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Constructing group inverse and MP-inverse of the product of some
generalized inverses via w-core inverse
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Abstract. Let R be a ring with an involution. In this paper, by studying the w-core inverses of R, we
construct the group inverse and MP-inverse of the product of some generalized inverses in R.

1. Introduction

The study of generalized inverses in rings with involution is an important ingredient in the ring theory.
Many researchers have done lots of results in this area. For instances, Mosié, Djordjevi¢ and Koliha gave
numerous excellent conclusions of generalized inverses in rings with involution in [2-7]. Mosi¢ et al. [3]
presented a number of new characterizations of EP elements in purely algebraic terms. Furthermore, in
[5], Mosi¢ and Djordjevié¢ provided many new characterizations of EP, normal and Hermitian elements. In
recent years, the third author in this paper and his cooperators [9, 11-14] investigated generalized inverses
by using solutions of certain equations. For example, Shi and Wei studied the equivalent conditions of
normal elements by the solutions of related equations [9]. In [13], Zhao and Wei characterized the partial
isometry elements by the existence of solutions of equations in rings in a certain set, and also by the form
of solutions of given equations. Recently, Zhu et al. defined and studied the w-core inverses and weighted
w-core inverses in rings with involution in [10], [15] and [16].

In this paper, we construct the group inverse and MP-inverse of the product of some generalized inverses
via w-core inverse. The paper is organized as follows: In Section 2, we recall the basic definitions. In Section
3, we study the w-core inverses and give some new results. In Section 4, based on the results in Section
3, we construct the group inverse and MP-inverse of the product of some generalized inverses via w-core
inverse.
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2. Preliminaries

Throughout the paper, the letters Z and Z, stand for the the ring of integers and the ring of positive
integers, respectively.

Let R be an associative ring with 1. An elementa € R is called group invertible if there exists a* € R such
that

a =aa*a, a* = a*aa®, aa® = a*a.

The element 4 is the group inverse of a4, which is unique if it exists. The set of all group invertible elements
of R is denoted by R*. In particular, if a = a®b = ca® for some b, ¢ € R, then a* = cab = c*a = ab?.
A map+:R — R, a - a*is called an involution of R if

@) =a,(ab)" =b'a’, (a+b)" =a” +b".

An element a € R is said to be an Hermitian element [2] if a* = a. The set of all Hermitian elements of R is
denoted by RH". We say that a' € R is the Moore-Penrose inverse (or MP-inverse) of 4, if

aata = a, ataa* = a*, (aa®)* = aa®, (ata)* = a'a.

If a* exists, then it is unique [8]. The set of all MP-invertible elements in R is denoted by R'. We call an
element a € R* N RT EP if ¥ = a’. The set of all EP elements of R is denoted by RE”.

For a,w € R, a is called the w-core invertible element of R if there exists aw@ € R such that

& _ ® ® ®

a,’ = aw(aw®)2, a =ay awa, (away,’ )" = away,,

® ®

where a;,” is called the w-core inverse of a. If 4, exists, then it is unique. We write Rw® for the set of all
w-core invertible elements of R. In particular, a is called a core invertible element of R if

a® = 0@®y2, 0= 0 ®22, (2a®y = 00 ®,

where a® is said to be the core inverse of 2. We denote the set of all core invertible elements of R by R®.

®

3. New results from a

In this section, we first give some new results of w-core inverses. Then based on these results, we

construct the group inverse and MP-inverse of the product of some generalized inverses.
The following conclusion was proved by Zhu et al., see [15, Theorem 2.10].

Lemma 3.1. Let a? = x. Then (aw)® exists, and (aw)@ =x.

In [16], Zhu et al. showed the followings:
) if (aw)® = x, then

x(aw)? = aw = awxaw, awx?> = x = xawx, (AWX)" = AwX.

(2) if ag@ = x, then

2

awx*® = x = xawx, xawda = a = awxd, (Awx)" = awx.
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Lemma 3.2. Letay,” = xand n € Z,. Then the followings hold.
(1) (aw)"x™ = awx.
(2) (awx)" = awx.
(3) x"(aw)" = xaw.
(4) (xaw)" = xaw.
(5) awx™! = x".
(6) x(aw)™! = (aw)".
(7) awx(aw)" = (aw)".
(8) xawx" = x".

Proof. (1) By awx? = x, we have
(aw)"x" = (aw)" " (awx?)x"2
— (aw)n—lxn—l

= AwXx.

(2) From awxa = a, we have

(awx)" = (awxa)wx(awx)" 2

(awx)" !

= awx.
(3) Note that x(aw)? = aw, so

X (aw)" = x" " (x(aw)?)(aw)" 2

xn—l(aw)n—l

= xaw.
(4) Notice that xawx = x, so

(xaw)" = (xawx)aw(xaw)" >
)nfl

(xaw

= Xaw.

(5) It follows from awx? = x that
awx"™ = (awx?)x"1 = x".
(6) It is noted that x(aw)? = aw, hence
x(aw)™! = (x(aw)?)(aw)" ! = (aw)".
(7) Since awxaw = aw,
awx(aw)" = (awxaw)(aw)"! = (aw)".
(8) According to xawx = x, we have

xawx" = (xawx)x" ! = x". O



L. Cao et al. / Filomat 38:27 (2024), 9519-9535

Theorem 3.3. Let aw@ =xandn,m e Z.,. Then
(1) Ll® @ n+1

w(aw)" w(aw)" =X '

(2) [(aw)”]%;)nl exists, and [(aw)”]@ = XM,

(aw)™

(3) [(aw)”a]w@ww)n, exists, and [(aw)”a]%w),n =yl

exists, and a

Proof. (1) By Lemma 3.2 (1), (3) and (5),

a(w(aw)n)(xn+1)2 — ((aw)n+1x(n+1))xn+1

— awxn+2

— xn+1,

Xn+1ﬂ(ZU(LIZU)n)H — (X"+1(HZU)n+1)ﬂ
= xawa
= g,

n+1 )n+1xn+1

a(w(aw)")x" " = (aw
= awx
= (awx)"
= (a(w(aw)")x"1y".
(2) From Lemma 3.2 (1), (5) and (6), we have
(aw)n(aw)m(xn+m)2 = ((aw)n+mxn+m)xn+m
- awxn+m+1

n+m
=X ,

XM (aw) (aw)" (aw)" = (" (aw)™ ™) (aw)"
= x(aw)™!
= (aw)",
(aw)" (aw)"x™™ = (aw)™ "
= awx
= (awx)"
= ((aw)" (aw)"x™ )",
(3) By Lemma 3.2 (1), (5) and (6),
((aw)ﬂa)(w(aw)M)(xn+m+1)2 — ((aw)n+m+1xn+m+l)xn+m+l

— awxn+m+2

_ ntm+l
=X ,

X (aw)" a) (w(aw) ") (aw)"a) = (" aw)" ") (aw)"a
= (x(aw)"a
= (aw)"a,
((aw)na)(w(aw)m)xn+m+1 — (aw)n+m+1xn+m+1

awx

= (awx)"

= (((aw)"a)(w(aw)")x" "1y,

9522
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Theorem 3.4. Let aw® =xand m,n € Z.,. Then
(1) a@

: @ _ .
oy exists, and a = x"

w(aw)"x

(2) [(aw)"]w@w)mx exists, and [(aw)”]g]),,,x = ym-1,

(3) [(aw)”a]@ exists, and [(aw)”a]® = X",

w(aw)™x w(aw)™x
Proof. (1) By Lemma 3.2 (1) and (5),

a(w(aw)"x)(x")? = ((aw) 1 x"1)x"
= qwx"

=x",

X'a(w(aw)"x)a = x" (aw)" (awxa)
= xawa
= a,

a(w(aw)"x)x" = (aw)" 1 x"

= awx
= (awx)"
= (a(w(aw)"x)x")".

(2) It follows from Lemma 3.2 (1), (5), (6) and (7) that

(aw)n((aw)mx)(xn+m—l)2 — ((aw)n+mxn+1n)xn+m—1

— awanrm

— xn+m—1,

xn+m—1 (61'60)" ((ﬂZU)mX)(ﬂZU)n — xn+m—1 (aw)n+m—1 (awx(aw)n)
= xaw(aw)"
= (aw)",

(aw)n((aw)mx)xnﬂn—l — (aw)n+mxn+m
= awx
= (awx)"

= (@) (@) )Y

(3) By Lemma 3.2 (1), (5), (6) and (7),

((aw)na)(w(aw)mx)(xn+m)2 — ((aw)n+m+1xn+m+1)xn+m

— awxn+m+1

— A ntm
=X ,

X" ((aw)" a)(w(aw)" x)((aw)"a) = (x"*" (aw)"*™)(awx(aw)")a
= (xaw(aw)")a
= (aw)"a,

9523
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((aw)na)(w(aw)mx)xn+m — (aw)n+m+1xn+m+1

= awx
= (awx)"
= (((aw)"a)(w(aw)" x)x™™)".

O

Corollary 3.5. Leta, =xand n,m € Z,. Then

(1) a@ exists, and a® =x"1 where1 <1< n.
1 1
w(aw)"x w(aw)"x
(2) [(aw)"]gj)nlxl exists, and [(”w)n](,%w = x""l where 1 <1 <n+m-1.
(3) [(aw)”a]u@(aw)w exists, and [(aw)”a]u@(aw)w = X" phere 1 <1< n+m.

Proof. (1) By Lemma 3.2 (1), (3) and (5),

a(w(aw)nxl)(xn—Hl)Z — ((a,w)n+1xn+1)xn—l+1
— awxn—l+2

— xn—l+1,

xn—l+1a(w(aw)nxl)a — (xn—l+1 (aw)n—l+1)((aw)lx1)a
= xaw(awxa)
= xawa
=a,

a(w(aw)nxl)xn—Hl — (aw)n+1xn+l

= awx
= (awx)*
= (a(w(aw)"x)x")".

(2) According to Lemma 3.2 (1), (5), (6) and (7), we have

(aw)n((aw)mxl)(xn+m—1)2 — ((aw)n+mxn+m)xn+m—l
— uwxn+m—l+1

— xn+m—l,

x”“”_l(uw)”((aw)mxl)(aw)” — (xn+m—l(aw)n+m—l)((aw)lxl)(aw)n
= (xaw)((awx)(aw)")
= xaw(aw)"
= (aw)",
(aw0)"(ao) "y = (o)
= awx
= (awx)”
= ((aw)" ((aw)"x)x" "y,

(3) By Lemma 3.2 (1), (3), (5), (6) and (7),

((aw)na)(w(aw)mxl)(xn+m—l+l)2 — ((aw)n+m+1xn+m+1)xn+m—l+1

— awxn+m—l+2

— xn+m—l+1/

9524
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xn+m_1+1 ((aw)”a)(w(aw)mxl)((aW)"a) — (xn+m—l+1 (aw)n+m—l+l)((aw)lxl)(aw)na
= (xaw)((awx)(aw)")a
= (xaw(aw)")a
= (aw)"a,

((LI‘CU)nﬂ)(ZU(LIZU)mxI)X”+m_l+1 — (aw)n+m+1xn+m+l
= awx
= (awx)"

= (((aw)nﬂ)(w(aw)mxl )xn+m—l+1 ).

Remark 3.6. In Corollary 3.5, let | = 1, then one can obtain Theorem 3.4.

Theorem 3.7. Let aS,,@ =xandn € Z,. Then
(1) a% exists, and a% = awx.
(2) [(aw)”]x@ exists, and [(aw)”]@ = qwx.

X

(3) [(aw)“x]f?1 exists, and [(aw)”x]f?1 = qwx.

(4) [(aw)”]@ exists, and [(aw)”]® =x.

x"aw x"aw

(5) [(LIZU)"JC]S?_l , exists, and [(aw)”x]@ =

au xlaw

Proof. (1) By Lemma 3.2 (1),

a(wx)(awx)? = (awx)®

= awx,

(awx)a(wx)a = awxa

:a,

a(wx)(awx) = (awx)?
= awx
= (awx)*
= (a(wx)(awx))*.

(2) From Lemma 3.2 (1) and (7), we have

(aw)"x" (awx)? = (awx)?

= qwx,

(awx)(aw)"x" (aw)" = awx(aw)"
= (aw)",

(aw)"x" (awx) = (awx)?
= awx
= (awx)"
= ((aw)"x" (awx))".
(3) By (2) and Lemma 3.2 (3) and (7),

2

((aw)"x)x" Y (awx)? = awx,

9525
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(awx)((aw)"x)x" " (aw)"x) = (awx(aw)")(x" (aw)")x
= (aw)" (xawx)
= (aw)"x,

((aw)"x)x" Yawx) = (((aw)"x)x" " (awx))*.

(4) It follows from Lemma 3.2 (1), (2) and (6) that

(aw)" (" (aw))x* = ((aw)"x")(awx?)
= awx®
=x,
x(aw)™ (X" (aw))(aw)" = (aw)" " (x" (aw)")aw
= (aw)" *x(aw)?
= (aw)" taw
= (aw)",
(aw)" (x" (aw))x = ((aw)"x")(awx)
= (awx)?
= awx
= (awx)"
= ((aw)" (x" (aw))x)".
(5) By (4) and Lemma 3.2 (3) and (6),
((aw)"x)(x" law)x? = x,
x((aw)"x)(x"taw)((aw)"x) = (aw)" ™ (x" (aw)")awx
= (aw)" " (xawa)wx
= (aw)" Lawx
= (aw)"x,

((aw)x)(x" law)x = (((aw)"x)(x" law)x)*.

O

9526

Remark 3.8. In fact, Theorem 3.7 (3) can be seen as [(uw)"x’]@, = awx, where 1 < | < n. This is since (aw)"x' =

X

(aw)" ! ((aw)'x') = (aw)*awx = (aw)'"*'x, then [(aw)"x']77, = awx becomes [(aw)”””x]x@‘_l = awx. Similarly,

®

' =x,wherel <l <n.
x=law

Theorem 3.7 (5) can be regarded as [(aw)"x']
Theorem 3.9. Let aw@ =xandn € Z,. Then
(1) @ ®

(@) exists, and a =x",

wx(aw)"

2) (aw)%w)” exists, and (aw)@ _—

x(aw)r —
(3) (awx)%»” exists, and (awx)%])” =x",
Proof. (1) By Lemma 3.2 (1), (3), (5) and (7),
"? = (awx(aw)")x*"
= ((aw)"x")x"

— awxnﬂ

a(wx(aw)™)(x

= xn,
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X'a(wx(@@aw)")a = X" (awx(aw)")a
= x"(aw)"a
= xawa
=g,
a(wx(aw)")x" = (awx)((aw)"x™)
= (awx)?
= awx
= (awx)"
= (a(wx(aw)™)x")".
(2) From (1) and Lemma 3.2 (3) and (7), we have
(aw)(x(aw)")(x")* = x",
X" (aw) (x(aw)™)(aw) = x"* (awx(aw)")aw
= x(aw)?
= qw,
(aw)(x(aw)")x" = ((aw)(x(aw)")x")".
(3) By (1) and Lemma 3.2 (1), (3) and (7),
(awx)(aw)" (x")* = x",
(" (awx)(aw)" (awx) = x" (awx(aw)")awx
= x"(aw)"awx
= (xawa)wx
= awx,
(awx)(aw)"x" = ((awx)(aw)"x™)*.
O
Theorem 3.10. Let a? =xandn € Z.. Then
(1) (x”)@ exists, and (x”)® . = awx.

(awo)" (aw)

(2) (x’%z)w®(m),,f1 exists, and (x”a)?(aw)ﬂ = awx.
SPNC) ; n®
(3) (x aw)(m),,f1 exists, and (x aw)(aw)H = awx.

Proof. (1) By Lemma 3.2 (2), (3), and (5),

x"(aw)" (awx)? = (xawa)wx
= awx,
(awx)x" (aw)"x" = (awx?)(awx")
= xx"!
=x",
X" (aw)" (awx) = (xawa)wx
= awx
= (awx)"
= (a(wx(aw)™)x")".
(2) From (1) and Lemma 3.2 (1) and (5), we have

9527
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(x"a)(w(aw)" " (awx)? = awx,

(awx)(x"a)(w(aw)"H)x"a = (awx™)((aw)"x™")a
= x"(awxa)
= x"a,
(x"a)(w(aw)"~")(awx) = ((x"a)(w(aw)"")(awx))".
(3) By (1) and Lemma 3.2 (5),
(x"aw)(aw)" Y (awx)? = awx,
(awx)(x"aw)(aw)" " (x"aw) = (awx)(x" (aw)")x"aw
= (awx?)(awx")aw
= xx"law
= x"aw,
(x"aw)(aw)" Y (awx) = ((x"aw)(aw)"~ (awx))".
|

Remark 3.11. Theorem 3.10 (2) can be viewed as [x”(aw)la]u@(w)ﬂ% = awx, where 1 < | < n. This is because
®

oy = AW

¥ (aw)a = ¥ (! (aw))a = X"} (xawa) = x"'a. Thus [x"(aw)'a) = awx is reduced as (x"'a)

w(aw)n--1

Similarly, Theorem 3.10 (3) can be regarded as [x"(aw)’]@ = awx, where 1 < < n.

(aw)r-!
Theorem 3.12. Let au@ =xandn € Z,. Then
® ®
(1) x(aw)nﬂ (aw)nﬂ

(2) (xa)® exists, and (xa)® =x".

w(aw)" w(aw)"

exists, and x = x",

(3) (xaw)gz)n exists, and (xaw)gz)n =x".
Proof. (1) By Lemma 3.2 (2), (3), and (6),

x(aw)n+l(xn)2 — x((aw)n+1xn+1)xn—l
= (xawx)x" !

= xn/

xnx(aw)nﬂx — (xn+1 (aw)n+1)x
= xXawx
=z,
x(aw)”“ "= (aw)"x"
= awx
= (awx)"
= (x(aw)™ x"y.
(2) According to (1) and Lemma 3.2 (3), we have
() (w(aw)")(x")* = x",

n+1 (aw)n+1)xa

X" (xa)(w(aw)")xa = (x
= (xawx)a

= xa,
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(xa)(w(aw)")x" = ((xa)(w(aw)")x")".
(3) By (1) and Lemma 3.2 (3),
(xaw)(aw)" (x")* = x",

X" (xaw)(aw)" (xaw) = (X" (aw)" ) xaw

= (xawx)aw
= xaw,
(xaw)(aw)"x" = ((xaw)(aw)"x™)*.
|
Remark 3.13. From [(aw)”a]%w)m = x""+1 see Theorem 3.3 (3), one can obtain that if 1 < | < n, then
1 1@ _ e i 1 -1 11® _ -1,1® _

[x(aw) a]w(ﬂw)n_, = x". This is since x(aw)'a = (aw) " a, then [x(aw) a]w(uw)n_, = x" becomes [(aw) a]w(ﬂw)n_, = x".
Similarly, by [(aw)”]%)n, = x"*" see Theorem 3.3 (2), one can get that in case 1 <1 < n, then [x(aw)l](%)nf, =x".

Theorem 3.14. Let aw® =xand m,n € Z.,. Then
(1) (xn)®

(aw)"*”’

) (x'a)®

w(aw)n+nx—l

(3) (x”aw)@

(aw)n+m—l

exists, and (x”)gfv)m = x™,
exists, and (x”a)® =x™,

w(uw)n+m—1

exists, (x”aw)g)nm =x"

Proof. (1) By Lemma 3.2 (1), (3), (5), and (8),

X (aw)™ " (x")? = (¢ (aw)")(aw)" ")
= (xawa)wxx™
- awxm+1
=x",
xmxn(uw)n+m n — (xm+n(uw)n+i11)xn
= xawx"
=x",
X (aw)™"x™ = (x" (aw)")((aw)"x™)
= (xawa)wx
= awx
= (awx)*
= (x(aw)™ X"y
(2) From (1) and Lemma 3.2 (3) and (8), we have
(xna)(w(aw)n+m—1)(xm)2 — Xm,
xm(xna)(w(aw)n+m—1)(xna) — (xn+m(aw)n+m)(xna)
= (xawx™)a
=x"a,
(¢"a) aoaw)™* ™" = (") aolaw) ™"y

(3) By (1) and Lemma 3.2 (3) and (8),
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(xnaao(aa0n+m—l(XM)2 — xm’

n+m(aw)n+111)xnaw

X" (x"aw)(aw)™ (" aw) = (x
= (xawx")aw
= x"aw,

(x"aw)(aw)™ " 1x™ = ((x"aw)(aw)™ " 1My,

O
Remark 3.15. We claim that [x"(aw)la]u@ww)mf, = x™. This is since if 1 <1 < n, then x"(aw)'a = x"(x'(aw)")a =
x"(xawa) = x"'a. Thus, in this case, [x" (aw)la]w(aw)wfl = (x”‘la)%w)wm = x™, which coincides with Theorem 3.14
(2). The case of | = n follows from Theorem 3.3 (1). Provided that n < | < n+m, then x"(aw)'a = (x"(aw)")(aw)""a =
xaw(aw)'"a = (aw)""a. Thus, by Theorem 3.3 (3), [x"(aw)la]%aw)m_, = [(uw)l‘"a]w@mw)w_, = x™. Similarly, one
can check that [x"(aw)’]® = x™ by Theorems 3.3 (2), 3.12 (3) and 3.14 (3).

(ﬂw)nﬂn—l

4. Construct group inverse and MP-inverse via w-core inverse

In this section, we will give new results of group inverses and MP-inverses of the product of some
generalized inverses.

Theorem 4.1. Let (aw)® = x. Then x € REP and x* = x* = awawx.

Proof. Since (aw)® = x, x = awx?>. Moreover,
x = xawx = x(xawaw)x = x*(awawx),

hence x € R* and x* = (aw)x(awawx) = aw(xawaw)x = awawx. Thus

*

xx* = xawawx = (xawaw)x = awx = (awx)* = (xx*)*.
It follows that x € REP. O
Corollary 4.2. Let (aw)@ =xand n € Z.. Then (x*)" = (x*)" = (aw)"*x.
Proof. By x* = x* = awawx, we have

(")t = ()"

= (awawx)"

= aw(awxaw)awx(awawx)" >
= aw(awawx)"

)n—3

awaw(awxaw)awx(aw

(aw)?(awawx)" 2

= (aw)" 'awawx
= (aw)"x.
O

Theorem 4.3. Let (aw)® = x. Then aw € R* and (aw)* = x2aw.

Proof. On one hand, by (aw)® = x, we have aw = x(aw)?. On the other hand,
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2

aw = awxaw = awx*x’aw = aw(awawx)x*aw = (aw)*(awx®)aw = (aw)>x>aw.

Hence, aw € R* and (aw)* = x(aw)x?*aw = x(awx*)aw = x*aw. [
Corollary 4.4. Let @w)® = x and n € Z,. Then (aw)*)" = ¥"aw.
Proof. By (aw)* = x*aw, we have

(aw)*)" = (Paw)"

= x*(awx?)aw(x*aw)" 2
= ¥Paw(x*aw)" 2
= 2> (awx?)aw(x2aw)" 3
= x*aw(x*aw)" 3

= ¥"(awx?)aw

= x"aw.
O

Corollary 4.5. Let (aw)@ =xandn € Z,. Then
(1) (*)' ((aw)*y" = (x*)" ((aw)*)" = xaw.
(2) ((aw)*y" (*)" = ((aw)*)" (x*)" = awx.

Proof. (1) By Lemma 3.2 (1) and Corollary 4.2, we have

)" ((@w)*)" = ()™ x)(x" aw)
— (aw)™ ' ¥ Mxaw
= (awx?)aw
= xaw.

(2) By Lemma 3.2 (3) and Corollary 4.4, we have

(aw)*)" ()" = (& aw)((aw)" )
— (xn+1(aw)n+1)awx
= x(aw)*x

= awXx.

O
By Lemma 3.1, Theorem 3.3 (1), and Corollaries 4.2, 4.4, 4.5, we get the following results.

Theorem 4.6. Let (aw)@ =xandn,m € Z.. Then
(1) [(aw)”]@ exists, and [(aw)”]® = x".
(2) ((xn)#)m — (aw)”’"”x.
(3) (((aw)n)#)m — xnm+1aw‘
@) ()" ((aw)"y*)" = xaw.
(5) (((azo)" )" ((x")*)" = awx.
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Proof. (1) It follows from (aw)® = x, Theorem 3.3 (1) and Lemma 3.1.
(2) By Corollary 4.2 and Lemma 3.2 (1), we have

()" = ((aw)y™ 12"
— (aw)nn1+nxn
= (aw)™ ((aw)"x")
= (aw)"awx

— (aw)nm-#lx‘

(3) By Corollary 4.4 and Lemma 3.2 (3), we have

()" = ()" (aw)"
— xnm+n(aw)n
= x""(x" (aw)")
= x""xaw

— xnm+1aw‘

(4) According to (2), (3) and Lemma 3.2 (1), we have

(™" (@)™ = (@)™ ) (" aw)
= (awx)(xaw)
= (awx®)aw

= Xaw.

(5) From (2), (3) and Lemma 3.2 (3), we have

(((@w)"yy" (YY" = (¢ ) (aw) ™)
= (xaw)(awx)
= x(aw)x

= aAwx.

O

Remark 4.7. From Corollaries 4.2, 4.4 and Theorem 4.6, one can see that ((x*)")" = ((x™)*)" and (((aw)*)")" =
(((aw)™y*y™ for each m,n € Z.,.

If one is interested in other results, we think use the conclusions in Section 3, there should be many other
interesting results. Next, we consider some concrete w-core inverses.

Theorem 4.8. Let a € R* N RY. Then a(a@)* = aata*ataat.

Proof. Note that

‘a*aat = a?ata*aat = ad*aa® = aa* = (aa®)* = (a(a*)*aa*a*a*aat)’,

a(@") (aa*a*a*aa®) = a(a*)a*a*aa’ = a

* # 1

= aa*(ad*a*a*aa®) = aa*a*a®

a(a®) (aa*a*a*aa®)? a‘a*aa’,

and
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(aa*a*a*aa)a(at)a = aa*a*a*a(a’)a = aa*a*(a*)'a = aa*a’a® = aa’a = a.

H# %

Hence, Ll®* =ad*aatant. O

(")
Corollary 4.9. Leta € R* "R and n € Z.. Then
(1) ((aa*a*a*aa®)*)" = (a(a®)*)"aa’.
(2) (a@@a®)")*)* = (aa*a*a*aa’) aa".
(3) ((aa*a*a*aa®)*)" ((a(a™))*)" = aa®.
(4) ((a(a™)")*y*((aa*a*a*aa*)*)" = aa®.

Proof. (1) By Theorem 4.8 and Corollary 4.2, we have

(ad*a*a’aa™)")" = (a(a"y'y"aa*a’a*aat
= (a(@")")"a((a%) aa")a"a* aa*
= (a(ahy)'a((@")'a")a*aa"
= (a(a"))'a(aa") a*aa®
= (a(a'))(@ata")aa
= (a(a")")"aa*aa*
= (a@"y"y"'a((a'y aa")aa’
= (a@y"y"a(a"y aat

= (a(a")")'aa®.

(2) According to Theorem 4.8 and Corollary 4.4, we have

(a@y)")" = (aa*a‘a*aa’y*a(a’y
= (aa*aa*aa™Y'aca*a® (aa’a) (@)
= (aa*a*a*aa™Y'aaa* (a¥a(ay")
= (aa*a*a*aa™)'aa® (@ ("))
= (aa*aa*aa™Y'aa® (a'a)*
= (aa*a*a*aa™Y'a(a¥a’a)

= (aa*a*a*aa™Y'aa®.

(3) From Theorem 4.8 and Corollary 4.5, we have

(ad*a*a*aa"Y' (a(@"))?)" = aa*a’a* (aa*a)(a’)’
= aa’a* (¥ a(a")")
= ad'a @'y
= aa* (')’
=a(a*a’a)

=ad".

(4) It follows from Theorem 4.8 and Corollary 4.5 that
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(@)Y ((aa*a*a*aa*)*)" = a((a%) aa™)a"a*aa*
= a((@")'a")ataa®
= a(aa*) a*aa®
= (@®a’a*)aa’
= (aa*a)a®

=aa®.
O

Theorem 4.10. Letac R* N RYandn € Z... Then
(1) (a*)a@ exists, and (a*)u@ = (a*ya.
(2) (((a#)*a)#)n — (a+a*)na+a’
(3) ((@'a*)*)" = ((a*)'a)" (aa")".
Proof. (1) It follows from a straightforward verification.
(2) From (1) and Corollary 4.2, we have

(((a#)*a)#)n — (a‘l'ax-)n+1(a#)x-u
— (ﬂfﬂ*)”({;ﬁtl*(ﬂ#)*)a
= @'a")'a'a.
(3) By (1) and Corollary 4.4, we have
(a‘l'a*)n — (( #)*a)n+la+a*

(a*)a)"((a*) aa'a’)

a
a
a*ya)"(a(aa")a*y
a

(

(a*) a)"(aa")".

(
(
(

O

Theorem 4.11. Letac R*NRY and n € Z.,. Then
(1) a% exists, and a@ =a*(a’)a’.
(2) ((a*(a"y'a*)*)" = (aa*a)"aa’.
(3) ((aa*a)*y* = (a*(a*)at)*a"a.
Proof. (1) It follows from a straightforward verification.
(2) By (1) and Corollary 4.2, we have

(@ @Yay = (@aayat@yat
= (aa*a)"aa"(aa"(a")")at
= (aa*a)"a(a*(a")")a’
= (aa*a)"(aa‘a)a’
= (aa*a)"aa’.

(3) From (1) and Corollary 4.4, we have

9534
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((aa*a)#)n # ‘I‘)*a‘l')n+1

aa‘a

a
lZ# ‘I')*a'l')na#((a‘l')*a l/'l){l*[l
lZ# +)*a+)nﬂ#(ﬂ+ﬂﬂ+)*a*a

(@ (a
(@ (a
(@ (a
(a*(a"ya’y"a* (") a")a
(@ (a
(@ (a

11# ‘I‘)*a‘l')na#aa‘l'a

11# +)*a+)nﬂ#ﬂ.

O
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