ0, ϑ̄0)

i.e., ϕ(ϱ0, ϱ̄0) = B(ϑ0, ϑ̄0, γ̂, Ŷ).

5. Conclusion

In this work, we have considered a complex multiobjective fractional programming problem (MOFP).
The complex version of ratio invexity result is provided. The sufficient optimality conditions have been de-
veloped by considering the generalized convexity of functions. Illustrative application is also provided for
the better insight of efficiency conditions for the given problem. Further, a Bector type dual corresponding
to the (MOFP) is formulated and the fundamental duality results namely weak duality, strong duality and
strict converse duality theorems are established under the consideration of invexity of involved functions.
The developed results can be extended to the case where the involved functions are non-analytic. Moreover,
the robustness in the model under study can also be explored in future.
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l’approximation. L’analyse numérique et la théorie de l’approximation. 10(1) (1981), 11–16 .
[13] M.E. Elbrolosy, Efficiency for a Generalized form of Vector Optimization Problems in Complex Space, Optimization. 65 (2016), 1245–1257.
[14] J.C. Chen, H. C. Lai, S. Schaible, Complex Fractional Programming and the Charnes-Cooper Transformation, J. Optim. Theory Appl.

126 (2005), 203–213.
[15] H. C. Lai, J. C. Lee, S. C. Ho, Parametric Duality on Minimax Programming Involving Generalized Convexity in Complex Space, J. Math.

Anal. Appl. 323 (2006), 1104–1115.
[16] H. C. Lai, T. Y. Huang, Optimality Conditions for Nondifferentiable Minimax Fractional Programming with Complex Variables, J. Math.

Anal. Appl. 359 (2009), 229–239.
[17] H. C. Lai, T. Y. Huang, Nondifferentiable Minimax Fractional Programming in Complex Spaces with Parametric Duality, J. Glob. Optim.

53 (2012), 243–254.
[18] T. Y. Huang, S. C. Ho, Optimality and Duality for Multi-objective Fractional Programming in Complex Spaces, Bull. Malays. Math. Sci.

Soc. 44 (2021), 3895–3906.
[19] I. Ahmad, D. Agarwal, S. K. Gupta, Symmetric Duality in Complex Spaces over Cones, Yugosl. J. Oper. Res. 31 (2021), 515–538.
[20] T. Y. Huang, T. Tanaka, Optimality and Duality for Complex Multi-objective Programming, Numer. Algebra, Control Optim. 12 (2022),

121–134.
[21] J. Chen, S. Al-Homidan, Q. H. Ansari, J. Li, Y. Lv, Robust Necessary Optimality Conditions for Nondifferentiable Complex Fractional

Programming with Uncertain Data, J. Optim. Theory Appl. 189 (2021), 221–243.
[22] C. R. Bector, S. Chandra, T. R. Gulati, A Lagrangian Approach to Duality for Complex Nonlinear Fractional Programming over Cones,

Optimization. 8 (1977), 17-25.
[23] L. V. Reddy, R. N. Mukherjee, Some Results on Mathematical Programming with Generalized Ratio Invexity, J. Math. Anal. Appl. 240

(1999), 299–310.
[24] H. C. Lai, J. C. Liu, Duality for Nondifferentiable Minimax Programming in Complex Spaces, Nonlinear Anal.: Theory Methods Appl.

71 (2009), e224-e233.



R. Bagri et al. / Filomat 38:26 (2024), 9127–9141 9141

[25] C. M. Fonseca, P. J. Fleming, Multiobjective Genetic Algorithms. In: IEE colloquium on ‘Genetic Algorithms for Control Systems
Engineering’ (Digest No. 1993/130), 28 May 1993. London, UK: IEE; 1993.

[26] M. Mohammadi, S. Dehbari, B. Vahdani, Design of a Bi-objective Reliable Healthcare Network with Finite Capacity Queue under Service
Covering Uncertainty, Transp. Res. E: Logist. Transp. 72 (2014), 15–41.

[27] P., R. Tavakkoli-Moghaddam, Y. Rahimi, C. Triki, Solving a Hub Location-Routing Problem with a Queue System Under Social
Responsibility by a Fuzzy Meta-heuristic Algorithm, Ann. Oper. Res. (2021).

[28] R. Agarwal, D. Agarwal, S. Upadhyaya, I. Ahmad, Optimization of a Stochastic Model having Erratic Server with Immediate or Delayed
Repair, Ann. Oper. Res. (2022).


