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Abstract. ⊤-filters serve as an important tool to define mathematical structures and deserve more and more
attention. This paper aims to investigate categorical properties of ⊤-filter spaces. Firstly, it is shown that
the category ⊤-Fil of ⊤-fiter spaces is Cartesian closed, extensional and productive for quotient mappings.
Secondly, the concepts of ⊤-semi-Cauchy spaces and complete ⊤-filter spaces are proposed. It is proved
that the categories of ⊤-semi-Cauchy spaces and ⊤-Cauchy spaces, as bireflective subcategories of ⊤-Fil,
are Cartesian closed, and the category of complete ⊤-filter spaces, as a bicoreflective subcategory of ⊤-Fil,
is strongly Cartesian closed and is isomorphic to that of symmetric Kent ⊤-convergence spaces.

1. Introduction

Filters play an important role in topology. Cartan [5] first used filters to investigate convergence. Later,
Choquet [7] and Kowalsky [29] presented their theories which involve an axiomatization of the concept of
convergence via filters. In this approach, Fischer [16] and Kent [27] further considered convergence struc-
tures. From the categorical aspect, Edgar [9] proved the category of convergence spaces is Cartesian closed.
Combined with uniform structures, Weil [43] introduced the concept of uniform convergence structures.
Afterwards, Cook and Fischer [6] redefined uniform convergence structures by modifying the axioms in
the sense of Weil. Then Lechicki and Ziemińska [30] studied a general notion of a uniform convergence
structure. In order to establish the relationship between convergence structures and uniform convergence
structures, Bently [3] et al. formalized filter structures, which can be considered as a characterization of
filter merotopic structures in the sense of Katetov [26]. Since then many scholars studied these structures
[4, 28, 33, 41].

The above-mentioned mathematical structures are all defined via filters. These filter-based structures
not only can be used to describe topology, but also have nice categorical properties, including Cartesian-
closedness [2, 34], extensionality [8, 32] and productivity of quotient mappings [35, 39]. This topic has
became an interesting research area known as Convenient Topology [40].

With the development of lattice-valued theory, filters have been generalized to the lattice-valued case,
which leads to a representative type of lattice-valued filters, called stratified L-filters. Many scholars
used stratified L-filters to define different types of lattice-valued mathematical structures. Jäger defined
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stratified L-generalized convergence structures [21] and L-uniform convergence structures [24], and studied
their Cartesian-closedness as well as their relationships with stratified L-topology. Considering fuzzy
inclusion orders between L-subsets, Fang [10] and Li [31] proposed L-ordered convergence structures
and investigated their relationships with L-convergence structures. Fang [11] introduced stratified L-
semiuniform convergence structures and L-ordered semiuniform convergence structures, and studied their
Cartesian-closedness. Fang also proposed L-ordered quasiuniform limit structures [12] and stratified L-
preuniform convergence structures [13], and presented their categorical properties. Yang and Li [44]
proposed (L,M)-filter tower structures and studied their completion. Pang et al. introduced stratified
L-filter structures [36], stratified L-ordered filter structures [37, 47] and stratified L-convergence tower
structures [38], and investigated their categorical properties. Zhang et al. [49] used stratified L-filters to
define (L,M)-semiuniform convergence tower structures and discussed its categorical relationships with
(L,M)-filter tower structures. Up to now, lattice-valued mathematical structures via stratified L-filters have
been extensively discussed.

Since⊤-filters have some advantages compared with stratified L-filters, especially on the generalizations
of lattice background, ⊤-filters are receiving increasing attention. Yu and Fang [45] first used ⊤-filters to
define⊤-convergence structures and studied the Cartesian-closedness of the resulting category. Afterwards,
Fang and Yue discussed⊤-diagonal conditions and continuous extension theorem in⊤-convergence spaces
[14] and constructed a ⊤-filter monad to study its applications in ⊤-convergence spaces [46]. Reid and
Richardson [42] introduced ⊤-Cauchy structures and ⊤-uniform limit structures and investigated their
completions. Recently, Jäger and Yue [25] studied ⊤-uniform structures in more detail. Zhang and Pang
[48] proposed the concept of ⊤-convergence groups via combining a ⊤-convergence structure and a group,
and investigated its characterization theorems. Motivated by lattice-valued structures via ⊤-filters, we will
focus on lattice-valued filter structures via ⊤-filters, called ⊤-filter structures in this paper. Actually, it can
be considered as generalizations of ⊤-Cauchy structures [42] and ⊤-quasi Cauchy structures [23].

As the first aim of our paper, we will explore the categorical properties of ⊤-filter spaces, including
Cartesian-closedness, extensionality and productivity of quotient mappings. As the second aim, we will
include⊤-semi-Cauchy spaces,⊤-Cauchy spaces and complete⊤-filter spaces into the framework of⊤-filter
spaces from a categorical aspect, and also investigate their categorical properties.

2. Preliminaries

In this section, we recall some basic notations and concepts that will be needed in the sequel.

Definition 2.1. ([19]) A complete residuated lattice is a triple (L,≤, ∗), where (L,≤) is a complete lattice with
the top element⊤ and the bottom element⊥, and ∗ is a commutative, associative binary operation such that

(1) ⊤ is the unit element for ∗;
(2) ∗ is distributive over arbitrary joins, i.e., (

∨
i∈I αi) ∗ β =

∨
i∈I(αi ∗ β).

For a given complete residuated lattice L, the binary operation→ on L can be computed by

α→ β =
∨{

γ ∈ L |α ∗ γ ≤ β
}
.

The binary operation→ is called the implication operation on L with respect to ∗. Further, ∗ and→ form
an adjoint pair in the sense of α ∗ γ ≤ β⇐⇒ γ ≤ α→ β for all α, β, γ ∈ L. In this paper, we will often use a
complete residuated lattice that satisfies the following distributive law

(MID) α ∧
∨
i∈I

βi =
∨
i∈I

(α ∧ βi) ∀α ∈ L, {βi}i∈I ⊆ L.

An L-subset of X is a mapping from X to L, and the family of all L-subsets on X will be denoted by LX,
called the L-power set of X. ⊤X represents the constant L-subset with the value ⊤ and ⊥X represents the
constant L-subset with the value ⊥. For a universal set X, the set of all subsets of X is denoted by P(X).
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All algebraic operations on L can be extended to the L-power set LX in a pointwise way. For each A,
B ∈ LX, α ∈ L and x ∈ X,

(1) (A ∨ B)(x) = A(x) ∨ B(x);
(2) (A ∧ B)(x) = A(x) ∧ B(x);
(3) (A ∗ B)(x) = A(x) ∗ B(x) and (α ∗ A)(x) = α ∗ A(x);
(4) (A→ B)(x) = A(x)→ B(x) and (α→ B)(x) = α→ B(x).
Let φ : X −→ Y be a mapping. Define φ→ : LX

−→ LY and φ← : LY
−→ LX by φ→(A)(y) =

∨
φ(x)=y A(x) for

all A ∈ LX and y ∈ Y, and φ←(B)(x) = B
(
φ(x)

)
for all B ∈ LY and x ∈ X.

For a given set X, there is a binary mapping SX(−,−) : LX
× LX

−→ L, defined by

SX(A,B) =
∧
x∈X

(A(x)→ B(x))

for any pair (A,B) ∈ LX
× LX. SX(A,B) can be interpreted as the degree of A being a subset of B. SX(−,−) is

also called the fuzzy inclusion order between L-subsets.

Lemma 2.2. ([1],[25]) For each A,B,C,D ∈ LX, it holds that
(1) A ≤ B⇐⇒SX(A,B) = ⊤;
(2) SX(A,B) ∗ SX(B,C) ≤ SX(A,C);
(3) SX(A,B) ∗ SX(C,D) ≤ SX(A ∗ C,B ∗D);
(4) SX(A,B) ∗ SX(C,D) ≤ SX(A ∧ C,B ∧D);
(5) SX(A,B) ∧ SX(C,D) ≤ SX(A ∧ C,B ∧D);
(6) SX(A,B) ∧ SX(C,D) ≤ SX(A ∨ C,B ∨D);
(7) A ≤ B implies SX(C,A) ≤ SX(C,B) and SX(B,D) ≤ SX(A,D).

Lemma 2.3. ([1]) Let φ : X −→ Y be a mapping. For each A,B ∈ LX and C,D ∈ LY, it holds that
(1) SX(A,B) ≤ SY(φ→(A), φ→(B));
(2) SY(C,D) ≤ SX(φ←(C), φ←(D));
(3) SY

(
φ→(A),C

)
= SX

(
A, φ←(C)

)
.

The notion of a ⊤-filter and that of a ⊤-filter base are due to Höhle [20]. A particular version which
follows here is due to Fang and Yue [14].

Definition 2.4. ([14, 20]) A ⊤-filter on X is a nonempty subset F ⊆ LX with the following properties:
(F1) if A ∈ LX with

∨
C∈F SX(C,A) = ⊤, then A ∈ F;

(F2) A1 ∧ A2 ∈ F for all A1,A2 ∈ F;
(F3)

∨
x∈X A(x) = ⊤ for all A ∈ F.

The family of all ⊤-filters on X is denoted by F ⊤L (X). Given a point x ∈ X, then [x] = {A ∈ LX
|A(x) = ⊤}

is a ⊤-filter, and called the point ⊤-filter of x.

Definition 2.5. ([14, 20]) A nonempty subset B ⊆ LX is called a ⊤-filter base on X if it satisfies:
(B1)

∨
B∈B SX(B,C ∧D) = ⊤ for all C,D ∈ B;

(B2)
∨

x∈X C(x) = ⊤ for all C ∈ B.

It is obvious that each ⊤-filter is a ⊤-filter base. For a ⊤-filter base B, a ⊤-filter can be generated in the
following way:

FB =

{
A ∈ LX

∣∣∣ ∨
B∈B

SX(B,A) = ⊤
}
.

Then B is called a base of FB.



Y. Gao, B. Pang / Filomat 38:27 (2024), 9567–9591 9570

Proposition 2.6. ([48]) LetF,G ∈ F ⊤L (X) andBF,BG be a⊤-filter base ofF,G. Then {A∨B ∈ LX
|A ∈ BF,B ∈ BG}

and {A ∨ B ∈ LX
|A ∈ F,B ∈ G} are both ⊤-filter bases of F ∩G.

Take any A ∈ LX and B ∈ LY. Then A × B ∈ LX×Y is defined by (A × B)(x, y) = A(x) ∧ B(y).

Definition 2.7. ([45]) Let F ∈ F ⊤L (X) and G ∈ F ⊤L (Y). Then

F ×G =

{
D ∈ LX×Y

∣∣∣ ∨
A∈F,B∈G

SX×Y(A × B,D) = ⊤
}

is a ⊤-filter on X × Y, which is called the product of F and G.

Definition 2.8. ([14]) Let φ : X −→ Y be a mapping, F ∈ F ⊤L (X) and G ∈ F ⊤L (Y).
(1) The set {φ→(A) ∈ LY

|A ∈ F} is a ⊤-filter base on Y and its generated ⊤-filter is denoted by φ⇒(F).
That is

φ⇒(F) =
{

B ∈ LY
∣∣∣ ∨

A∈F

SY(φ→(A),B) = ⊤
}
.

Then φ⇒(F) is called the image of F under φ. Obviously, B ∈ φ⇒(F) iff φ←(B) ∈ F.
(2) The set {φ←(B) ∈ LX

|B ∈ G} is a ⊤-filter base on X when
∨

y∈φ(X) B(y) = ⊤ holds for all B ∈ G. If

φ⇐(G) =
{

A ∈ LX
∣∣∣ ∨

B∈G

SX(φ←(B),A) = ⊤
}

is a ⊤-filter on X, then φ⇐(G) is called the inverse image of G under φ.

Proposition 2.9. ([45]) Let φ : X −→ Y be a mapping and F,G ∈ F ⊤L (X),H ∈ F ⊤L (Y). Then
(1) φ⇒(F ∩G) = φ⇒(F) ∩ φ⇒(G);
(2) φ⇐(φ⇒(F)) ⊆ F, if φ is injective, then φ⇐(φ⇒(F)) = F;
(3)H ⊆ φ⇒(φ⇐(H)) when φ⇐(H) exists, if φ is surjective, thenH = φ⇒(φ⇐(H)).

Proposition 2.10. ([45],[48]) Letφ : X −→ U andψ : Y −→ V be mappings, prX : X×Y −→ X, prY : X×Y −→ Y
be projection mappings and F ∈ F ⊤L (X), G ∈ F ⊤L (Y),K ∈ F ⊤L (X × Y). Then

(1) φ⇒(F) × ψ⇒(G) ⊆ (φ × ψ)⇒(F ×G), if L satisfies (MID), then φ⇒(F) × ψ⇒(G) = (φ × ψ)⇒(F ×G);
(2) pr⇒X (F ×G) = F, pr⇒Y (F ×G) = G;
(3) pr⇒X (K) × pr⇒Y (K) ⊆ K.

For other notions on residuated lattices we refer to Bělohlávek [1]; for other notions on⊤-filters we refer
to Höhle [19] and Yu and Fang [45]; for category theory we refer to Preuss [40].

3. ⊤-filter spaces

In this section, we will introduce the concept of ⊤-filter spaces and present its product space, subspace
and quotient space from the aspect of the resulting category.

Definition 3.1. A nonempty subset γ of F ⊤L (X) is called a ⊤-filter structure on X provided that
(TF1) ∀x ∈ X, [x] ∈ γ;
(TF2) ∀F,G ∈ F ⊤L (X), F ∈ γ and F ⊆ G imply G ∈ γ.
For a ⊤-filter structure γ on X, the pair (X, γ) is called a ⊤-filter space.
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A mapping φ : (X, γX) −→ (Y, γY) between ⊤-filter spaces is called Cauchy continuous provided that
F ∈ γX implies φ⇒(F) ∈ γY for all F ∈ F ⊤L (X).

It is easy to check that all ⊤-filter spaces and Cauchy continuous mappings form a category, denoted by
⊤-Fil.

Theorem 3.2. ⊤-Fil is a topological category over Set.

Proof. Given a source
{
φ j : X −→ (X j, γX j )

}
j∈J

in ⊤-Fil, define γX ⊆ F
⊤

L (X) by

γX =
{
F ∈ F ⊤L (X) | ∀ j ∈ J, φ⇒j (F) ∈ γX j

}
.

It is straightforward to verify that γX is the initial structure with respect to the source {φ j : X −→ (X j, γX j )} j∈J.
Further, it is easy to show the fiber-smallness and terminal separator property.

By choosing special sources in ⊤-Fil, the product space and the subspace of ⊤-filter spaces in ⊤-Fil can
be defined in a natural way.

Definition 3.3. Let {(Xλ, γXλ )}λ∈Λ be a family of⊤-filter spaces and {prλ :
∏

µ∈Λ Xµ −→ Xλ}λ∈Λ be the family of
the projection mappings. Then the initial structure with respect to the source {prλ :

∏
µ∈Λ Xµ −→ (Xλ, γλ)}λ∈Λ

is called the product ⊤-filter structure, denoted by
∏

λ∈Λ γXλ . The pair
(∏

λ∈ΛXλ,
∏

λ∈Λ γXλ

)
is called the

product space of {(Xλ, γXλ )}λ∈Λ. Explicitly,∏
λ∈Λ

γXλ =

{
H ∈ F ⊤L

(∏
λ∈Λ

Xλ

) ∣∣∣∣∀λ ∈ Λ, pr⇒λ (H) ∈ γXλ

}
.

Definition 3.4. Let (X, γ) be a ⊤-filter space, Y ⊆ X and iY : Y −→ X be the inclusion mapping. Then the
initial structure with respect to the source iY : Y −→ (X, γ) is called the sub-⊤-filter structure, denoted by
γ|Y. The pair (Y, γ|Y) is called the subspace of (X, γ). Explicitly,

γ|Y = {F ∈ F
⊤

L (Y) | i⇒Y (F) ∈ γX}.

Since ⊤-Fil is a topological category over Set, there exists a final structure with respect to any sink
{φ j : (X j, γX j ) −→ X} j∈J. Now let us explore the concrete form of the final structure.

Proposition 3.5. Let {(X j, γX j )} j∈J be a family of ⊤-filter spaces and {φ j : X j −→ X} j∈J be a family of mappings.
Then γX ⊆ F

⊤

L (X) defined by

γX =
{
H ∈ F ⊤L (X) | ∃ j ∈ J and ∃F j ∈ γX j such that φ⇒j (F j) ⊆H

}
∪

{
[x] ∈ F ⊤L (X) | x ∈ X

}
is the final structure with respect to the sink

{
φ j : (X j, γX j ) −→ X

}
j∈J

. In addition, if the sink {φ j : (X j, γX j ) −→ X} j∈J

is surjective (i.e., X =
⋃

j∈J φ j(X j)), then it holds that

γX =
{
H ∈ F ⊤L (X) | ∃ j ∈ J and ∃F j ∈ γX j such that φ⇒j (F j) ⊆H

}
.

Proof. First, we show that γX satisfies (TF1) and (TF2). (TF1) is straightforward.
(TF2) Let F ∈ γX and F ⊆ G. If F = [x] for some x ∈ X, then [x] = G since [x] is maximal. This implies

that G ∈ γX. If F , [x] for all x ∈ X, then there exists some j ∈ J and some F j ∈ γX j such that φ⇒j (F j) ⊆ F.
This implies that φ⇒j (F j) ⊆ G. By the definition of γX, we obtain G ∈ γX.

Next, it suffices to verify that γX is the final structure on X such that for each (Y, γY) in ⊤-Fil and for
each mapping φ : X −→ Y, the mapping φ : (X, γX) −→ (Y, γY) is Cauchy continuous if and only if the
mapping φ ◦ φ j : (X j, γX j ) −→ (Y, γY) is Cauchy continuous for each j ∈ J. The necessity is obvious. For the
sufficiency, take any F ∈ γX. If F = [x] for some x ∈ X, then φ⇒(F) = [φ(x)] ∈ γY. If F , [x] for any x ∈ X,
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then there exists some j ∈ J and some F j ∈ γX j such that φ⇒j (F j) ⊆ F. By the Cauchy continuity of φ ◦ φ j,
we have φ⇒ ◦ φ⇒j (F j) ∈ γY. Since φ⇒ ◦ φ⇒j (F j) ⊆ φ⇒(F), we get φ⇒(F) ∈ γY.

If the sink {φ j : (X j, γX j ) −→ X} j∈J is surjective, i.e., X =
⋃

j∈J φ j(X j), then there exists some j ∈ J and some
x j ∈ X j such that φ j(x j) = x for any x ∈ X. Thus, there exists j ∈ J and [x j] ∈ γX j such that φ⇒j ([x j]) = [x].
Then it follows that{

[x] ∈ F ⊤L (X) | x ∈ X
}
⊆

{
H ∈ F ⊤L (X) | ∃ j ∈ J and ∃F j ∈ γX j such that φ⇒j (F j) ⊆H

}
.

This implies that

γX =
{
H ∈ F ⊤L (X) | ∃ j ∈ J and ∃F j ∈ γX j such that φ⇒j (F j) ⊆H

}
.

As a special final structure in ⊤-Fil, a quotient structure of a ⊤-filter space is defined as follows.

Definition 3.6. Let (X, γX) be ⊤-filter space, Y be a nonempty set and φ : X −→ Y be a surjective mapping.
The final structure on Y with respect to the sink φ : (X, γX) −→ Y is called a quotient structure on Y, denoted
by γY. Explicitly,

γY = {G ∈ F
⊤

L (Y) | ∃F ∈ γX such that φ⇒(F) ⊆ G}.

The pair (Y, γY) called a quotient space of (X, γX). In this sense, φ is called a quotient mapping.

4. Convenient properties of ⊤-Fil

Preuss [40] proposed some convenient properties for a topological category C , namely
(CP1) C is Cartesian closed.
(CP2) C is extensional.
(CP3) The product of quotient mappings in C is a quotient mapping.

According to the terminology of [40], a topological category C is called
(1) strongly Cartesian closed provided that C fulfills (CP1) and (CP3);
(2) a topological universe provided that C fulfills (CP1) and (CP2);
(3) a strong topological universe provided that C fulfills (CP1)-(CP3).

In this section, we will show that ⊤-Fil is a strong topological universe.

4.1. Cartesian-closedness of ⊤-Fil
Recall that a category C is called Cartesian closed provided that the following conditions are satisfied:
(1) For each pair (Y,Z) of C -objects, there exists a product Y × Z in C .
(2) For each pair (Y,Z) of C -objects, there exists a C -object ZY (called power object) and a C -morphism

ev : ZY
× Y −→ Z (called evaluation morphism) such that for each C -object X and each C -morphism

φ : X × Y −→ Z, there exists a unique C -morphism φ∗ : X −→ ZY such that ev ◦ (φ∗ × idY) = φ.
Since ⊤-Fil is a topological category, it remains to show that ⊤-Fil satisfies (2). For each ⊤-filter space,

we denote the set of Cauchy continuous mappings from (X, γX) to (Y, γY) by [X,Y], i.e.,

[X,Y] = {φ : (X, γX) −→ (Y, γY) |φ is Cauchy continuous}.

Define ⊤φ ∈ L[X,Y] by ⊤φ(ϕ) = ⊤when ϕ = φ and ⊤φ(ϕ) = ⊥ otherwise.

Proposition 4.1. Let (X, γX) and (Y, γY) be ⊤-filter spaces. Define γ[X,Y] ⊆ F
⊤

L ([X,Y]) by

γ[X,Y] =
{
H ∈ F ⊤L ([X,Y])] | ∀F ∈ F ⊤L (X),F ∈ γX implies ev⇒(H × F) ∈ γY

}
.

Then γ[X,Y] is a ⊤-filter structure on [X,Y].
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Proof. It suffices to verify that γ[X,Y] satisfies (TF1) and (TF2). (TF2) is straightforward.
(TF1) Take any φ ∈ [X,Y] and F ∈ γX. Then φ⇒(F) ∈ γY. For each B ∈ φ⇒(F), ϕ ∈ [X,Y] and x ∈ X, it

follows that

(⊤φ × φ←(B))(ϕ, x) = ⊤φ(ϕ) ∧ φ←(B)(x) ⩽ B(ϕ(x)) = ev←(B)(ϕ, x),

which means that ⊤φ × φ←(B) ⩽ ev←(B). Since ⊤φ × φ←(B) ∈
[
φ
]
× F, we know ev←(B) ∈

[
φ
]
× F, i.e.,

B ∈ ev⇒(
[
φ
]
×F). By the arbitrariness of B, we obtain φ⇒(F) ⊆ ev⇒(

[
φ
]
×F). Then it follows from (TF2) that

ev⇒(
[
φ
]
× F) ∈ γY. This shows [φ] ∈ γ[X,Y].

Proposition 4.2. Let (X, γX) and (Y, γY) be ⊤-filter spaces. Then the evaluation mapping ev : ([X,Y] , γ[X,Y]) ×
(X, γX) −→ (Y, γY) is Cauchy continuous.

Proof. Take anyK ∈ γ[X,Y] × γX. Then it follows from Definition 3.3 that pr⇒[X,Y](K) ∈ γ[X,Y] and pr⇒X (K) ∈ γX.
By Proposition 4.1, we have F ∈ γX implies ev⇒(pr⇒[X,Y](K) × F) ∈ γY for all F ∈ F ⊤L (X). Then we get
ev⇒(pr⇒[X,Y](K) × pr⇒X (K)) ∈ γY. By Proposition 2.10, it follows that pr⇒[X,Y](K) × pr⇒X (K) ⊆ K. Thus, we obtain
ev⇒(K) ∈ γY.

Let φ : X1 × X2 −→ X3 be a mapping. For each x1 ∈ X1, define a mapping φx1 : X2 −→ X3 by
φx1 (x2) = φ(x1, x2) for all x2 ∈ X2.

Proposition 4.3. Let (X1, γX1 ), (X2, γX2 ) and (X3, γX3 ) be ⊤-filter spaces. If φ : (X1, γX1 ) × (X2, γX2 ) −→ (X3, γX3 )
is Cauchy continuous, then φx1 : (X2, γX2 ) −→ (X3, γX3 ) is Cauchy continuous for all x1 ∈ X1.

Proof. It suffices to show that F ∈ γX2 implies φ⇒x1
(F) ∈ γX3 . By the Cauchy continuity of φ, we know

φ⇒([x1]×F) ∈ γX3 since [x1]×F ∈ γX1 ×γX2 . Take any C ∈ φ⇒([x1]×F), i.e., φ←(C) ∈ [x1]×F. Then it follows
that ∨

A∈[x1],B∈F

SX3 (φ→(A × B),C) =
∨

A∈[x1],B∈F

SX1×X2 (A × B, φ←(C)) = ⊤.

For each x3 ∈ X3, A ∈ [x1] and B ∈ F, we have

φ→x1
(B)(x3) =

∨
φx1 (x2)=x3

B(x2) =
∨

φ(x1,x2)=x3

A(x1) ∧ B(x2) ⩽
∨

φ(u,v)=x3

A(u) ∧ B(v) = φ→(A × B)(x3).

This implies that φ→x1
(B) ⩽ φ→(A × B). Then it follows that

⊤ =
∨

A∈[x1],B∈F

SX3 (φ→(A × B),C)

⩽
∨

A∈[x1],B∈F

SX3 (φ→x1
(B),C)

=
∨
B∈F

SX3 (φ→x1
(B),C),

which implies that C ∈ φ⇒x1
(F). By the arbitrariness of C, we have φ⇒([x1] × F) ⊆ φ⇒x1

(F). Then it follows
from (TF2) that φ⇒x1

(F) ∈ γX3 .

By Proposition 4.3, we can define a mapping φ∗ : X1 −→ [X2,X3] by φ∗(x1) = φx1 for all x1 ∈ X1.

Proposition 4.4. Suppose that L satisfies (MID). Let (X1, γX1 ), (X2, γX2 ) and (X3, γX3 ) be ⊤-filter spaces. If
φ : (X1, γX1 ) × (X2, γX2 ) −→ (X3, γX3 ) is Cauchy continuous, then φ∗ : (X1, γX1 ) −→ ([X2,X3] , γ[X2,X3]) is Cauchy
continuous.
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Proof. Take any F ∈ γX1 . For each G ∈ γX2 , we have φ⇒(F ×G) ∈ γX3 . Since

ev ◦ (φ∗ × idX2 )(x1, x2) = ev(φx1 , x2) = φx1 (x2) = φ(x1, x2),

we get
(
ev ◦ (φ∗ × idX2 )

)⇒ (F ×G) = φ⇒(F ×G). By Proposition 2.10, it follows that

ev⇒((φ∗)⇒(F) ×G) = ev⇒((φ∗ × idX2 )⇒(F ×G))
= (ev ◦ (φ∗ × idX2 ))⇒(F ×G)
= φ⇒(F ×G) ∈ γX3 .

By the definition of γ[X2,X3], we get (φ∗)⇒(F) ∈ γ[X2,X3].

Theorem 4.5. Suppose that L satisfies (MID). Then the category ⊤-Fil is Cartesian closed.

Proof. Let (X1, γX1 ) and (X2, γX2 ) be ⊤-filter spaces. By Propositions 4.1 and 4.2, there exists a ⊤-filter
space ([X1,X2] , γ[X1,X2]) and a Cauchy continuous evaluation mapping ev : ([X1,X2] , γ[X1,X2]) × (X1, γX1 ) −→
(X2, γX2 ). Further, for each ⊤-filter space (X3, γX3 ) and Cauchy continuous mapping φ : (X3 × X1, γX3 ×

γX1 ) −→ (X2, γX2 ), by Proposition 4.4, there exists a unique Cauchy continuous mapping φ∗ : (X3, γX3 ) −→
([X1,X2] , γ[X1,X2]) satisfying ev ◦ (φ∗ × idX1 ) = φ, i.e., the triangle

X3 × X1 [X1,X2] × X1

X2

φ∗×idX1

φ
ev

commutes. This shows the Cartesian-closedness of ⊤-Fil.

4.2. Extensionality of ⊤-Fil
For convenience, suppose that X is a nonempty set and ∞X < X. Put X∗ = X ∪ {∞X} and iX : X −→ X∗

be the embedding mapping. Define ⊤∞X : X∗ −→ L by ⊤∞X (x∗) = ⊤ whenever x∗ = ∞X, and ⊤∞X (x∗) = ⊥
otherwise.

Recall that in a topological category C , a partial morphism from X to Y is a C -morphism φ : Z −→ Y
whose domain is a subobject of X. A topological category C is called extensional provided that every
C -object Y has a one-point extension Y∗, in the sense that every C -object Y can be embedded via the addition
of a single point ∞Y into a C -object Y∗ such that for every partial morphism φ : Z −→ Y, the mapping
φ∗ : X −→ Y∗ defined by φ∗(x) = φ(x) whenever x ∈ Z, and φ∗(x) = ∞Y whenever x < Z, is a C -morphsim
and the following diagram

Z Y

X Y∗

φ

iZ iY

φ∗

commutes.

Proposition 4.6. ([15]) Let F ∈ F ⊤L (X) and F∗ = i⇒X (F) ∩ [∞X]. Then i⇐X (F∗) = F.

Proposition 4.7. Let (X, γX) be a ⊤-filter space. Define γX∗ ⊆ F
⊤

L (X∗) by

γX∗ =
{
F ∈ F ⊤L (X∗) | i⇐X (F) exists and i⇐X (F) ∈ γX

}
∪

{
F ∈ F ⊤L (X∗) | i⇐X (F) does not exist

}
.

Then (X∗, γX∗ ) is a ⊤-filter space.
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Proof. It suffices to verify that γX∗ satisfies (TF1) and (TF2).
(TF1) For each x ∈ X∗, if x ∈ X, then i⇐X ([x]) exists and i⇐X ([x]) = [x] ∈ γX. If x = ∞X, then i⇐X ([∞X]) does

not exist, i.e., [∞X] ∈ γX∗ . This implies that [x] ∈ γX∗ for all x ∈ X∗.
(TF2) Let F ∈ γX∗ and F ⊆ G. If i⇐X (G) does not exist, then G ∈ γX∗ . If i⇐X (G) exists, then i⇐X (F) exists. This

implies that i⇐X (F) ∈ γX. Since i⇐X (F) ⊆ i⇐X (G), we obtain i⇐X (G) ∈ γX. Hence G ∈ γX∗ .

Theorem 4.8. ⊤-Fil is extensional.

Proof. Let (X, γX) be a ⊤-filter space. By Proposition 4.7, we obtain a ⊤-filter structure γX∗ on X∗. First, we
show that (X, γX) is a subspace of (X∗, γX∗ ), i.e., γX∗ |X = γX, where γX∗ |X =

{
F ∈ F ⊤L (X) | i⇒X (F) ∈ γX∗

}
. For each

F ∈ γX∗ |X, we obtain i⇒X (F) ∈ γX∗ . Take any A ∈ i⇒X (F). Then it follows from i←X (A) ∈ F that

⊤ =
∨
x∈X

i←X (A)(x) =
∨
x∈X

A(iX(x)) =
∨
x∈X

A(x).

Then i⇐X (i⇒X (F)) exists. This implies i⇐X (i⇒X (F)) ∈ γX. Since F = i⇐X (i⇒X (F)), we obtain F ∈ γX. Thus γX∗ |X ⊆ γX.
Conversely, for each F ∈ γX, i⇐X (i⇒X (F)) exists and i⇐X (i⇒X (F)) = F imply i⇒X (F) ∈ γX∗ . Hence F ∈ γX∗ |X. This
shows γX ⊆ γX∗ |X.

Next, we show that (X∗, γX∗ ) is the one-point extension of (X, γX). Let (Y, γY) be a ⊤-filter space, (Z, γZ)
be a subspace of (Y, γY) and φ : (Z, γZ) −→ (X, γX) be a Cauchy continuous mapping. Define φ∗ : Y −→ X∗

by φ∗(y) = φ(y) whenever y ∈ Z, and φ∗(y) = ∞X otherwise. There is a commutative diagram as follows:

(Z, γZ) (X, γX)

(Y, γY) (X∗, γX∗ )

φ

iZ iX

φ∗

In order to show the Cauchy continuity of φ∗ : (Y, γY) −→ (X∗, γX∗ ), it suffices to verify that G ∈ γY implies
(φ∗)⇒(G) ∈ γX∗ for all G ∈ F ⊤L (Y).

Case 1: i⇐Z (G) does not exist. Then there exists B ∈ G such that
∨

z∈Z B(z)<⊤. Let α =
∨

z∈Z B(z). Define
αX∗ : X∗ −→ L by αX∗ (x) = α for all x ∈ X∗. Let β = αX∗ ∨ ⊤∞X . Then

(φ∗)←(β)(y) = β(φ∗(y)) =

α, y ∈ Z,
⊤, y < Z.

This means B ⩽ (φ∗)←(β). Thus, we get (φ∗)←(β) ∈ G, i.e., β ∈ (φ∗)⇒(G). Since∨
x∈i→X (X)

β(x) =
∨
x∈X

β(x) =
∨
x∈X

(αX∗ ∨ ⊤∞X )(x) = α<⊤,

we know i⇐X ((φ∗)⇒(G)) does not exist. By the definition of γX∗ , it follows that (φ∗)⇒(G) ∈ γX∗ .
Case 2: i⇐Z (G) exists. SinceG ⊆ i⇒Z (i⇐Z (G)),G ∈ γY and (Z, γZ) is a subspace of (Y, γY), we know i⇐Z (G) ∈ γZ.

By the Cauchy continuity of φ, we obtain φ⇒(i⇐Z (G)) ∈ γX. Let H=φ⇒(i⇐Z (G)). By Proposition 4.6, we get
i⇐X (H∗) = H, where H∗ = i⇒X (φ⇒(i⇐Z (G))) ∩ [∞X]. Then it follows from the definition of γX∗ that H∗ ∈ γX∗ .
Next, we will proveH∗ ⊆ (φ∗)⇒(G) by the following two steps.

Step 1: (φ∗)⇒(G) has the⊤-filter baseB1 =
{
(φ∗)→(B) |B ∈ G

}
. By Proposition 2.6,H∗ has the⊤-filter base

B2 =
{
i→X (φ→(i←Z (B))) ∨ ⊤∞X |B ∈ G

}
. Since

i→X (φ→(i←Z (B)))(x∗) =
∨

iX(x)=x∗
φ→(i←Z (B))(x) =


∨
φ(z)=x∗,z∈Z B(z), x∗ ∈ X,
⊥, x∗ = ∞X,
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and

(φ∗)→(B)(x∗) =
∨

φ∗(y)=x∗
B(y) =


∨
φ(z)=x∗,z∈Z B(z), x∗ ∈ X,∨
z∈Y/Z B(z), x∗ = ∞X,

it follows that i→X (φ→(i←Z (B))) = (φ∗)→(B) ∧ ⊤X. This implies that B2 =
{
((φ∗)→(B) ∧ ⊤X) ∨ ⊤∞X |B ∈ G

}
.

Step 2: Let A ∈H∗. Then
⊤ =

∨
C∈B2

SX∗ (C,A)

=
∨
B∈G

SX∗
(
((φ∗)→(B) ∧ ⊤X) ∨ ⊤∞X ,A

)
⩽

∨
B∈G

SX∗
(
(φ∗)→(B),A

)
=

∨
D∈B1

SX∗ (D,A).

Hence A ∈ (φ∗)⇒(G).
By Step 1 and Step 2, we obtainH∗ ⊆ (φ∗)⇒(G). Then it follows from (TF2) that (φ∗)⇒(G) ∈ γX∗ . Thus,

φ∗ : (Y, γY) −→ (X∗, γX∗ ) is Cauchy continuous.

4.3. Productivity of quotient mappings in ⊤-Fil
In this subsection, we will define the product of an arbitrary family of ⊤-filters, which can include the

product of two ⊤-filters as a special case. To this end, we first give the following propositions.

Proposition 4.9. Let {Fλ}λ∈Λ ⊆ F ⊤L (X). Then the following statements are equivalent.
(1) There existsH ∈ F ⊤L (X) such that Fλ ⊆H for all λ ∈ Λ.
(2) For each n ∈N, {λi}

n
i=1 ⊆ Λ,

∨
x∈X

∧n
i=1 Ai(x) = ⊤ where Ai ∈ Fλi for all i = 1, · · · ,n.

Proof. (1) =⇒ (2) It is straightforward.
(2) =⇒ (1) Let

H =

{
A ∈ LX

∣∣∣ ∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Ai∈Fλi

SX

( n∧
i=1

Ai,A
)
= ⊤

}
.

Then we will showH satisfies (F1)–(F3).
(F1) If

∨
B∈H SX(B,A) = ⊤, then

⊤ =
∨
B∈H

(
SX(B,A) ∗

∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Ai∈Fλi

SX

( n∧
i=1

Ai,B
))
⩽

∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Ai∈Fλi

SX

( n∧
i=1

Ai,A
)
.

This shows A ∈H.
(F2) Take any C,D ∈H. Then

⊤ =
∨
m∈N

∨
{λi}

m
i=1⊆Λ

∨
∀i=1,··· ,m,Ai∈Fλi

SX

( m∧
i=1

Ai,C
)
∗

∨
n∈N

∨
{µ j}

n
j=1⊆Λ

∨
∀ j=1,··· ,n,B j∈Fµ j

SX

( n∧
j=1

B j,D
)

⩽
∨
m∈N

∨
{λi}

m
i=1⊆Λ

∨
n∈N

∨
{µ j}

n
j=1⊆Λ

∨
∀i=1,··· ,m,Ai∈Fλi

∨
∀ j=1,··· ,n,B j∈Fµ j

SX

( m∧
i=1

Ai ∧

n∧
j=1

B j,C ∧D
)

⩽
∨

m+n∈N

∨
{βq}

m+n
q=1 ⊆Λ

∨
∀q=1,··· ,m,m+1,··· ,m+n,Eq∈Fβq

SX

( m+n∧
q=1

Eq,C ∧D
)
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where {βq}
m+n
q=1 = {λ1, · · · , λm, µ1, · · · , µn}. Hence C ∧D ∈H.

(F3) Take any A ∈H. Then

⊤ =
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Ai∈Fλi

SX

( n∧
i=1

Ai,A
)
∗

(∨
x∈X

n∧
i=1

Ai(x)
)

=
∨
x∈X

∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Ai∈Fλi

SX

( n∧
i=1

Ai,A
)
∗

n∧
i=1

Ai(x) ⩽
∨
x∈X

A(x).

This implies that
∨

x∈X A(x) = ⊤ for all A ∈H.

Proposition 4.9 implies that the supremum of an arbitrary family of ⊤-filters exists when it satisfies (2).
As a corollary of Proposition 4.9, we present the concrete form of the supremum when it exists.

Corollary 4.10. Let {Fλ}λ∈Λ ⊆ F ⊤L (X). If for each n ∈ N, {λi}
n
i=1 ⊆ Λ,

∨
x∈X

∧n
i=1 Ai(x) = ⊤ where Ai ∈ Fλi for

each i = 1, · · · ,n, then∨
λ∈Λ

Fλ =

{
A ∈ LX

∣∣∣ ∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Ai∈Fλi

SX

( n∧
i=1

Ai,A
)
= ⊤

}
.

In particular, forF1, F2 ∈ F
⊤

L (X), by Proposition 4.9, we know thatF1∨F2 exists when
∨

x∈X A(x)∧B(x) =
⊤ for all A ∈ F1 and B ∈ F2. Then

F1 ∨ F2 =

{
C ∈ LX

∣∣∣ ∨
A∈F1,B∈F2

SX(A ∧ B,C) = ⊤
}
.

This is coincident with that in [18].

Proposition 4.11. Let {Xλ}λ∈Λ be a family of nonempty sets and {Fλ}λ∈Λ be a family of ⊤-filters, where for each
λ ∈ Λ, Fλ ∈ F ⊤L (Xλ). For each λ ∈ Λ, prλ :

∏
µ∈ΛXµ −→ Xλ is the projection mapping. Then

∨
λ∈Λ pr⇐λ (Fλ) exists.

Proof. For convenience, let X =
∏

µ∈Λ Xµ. By Proposition 4.9, it is enough to show that for each n ∈ N,
{λi}

n
i=1 ⊆ Λ and Ai ∈ pr⇐λi

(Fλi ) for all i = 1, · · · ,n,
∨

x∈X
∧n

i=1 Ai(x) = ⊤ holds. By Definition 2.8, we know∨
Bi∈Fλi

SX(p←λi
(Bi),Ai) = ⊤ for each i = 1, · · · ,n. This implies∨

B1∈Fλ1

SX(p←λ1
(B1),A1) ∗ · · · ∗

∨
Bi∈Fλi

SX(p←λi
(Bi),Ai) ∗ · · · ∗

∨
Bn∈Fλn

SX(p←λn
(Bn),An) = ⊤.

For each i = 1, · · · ,n, take Bi ∈ Fλi . Then

∨
x∈X

( n∧
i=1

pr←λi
(Bi)

)
(x) =

∨
x=(xλ)∈X

n∧
i=1

Bi(prλi (x))

=
∨

∀i=1,··· ,n,xλi∈Xλi

B1(xλ1 ) ∧ · · · ∧ Bn(xλn )

⩾
∨

∀i=1,··· ,n,xλi∈Xλi

B1(xλ1 ) ∗ · · · ∗ Bn(xλn )

=
∨

xλ1∈Xλ1

B1(xλ1 ) ∗ · · · ∗
∨

xλn∈Xλ1

Bn(xλn )

= ⊤.
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Further, it follows that

⊤ =
∨

B1∈Fλ1

SX(p←λ1
(B1),A1) ∗ · · · ∗

∨
Bi∈Fλi

SX(p←λi
(Bi),Ai) ∗ · · · ∗

∨
Bn∈Fλn

SX(p←λn
(Bn),An)

=
∨

∀i=1,··· ,n,Bi∈Fλi

SX(p←λ1
(B1),A1) ∗ · · · ∗ SX(pr←λi

(Bi),Ai) ∗ · · · ∗ SX(p←λn
(Bn),An)

⩽
∨

∀i=1,··· ,n,Bi∈Fλi

SX

( n∧
i=1

pr←λi
(Bi),

n∧
i=1

Ai

)
=

∨
∀i=1,··· ,n,Bi∈Fλi

(
SX

( n∧
i=1

pr←λi
(Bi),

n∧
i=1

Ai

)
∗

∨
x∈X

( n∧
i=1

pr←λi
(Bi)

)
(x)

)

=
∨
x∈X

( ∨
i=1,··· ,n,Bi∈Fλi

SX

( n∧
i=1

pr←λi
(Bi),

n∧
i=1

Ai

)
∗

( n∧
i=1

pr←λi
(Bi)

)
(x)

)

⩽
∨
x∈X

n∧
i=1

Ai(x),

as desired.

By Propositions 4.9 and 4.11, the product
∏

λ∈Λ Fλ of a family of ⊤-filters {Fλ}λ∈Λ can be defined via the
supremum of {pr⇐λ (Fλ)}λ∈Λ.

Definition 4.12. Let {Xλ}λ∈Λ be a family of nonempty sets and {Fλ}λ∈Λ be a family of ⊤-filters with Fλ ∈
F
⊤

L (Xλ) for each λ ∈ Λ. Then∏
λ∈Λ

Fλ =
∨
λ∈Λ

pr⇐λ (Fλ) =
{

A ∈ LX
∣∣∣ ∨

n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Ai∈pr⇐λi

(Fλi )

SX

( n∧
i=1

Ai,A
)
= ⊤

}
is called the product of {Fλ}λ∈Λ.

Proposition 4.13. Let {Xλ}λ∈Λ be a family of nonempty sets, prλ :
∏

µ∈Λ Xµ −→ Xλ be the projection mapping,
Fλ ∈ F ⊤L (Xλ) for each λ ∈ Λ and F ∈ F ⊤L (

∏
λ∈Λ Xλ). Then the following statements hold:

(1) Fλ ⊆ pr⇒λ (
∏

µ∈Λ Fµ) for all λ ∈ Λ;
(2)

∏
λ∈Λ pr⇒λ (F) ⊆ F.

Proof. (1) For each λ ∈ Λ, it follows that

Fλ ⊆ pr⇒λ (pr⇐λ (Fλ)) ⊆ pr⇒λ

(∨
µ∈Λ

pr⇐µ (Fµ)
)
= pr⇒λ

(∏
µ∈Λ

Fµ

)
.

(2) Take any B ∈
∏

λ∈Λ pr⇒λ (F). Then∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Ai∈pr⇐λi

(pr⇒λi
(F))

SX

( n∧
i=1

Ai,B
)
= ⊤.

Since pr⇐λ (pr⇒λ (F)) ⊆ F for all λ ∈ Λ, we get

⊤ =
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Ai∈F

SX

( n∧
i=1

Ai,B
)
⩽

∨
n∈N

∨
∧n

i=1 Ai∈F

SX

( n∧
i=1

Ai,B
)
⩽

∨
A∈F

SX(A,B),

which implies that B ∈ F. By the arbitrariness of B, we obtain
∏

λ∈Λ pr⇒λ (F) ⊆ F, as desired.
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Proposition 4.14. Let {Fλ}λ∈Λ be a family of ⊤-filters with Fλ ∈ F ⊤L (Xλ). Then∏
λ∈Λ

Fλ =

{
A ∈ L

∏
λ Xλ

∣∣∣ ∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Bλi∈Fλi

S∏
λ∈Λ Xλ

( n∧
i=1

pr←λi
(Bλi ),A

)
= ⊤

}
.

Proof. By Definition 4.12, we have
∏

λ∈Λ Fλ =
∨
λ∈Λ pr⇐λ (Fλ). Then

A ∈
∏
λ∈Λ

Fλ ⇐⇒ A ∈
∨
λ∈Λ

pr⇐λ (Fλ)⇐⇒
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Aλi∈pr⇐λi

(Fλi )

S∏
λ∈Λ Xλ

( n∧
i=1

Aλi ,A
)
= ⊤.

Since ∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Aλi∈pr⇐λi

(Fλi )

S∏
λ∈Λ Xλ

( n∧
i=1

Aλi ,A
)

=
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Aλi∈pr⇐λi

(Fλi )

S∏
λ∈Λ Xλ

( n∧
i=1

Aλi ,A
)
∗

( ∨
Bλ1∈Fλ1

S∏
λ∈Λ Xλ

(pr←λ1
(Bλ1 ),Aλ1 ) ∗ · · · ∗

∨
Bλn∈Fλn

S∏
λ∈Λ Xλ

(pr←λn
(Bλn ),Aλn )

)

=
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Aλi∈pr⇐λi

(Fλi )

∨
∀i=1,··· ,n,Bλi∈Fλi

S∏
λ∈Λ Xλ

( n∧
i=1

Aλi ,A
)
∗

S∏
λ∈Λ Xλ

(pr←λ1
(Bλ1 ),Aλ1 ) ∗ · · · ∗ S∏

λ∈Λ Xλ
(pr←λn

(Bλn ),Aλn )

⩽
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Aλi∈pr⇐λi

(Fλi )

∨
∀i=1,··· ,n,Bλi∈Fλi

S∏
λ∈Λ Xλ

( n∧
i=1

Aλi ,A
)
∗ S∏

λ∈Λ Xλ

( n∧
i=1

pr←λi
(Bλi ),

n∧
i=1

Aλi

)
⩽

∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Bλi∈Fλi

S∏
λ∈Λ Xλ

( n∧
i=1

pr←λi
(Bλi ),A

)
⩽

∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,pr←λi

(Bλi )∈pr⇐λi
(Fλi )

S∏
λ∈Λ Xλ

( n∧
i=1

pr←λi
(Bλi ),A

)
⩽

∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Aλi∈pr⇐λi

(Fλi )

S∏
λ∈Λ Xλ

( n∧
i=1

Aλi ,A
)
,

it follows that∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Bλi∈Fλi

S∏
λ∈Λ Xλ

( n∧
i=1

pr←λi
(Bλi ),A

)
=

∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Aλi∈pr⇐λi

(Fλi )

S∏
λ∈Λ Xλ

( n∧
i=1

Aλi ,A
)
.

Hence we obtain

A ∈
∏
λ∈Λ

Fλ ⇐⇒
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Aλi∈pr⇐λi

(Fλi )

S∏
λ∈Λ Xλ

( n∧
i=1

Aλi ,A
)
= ⊤

⇐⇒

∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Bλi∈Fλi

S∏
λ∈Λ Xλ

( n∧
i=1

pr←λi
(Bλi ),A

)
= ⊤.
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Corollary 4.15. Let F1 ∈ F
⊤

L (X1) and F2 ∈ F
⊤

L (X2). Then

F1 × F2 =

{
A ∈ LX1×X2

∣∣∣ ∨
B1∈F1,B2∈F2

SX1×X2 (B1 × B2,A) = ⊤
}
.

Note that the product of two ⊤-filters in Corollary 4.15 coincides with that in [45] and it is obvious that
{B1 × B2 ∈ LX1×X2 |B1 ∈ F1,B2 ∈ F2} is a ⊤-filter base of F1 × F2. This demonstrates that the product of
an arbitrary family of ⊤-filters defined herein can be considered a reasonable generalization of product of
filters.

Lemma 4.16. Suppose that L satisfies (MID). Let {φλ : Xλ −→ Yλ}λ∈Λ be a family of surjective mappings and
{Fλ}λ∈Λ be a family of ⊤-filters with Fλ ∈ F ⊤L (Xλ). Then

(∏
λ∈Λ

φλ

)⇒(∏
λ∈Λ

Fλ

)
=

∏
λ∈Λ

φ⇒λ (Fλ).

Proof. Let

∏
λ∈Λ Xλ

∏
λ∈Λ Yλ

Xλ Yλ

∏
λ∈Λ φλ

prλ qrλ

φλ

be the product commutation diagram. First, we verify

(∏
λ∈Λ

φλ

)⇒(∏
λ∈Λ

Fλ

)
⊆

∏
λ∈Λ

φ⇒λ (Fλ)

by the following three steps:

Step 1: Take any A ∈ (
∏

λ∈Λ φλ)⇒(
∏

λ∈Λ Fλ). Then (
∏

λ∈Λ φλ)←(A) ∈
∏

λ∈Λ Fλ. By Proposition 4.14, we
have

⊤ =
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Bλi∈Fλi

S∏
λ∈Λ Xλ

( n∧
i=1

pr←λi
(Bλi ),

(∏
λ∈Λ

φλ
)←

(A)
)

=
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Bλi∈Fλi

S∏
λ∈Λ Xλ

(∏
λ∈Λ

Bλ,
(∏
λ∈Λ

φλ
)←

(A)
)

(where Bλ = ⊤Xλ when λ < {λ1, · · · , λn}).

For each n ∈N, {λi}
n
i=1 ⊆ Λ, let Bλi ∈ Fλi for all i = 1, · · · ,n and let Bλ = ⊤Xλ when λ < {λ1, · · · , λn}. Then let

Eλ = φ→λ (Bλ) for any λ ∈ Λ. Since φλ is a surjective mapping, we obtain Eλ = ⊤Yλ when λ < {λ1, · · · , λn}.
Since Bλi ∈ Fλi and Bλi ⩽ φ

←

λi
(φ→λi

(Bλi )) for all i = 1, · · · ,n, we have φ←λi
(φ→λi

(Bλi )) ∈ Fλi , i.e., φ←λi
(Eλi ) ∈ Fλi .
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Step 2: For each y ∈
∏

λ∈Λ Yλ, we get

(∏
λ∈Λ

Eλ
)
(y) =

(∏
λ∈Λ

φ→λ (Bλ)
)
(y) =

∧
λ∈Λ

φ→λ (Bλ)(yλ)

=
∧
λ∈Λ

∨
φλ(xλ)=yλ

Bλ(xλ)

=

n∧
i=1

∨
φλi (xλi )=yλi

Bλi (xλi )

=
∨

φλ1 (xλ1 )=yλ1

Bλ1 (xλ1 ) ∧
∨

φλ2 (xλ2 )=yλ2

Bλ2 (xλ2 ) ∧ · · ·
∨

φλn (xλn )=yλn

Bλn (xλn )

=
∨

φλ1 (xλ1 )=yλ1

· · ·

∨
φλn (xλn )=yλn

n∧
i=1

Bλi (xλi ) (by MID)

=
∨

∀λ∈Λ,φλ(xλ)=yλ

∧
λ∈Λ

Bλ(xλ)

=
∨

(
∏

λ∈Λ φλ)(x)=y

(∏
λ∈Λ

Bλ
)
(x)

=
(∏
λ∈Λ

φλ
)→(∏

λ∈Λ

Bλ
)
(y).

By the arbitrariness of y, we obtain
∏

λ∈Λ Eλ =
(∏

λ∈Λ φλ
)→(∏

λ∈Λ Bλ
)
.

Step 3: Since

⊤ =
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Bλi∈Fλi

S∏
λ∈Λ Xλ

(∏
λ∈Λ

Bλ,
(∏
λ∈Λ

φλ
)←

(A)
)

=
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Bλi∈Fλi

S∏
λ∈Λ Yλ

((∏
λ∈Λ

φλ
)→(∏

λ∈Λ

Bλ
)
,A

)
⩽

∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,φ←λi

(Eλi )∈Fλi

S∏
λ∈Λ Yλ

(∏
λ∈Λ

Eλ,A
)

(by Step 1 and Step 2)

=
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Eλi∈φ

⇒

λi
(Fλi )

S∏
λ∈Λ Yλ

(∏
λ∈Λ

Eλ,A
)

=
∨
n∈N

∨
{λi}

n
i=1⊆Λ

∨
∀i=1,··· ,n,Eλi∈φ

⇒

λi
(Fλi )

S∏
λ∈Λ Yλ

( n∧
i=1

qr←λi
(Eλi ),A

)
,

it follows from Proposition 4.14 that A ∈
∏

λ∈Λ φ
⇒

λ (Fλ). By the arbitrariness of A, we have (
∏

λ∈Λ φλ)⇒(
∏

λ∈Λ Fλ) ⊆∏
λ∈Λ φ

⇒

λ (Fλ).



Y. Gao, B. Pang / Filomat 38:27 (2024), 9567–9591 9582

Conversely, by Proposition 4.13, we have∏
λ∈Λ

φ⇒λ (Fλ) ⊆
∏
λ∈Λ

φ⇒λ
(
pr⇒λ

(∏
µ∈Λ

Fµ
))

=
∏
λ∈Λ

(φλ ◦ prλ)⇒
(∏
µ∈Λ

Fµ
)

=
∏
λ∈Λ

(
qrλ ◦

∏
µ∈Λ

φµ
)⇒(∏

µ∈Λ

Fµ
)

=
∏
λ∈Λ

qr⇒λ

((∏
µ∈Λ

φµ
)⇒(∏

µ∈Λ

Fµ
))

⊆

(∏
λ∈Λ

φλ
)⇒(∏

λ∈Λ

Fλ
)
,

where the second equality holds since φλ ◦ prλ = qrλ ◦
∏

µ∈Λ φµ. This proves that(∏
λ∈Λ

φλ
)⇒(∏

λ∈Λ

Fλ
)
=

∏
λ∈Λ

φ⇒λ (Fλ).

Theorem 4.17. Suppose that L satisfies (MID). Let {φλ : (Xγ, γXλ ) −→ (Yλ, γYλ )}λ∈Λ be a family of quotient
mappings in ⊤-Fil. Then the product mapping∏

λ∈Λ

φλ :
(∏
λ∈Λ

Xλ,
∏
λ∈Λ

γXλ

)
−→

(∏
λ∈Λ

Yλ,
∏
λ∈Λ

γYλ

)
is a quotient mapping.

Proof. Define

(X, γX) =
(∏
λ∈Λ

Xλ,
∏
λ∈Λ

γXλ

)
and (Y, γY) =

(∏
λ∈Λ

Yλ,
∏
λ∈Λ

γYλ

)
.

By Proposition 3.3, we have

γY =
{
H ∈ F ⊤L (Y) | ∀λ ∈ Λ, qr⇒λ (H) ∈ γXλ

}
.

By Definition 3.6, we know

γ′Y =

{
K ∈ F ⊤L (Y)

∣∣∣∃G ∈ γX, s.t.,
(∏
λ∈Λ

φλ
)⇒

(G) ⊆ K
}
.

In order to show that
∏

λ∈Λ φλ is a quotient mapping, it suffices to verify that γY = γ′Y. For each K ∈ γ′Y,
there exists G ∈ γX such that (

∏
λ∈Λ φλ)⇒(G) ⊆ K. By the definition of γX, we know pr⇒λ (G) ∈ γXλ for all

λ ∈ Λ. Since φγ is a quotient mapping, it follows that

qr⇒λ

((∏
λ∈Λ

φλ
))⇒

(G) =
(
qrλ ◦

∏
λ∈Λ

φλ
)⇒

(G) = (φλ ◦ prλ)⇒(G) = φ⇒λ (pr⇒λ (G)) ∈ γYλ .

By qr⇒λ ◦
(∏

λ∈Λ φλ
)⇒

(G) ⊆ qr⇒λ (K), we have qr⇒λ (K) ∈ γYλ for each λ ∈ Λ, which impliesK ∈ γY. This shows
γ′Y ⊆ γY.
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Conversely, let H ∈ γY. By the definition of γY, we have qr⇒λ (H) ∈ γYλ for each λ ∈ Λ. Then for each
λ ∈ Λ, there exists Fλ ∈ γXλ such that φ⇒λ (Fλ) ⊆ qr⇒λ (H) since φλ is a quotient mapping. Let

Fλ =
{
Fλ ∈ F

⊤

L (Xλ) |Fλ ∈ γXλ and φ⇒λ (Fλ) ⊆ qr⇒λ (H)
}

for each λ ∈ Λ and let∏
λ∈Λ

Fλ =
{

f : Λ −→
∐
λ∈Λ

Fλ

∣∣∣∀λ ∈ Λ, f (λ) ∈ Fλ
}

be the set of choice functions, i.e.,

∀λ ∈ Λ,∃Fλ ∈ γXλ , s.t., φ
⇒

λ (Fλ) ⊆ qr⇒λ (H)⇐⇒ ∃ f ∈
∏
λ∈Λ

Fλ, s.t.,∀λ ∈ Λ, φ⇒λ ( f (λ)) ⊆ qr⇒λ (H).

Then there exists f ∈
∏

λ∈Λ Fλ such that φ⇒λ ( f (λ)) ⊆ qr⇒λ (H) for each λ ∈ Λ. It follows from Proposition 2.9
that qr⇐λ ◦φ

⇒

λ ( f (λ)) ⊆H for each λ ∈ Λ. This implies that
∨
λ∈Λ qr⇐λ ◦φ

⇒

λ ( f (λ)) ⊆H, i.e.,
∏

λ∈Λ φ
⇒

λ ( f (λ)) ⊆H.

By Lemma 4.16, we obtain there exists
∏

λ∈Λ f (λ) ∈ γX such that
(∏

λ∈Λ φλ
)⇒(∏

λ∈Λ f (λ)
)
=

∏
λ∈Λ φ

⇒

λ ( f (λ)) ⊆
H. Then it follows from the definition of γ′Y that H ∈ γ′Y. By the arbitrariness of H, we obtain that
γY ⊆ γ′Y.

By Theorems 4.5, 4.8 and 4.17, we obtain the following theorem.

Theorem 4.18. Suppose that L satisfies (MID). Then ⊤-Fil is a strong topological universe.

5. Subcategories of ⊤-Fil

In this section, we will propose ⊤-semi-Cauchy structures, ⊤-Cauchy structures and complete ⊤-filter
structures, which can be considered as generalizations of semi-Cauchy structures, Cauchy structures and
complete filter structures respectively. Then we will establish their categorical relationships with ⊤-filter
structures as well as their categorical properties.

5.1. ⊤-SChy

Definition 5.1. A ⊤-filter structure γ on X is called ⊤-semi-Cauchy provided that

(TSChy) If there exist F1, · · · ,Fn ∈ γ such that
n⋂

i=1

Fi × Fi ⊆ F × F, then F ∈ γ.

For a ⊤-semi-Cauchy structure γ on X, the pair (X, γ) is called a ⊤-semi-Cauchy space.

The category of ⊤-semi-Cauchy spaces, as a full subcategory of ⊤-Fil, is denoted by ⊤-SChy. For
convenience, we use I : ⊤-SChy −→ ⊤-Fil to denote the inclusion functor.

Proposition 5.2. Let (X, γ) be a ⊤-filter space. Define γ⋄ ⊆ F ⊤L (X) by

γ⋄ =

{
F ∈ F ⊤L (X)

∣∣∣∃F1, · · · ,Fn ∈ γ, s.t.,
n⋂

i=1

Fi × Fi ⊆ F × F

}
.

Then (X, γ⋄) is a ⊤-semi-Cauchy space.
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Proof. (TF1) and (TF2) are obvious. It remains to verify (TSChy). Suppose that G1, · · · ,Gn ∈ γ⋄ and
G ∈ F ⊤L (X) such that

⋂n
i=1Gi ×Gi ⊆ G ×G. For each Gi, by the definition of γ⋄, there exist Fi1, · · · ,Fimi such

that
⋂mi

j=1 Fi j × Fi j ⊆ Gi × Gi. This implies that there exist F11, · · · ,F1m1 , · · · ,Fi1, · · · ,Fimi , · · · , Fn1, · · · ,Fnmn

such that

m1+···+mn⋂
q=1

Fq × Fq ⊆

n⋂
i=1

Gi ×Gi ⊆ G ×G.

This shows G ∈ γ⋄, as desired.

Proposition 5.3. Suppose that L satisfies (MID). Ifφ : (X, γX) −→ (Y, γY) is a Cauchy continuous mapping between
⊤-filter spaces, then φ : (X, γ⋄X) −→ (Y, γ⋄Y) is a Cauchy continuous mapping between ⊤-semi-Cauchy spaces.

Proof. Take any F ∈ γ⋄X. Then there exist F1, · · · ,Fn ∈ γX such that
⋂n

i=1 Fi ×Fi ⊆ F×F. Since φ : (X, γX) −→
(Y, γY) is Cauchy continuous, there exist φ⇒(F1), · · · , φ⇒(Fn) ∈ γY such that

n⋂
i=1

φ⇒(Fi) × φ⇒(Fi) =
n⋂

i=1

(φ × φ)⇒(Fi × Fi)

= (φ × φ)⇒
( n⋂

i=1

Fi × Fi

)
⊆ (φ × φ)⇒(F × F)
= φ⇒(F) × φ⇒(F),

where that the first and the last equalities follow from Proposition 2.10. By Proposition 5.2, we obtain
φ⇒(F) ∈ γ⋄Y. This shows φ : (X, γ⋄X) −→ (Y, γ⋄Y) is a Cauchy continuous mapping.

By Propositions 5.2 and 5.3, we get a functor.

F :


⊤-Fil −→ ⊤-SChy
(X, γ) 7−→ (X, γ⋄)
φ 7−→ φ

Proposition 5.4. Suppose that L satisfies (MID). Then F is a left adjoint to I.

Proof. It is easy to verify that F ◦ I = id⊤-SChy and I ◦ F(X, γ) = (X, γ⋄) ⊇ (X, γ) for each ⊤-semi-Cauchy space
(X, γ). Thus, F is a left adjoint to I.

By Proposition 5.4 and Theorem 2.2.12 in [40], we get

Corollary 5.5. Suppose that L satisfies (MID). Then ⊤-SChy is a bireflective subcategory of ⊤-Fil.

Corollary 5.6. Suppose that L satisfies (MID). Then ⊤-SChy is a topological category.

Lemma 5.7 ([25]). If L is distributive, then for each F,G ∈ F ⊤L (X) andH ∈ F ⊤L (Y),

(F ∩G) ×H = (F ×H) ∩ (G ×H).

Lemma 5.8. Suppose that L satisfies (MID). LetH1,H2,H ∈ F ⊤L (X) and F ∈ F ⊤L (Y). If (H1×H1)∩ (H2×H2) ⊆
H ×H, then(

(H1 × F) × (H1 × F)
)
∩

(
(H2 × F) × (H2 × F)

)
⊆ (H × F) × (H × F).



Y. Gao, B. Pang / Filomat 38:27 (2024), 9567–9591 9585

Proof. Define a mapping φ : (X × X) × (Y × Y) −→ (X × Y) × (X × Y) by

φ
(
(x1, x2), (y1, y2)

)
=

(
(x1, y1), (x2, y2)

)
.

Then φ is bijective. By Corollary 4.15, we know BH×H = {A × B |A,B ∈ H} is a ⊤-filter base ofH ×H and
BF×F = {C ×D |C,D ∈ F} is a ⊤-filter base of F × F. This implies that

B1 = {φ
→
(
(A × B) × (C ×D) |A × B ∈ BH×H,C ×D ∈ BF×F

)
}

is a ⊤-filter base of φ⇒
(
(H ×H) × (F × F)

)
and

B2 = {(A × C) × (B ×D) |A,B ∈H,C,D ∈ F}

is a ⊤-filter base of (H×H)× (F×F). Since φ is bijective, it is easy to verify that B1 = B2. This implies that

φ⇒
(
(H ×H) × (F × F)

)
= (H × F) × (H × F).

Since (H1 ×H1) ∩ (H2 ×H2) ⊆H ×H, it follows from Lemma 5.7 that(
(H1 ×H1) × (F × F)

)
∩

(
(H2 ×H2) × (F × F)

)
⊆ (H ×H) × (F × F).

This implies that (
(H1 × F) × (H1 × F)

)
∩

(
(H2 × F) × (H2 × F)

)
= φ⇒

(
(H1 ×H1) × (F × F)

)
∩ φ⇒

(
(H2 ×H2) × (F × F)

)
= φ⇒

((
(H1 ×H1) × (F × F)

)
∩

(
(H2 ×H2) × (F × F)

))
⊆ φ⇒

(
(H ×H) × (F × F)

)
= (H × F) × (H × F),

as desired.

Theorem 5.9. Suppose that L satisfies (MID). Then ⊤-SChy is Cartesian closed.

Proof. By Corollaries 5.5 and 5.6, we only need to verify that⊤-SChy is closed under the formation of power
objects in ⊤-Fil. Let (X, γX) be a ⊤-filter space and (Y, γY) be a ⊤-semi-Cauchy space. By Proposition 4.1,
the power object in ⊤-Fil has the following form

γ[X,Y] =
{
H ∈ F ⊤L ([X,Y]) | ∀F ∈ F ⊤L (X),F ∈ γX implies ev⇒(H × F) ∈ γY

}
.

It remains to show that γ[X,Y] satisfies (TSChy). If there exist H1, · · · ,Hn ∈ γ[X,Y] such that
⋂n

i=1Hi ×Hi ⊆

H ×H, then it follows from Lemma 5.8 that

n⋂
i=1

(Hi × F) × (Hi × F) ⊆ (H × F) × (H × F)

for each F ∈ γX. SinceHi ∈ γ[X,Y] for any i = 1, · · · ,n, it follows that ev⇒(Hi ×F) ∈ γY. This shows that there
exist ev⇒(H1 × F), · · · , ev⇒(Hn × F) ∈ γY such that

n⋂
i=1

ev⇒(Hi × F) × ev⇒(Hi × F) = (ev × ev)⇒
( n⋂

i=1

(Hi × F) × (Hi × F)
)
⊆ ev⇒(H × F) × ev⇒(H × F).

Since (Y, γY) is a ⊤-semi-Cauchy space, we obtain ev⇒(H × F) ∈ γY. By the definition of γ[X,Y], we have
H ∈ γ[X,Y].
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5.2. ⊤-Chy

Definition 5.10. ([42]) A ⊤-filter structure γ on X is called ⊤-Cauchy provided that

(TChy) F ∩G ∈ γ whenever F,G ∈ γ and F ∨G exists.

For a ⊤-Cauchy sturcture γ on X, the pair (X, γ) is called a ⊤-Cauchy space.

The category of⊤-Cauchy spaces, as a full subcategory of⊤-Fil, is denoted by⊤-Chy. For convenience,
we use I : ⊤-Chy −→ ⊤-Fil to denote the inclusion functor.

Let γ(X) = {γ | (X, γ) is a ⊤-Cauchy space}.

Proposition 5.11. Let (X, γ) be a ⊤-filter space. Define γ⋆ ⊆ F ⊤L (X) by

γ⋆ =
⋂{

γ ⊆ F ⊤L (X) |γ ∈ γ(X) and γ ⊆ γ
}
.

Then (X, γ⋆) is a ⊤-Cauchy space.

Proof. It is easy and is omitted.

Proposition 5.12. Let (Y, γY) be a⊤-Cauchy space andφ : X −→ Y be a mapping. Thenγ∗ =
{
F ∈ F ⊤L (X) |φ⇒(F) ∈ γY

}
is a ⊤-Cauchy structure on X.

Proof. It is straightforward to verify that γ∗ satisfies (TF1) and (TF2).
(TChy) Let F, G ∈ γ∗ such that F ∨G exists. Then φ⇒(F) ∈ γY and φ⇒(G) ∈ γY. For each A ∈ φ⇒(F) and

B ∈ φ⇒(G), it follows that φ←(A) ∈ F and φ←(B) ∈ G. Since F ∨G exists, we have∨
y∈Y

(A ∧ B)(y) ≥
∨

y∈φ(X)

(A ∧ B)(y) =
∨
x∈X

(A ∧ B)(φ(x)) =
∨
x∈X

(φ←(A) ∧ φ←(B))(x) = ⊤.

This implies that φ⇒(F) ∨ φ⇒(G) exists. By (TChy), we obtain φ⇒(F ∩ G)=φ⇒(F) ∩ φ⇒(G) ∈ γY. Thus,
F ∩G ∈ γ∗.

Proposition 5.13. If φ : (X, γX) −→ (Y, γY) is a Cauchy continuous mapping between ⊤-filter spaces, then φ :
(X, γ⋆X) −→ (Y, γ⋆Y) is a Cauchy continuous mapping between ⊤-Cauchy spaces.

Proof. By Proposition 5.12, we know γ∗X = {F ∈ F
⊤

L (X) |φ⇒(F) ∈ γ⋆Y} is a ⊤-Cauchy structure on X. By the
Cauchy continuity of φ : (X, γX) −→ (Y, γY) and γY ⊆ γ⋆Y , we get γX ⊆ γ∗X. This shows that γ∗X is a ⊤-Cauchy
structure satisfying γX ⊆ γ∗X. Then it follows that γ⋆X ⊆ γ

∗

X. Take any F ∈ γ⋆X. Then F ∈ γ∗X. By the definition
of γ∗X, we have φ⇒(F) ∈ γ⋆Y .

By Propositions 5.11 and 5.13, we construct a functor.

G :


⊤-Fil −→ ⊤-Chy
(X, γ) 7−→ (X, γ⋆)
φ 7−→ φ

Proposition 5.14. G is a left adjoint to I.

Proof. It follows immediately from the facts that G ◦ I(X, γ) = (X, γ) for each ⊤-Cauchy space (X, γ) and
I ◦ G(X, γ) = (X, γ⋆) ⊇ (X, γ) for each ⊤-filter space (X, γ).

By Proposition 5.14 and Theorem 2.2.12 in [40], we obtain

Corollary 5.15. ⊤-Chy is a bireflective subcategory of ⊤-Fil.
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Corollary 5.16. ⊤-Chy is a topological category over Set.

Proposition 5.17. Suppose that L satisfies (MID). Then ⊤-Chy is Cartesian closed.

Proof. By Corollaries 5.15 and 5.16, it suffices to show that⊤-Chy is closed under formation of power objects
in ⊤-Fil. Let (X, γX) be a ⊤-filter space and (Y, γY) be a ⊤-Cauchy space. Then

γ[X,Y] =
{
H ∈ F ⊤L ([X,Y]) | ∀F ∈ F ⊤L (X),F ∈ γX implies ev⇒(H × F) ∈ γY

}
.

Next, we will verify that γ[X,Y] satisfies (TChy). Take anyH1,H2 ∈ γ[X,Y] such thatH1 ∨H2 exists. In order
to showH1 ∩H2 ∈ γ[X,Y], we divide into three steps.

Step 1: Take any Φ1 ∈H1, Φ2 ∈H2 and A1,A2 ∈ F. Then∨
(φ,x)∈[X,Y]×X

(Φ1 × A1)(φ, x) ∧ (Φ2 × A2)(φ, x)

=
∨

(φ,x)∈[X,Y]×X

(Φ1 ∧Φ2)(φ) ∧ (A1 ∧ A2)(x)

⩾
∨

φ∈[X,Y]

(Φ1 ∧Φ2)(φ) ∗
∨
x∈X

(A1 ∧ A2)(x)

= ⊤.

Then for eachΨ1 ∈H1 × F andΨ2 ∈H2 × F, it follows that

⊤ =
∨

Φ1∈H1,A1∈F

S[X,Y]×X(Φ1 × A1,Ψ1) ∗
∨

Φ2∈H2,A2∈F

S[X,Y]×X(Φ2 × A2,Ψ2)

⩽
∨

Φ1∈H1,A1∈F

∨
Φ2∈H2,A2∈F

S[X,Y]×X((Φ1 × A1) ∧ (Φ2 × A2),Ψ1 ∧Ψ2)

∗

( ∨
(φ,x)∈[X,Y]×X

(Φ1 × A1) ∧ (Φ2 × A2)(φ, x)
)

=
∨

Φ1∈H1,A1∈F

∨
Φ2∈H2,A2∈F

∨
(φ,x)∈[X,Y]×X

(
S[X,Y]×X((Φ1 × A1) ∧ (Φ2 × A2),Ψ1 ∧Ψ2)

)
∗

(
(Φ1 × A1) ∧ (Φ2 × A2)

)
(φ, x)

⩽
∨

(φ,x)∈[X,Y]×X

(Ψ1 ∧Ψ2)(φ, x).

By Corollary 4.10, we know (H1 × F) ∨ (H2 × F) exists.
Step 2: Take any G1 ∈ ev⇒(H1 × F) and G2 ∈ ev⇒(H2 × F). Then

⊤ =
∨

(φ,x)∈[X,Y]×X

(ev←(G1) ∧ ev←(G2))(φ, x) (by Step 1)

=
∨

(φ,x)∈[X,Y]×X

G1(ev(φ, x)) ∧G2(ev(φ, x))

=
∨

(φ,x)∈[X,Y]×X

G1(φ(x)) ∧G2(φ(x))

=
∨

y∈φ(X)

(G1 ∧G2)(y)

⩽
∨
y∈Y

(G1 ∧G2)(y).
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Hence ev⇒(H1 × F) ∨ ev⇒(H2 × F) exists.
Step 3: Take any F ∈ γX. Then ev⇒(H1 × F) ∈ γY and ev⇒(H2 × F) ∈ γY. By Step 2, we know

ev⇒(H1 × F) ∨ ev⇒(H2 × F) exists. Since γY satisfies (TChy), we obtain ev⇒(H1 × F) ∩ ev⇒(H2 × F) ∈ γY.
By Proposition 2.10 and Lemma 5.7, it follows that ev⇒((H1 ∩H2) × F) ∈ γY. This showsH1 ∩H2 ∈ γ[X,Y].
Thus, γ[X,Y] satisfies (TChy).

5.3. ⊤-CFil

Definition 5.18. A ⊤-filter structure γ on X is called complete provided that

(TC) For any F ∈ γ, there exists x ∈ X such that F ∩ [x] ∈ γ.

For a complete ⊤-filter structure γ on X, the pair (X, γ) is called a complete ⊤-filter space.

The category of complete ⊤-filter spaces, as a full subcategory of ⊤-Fil, is denoted by ⊤-CFil. For
convenience, we use I : ⊤-CFil −→ ⊤-Fil to denote the inclusion functor.

Proposition 5.19. Let (X, γ) be a ⊤-filter space. Define γc
⊆ F

⊤

L (X) by

γc =
{
F ∈ F ⊤L (X) | ∃x ∈ X, s.t.,F ∩ [x] ∈ γ

}
.

Then (X, γc) is a complete ⊤-filter space and γc
⊆ γ.

Proof. It is easy to check γc satisfies (TF1), (TF2) and (TC). Take any F ∈ γc. Then there exists x ∈ X such
that F ∩ [x] ∈ γ. By (TF2), we obtain F ∈ γ. Thus, γc

⊆ γ.

Proposition 5.20. If φ : (X, γX) −→ (Y, γY) between ⊤-filter spaces is Cauchy continuous, then φ : (X, γc
X) −→

(Y, γc
Y) between complete ⊤-filter spaces is Cauchy continuous.

Proof. Take any F ∈ γc
X. Then there exists x ∈ X such that F∩ [x] ∈ γX. Since φ : (X, γX) −→ (Y, γY) is Cauchy

continuous, it follows that there exists φ(x) ∈ Y such that

φ⇒(F) ∩ [φ(x)] = φ⇒(F ∩ [x]) ∈ γY.

By the definition of γc
Y, we obtain φ⇒(F) ∈ γc

Y.

Thus, we get a functor.

H :


⊤-Fil −→ ⊤-CFil
(X, γ) 7−→ (X, γc)
φ 7−→ φ

Proposition 5.21. H is a right adjoint to I.

Proof. For each⊤-filter space (X, γ), we get I◦H(X, γ) = (X, γc) ⊆ (X, γ). Then H◦I = id⊤-CFil and I◦H ⊆ id⊤-Fil.
This implies that H is a right adjoint to I.

Further, we can get the following conclusions.

Corollary 5.22. ⊤-CFil is a bicoreflective subcategory of ⊤-Fil.

Corollary 5.23. ⊤-CFil is a topological category.

Theorem 5.24. Suppose that L satisfies (MID). Then ⊤-CFil is strongly Cartesian closed.
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Proof. It suffices to show that ⊤-CFil satisfies (CP1) and (CP3). By Corollaries 5.22 and 5.23, it is enough to
check ⊤-CFil is closed under formation of products in ⊤-Fil [40] (see Corollary 3.1.7 and Proposition 3.2).
Let (X, γX) and (Y, γY) be two complete ⊤-filter spaces. Then their product in ⊤-Fil is

γX × γY =
{
H ∈ F ⊤L (X × Y) | pr⇒X (H) ∈ γX, pr⇒Y (H) ∈ γY

}
.

Now it remains to prove that γX × γY satisfies (TC). Take any H ∈ γX × γY. Then pr⇒X (H) ∈ γX and
pr⇒Y (H) ∈ γY. Since (X, γX) and (Y, γY) satisfy (TC), it follows that there exists x ∈ X and y ∈ Y such that
pr⇒X (H) ∩ [x] ∈ γX and pr⇒Y (H) ∩ [y] ∈ γY. Then pr⇒X (H ∩ [(x, y)]) ∈ γX and pr⇒Y (H ∩ [(x, y)]) ∈ γY, which
impliesH ∩ [(x, y)] ∈ γX × γY. Hence, by the definition of γX × γY, we obtain γX × γY satisfies (TC).

In the classical case, there exist close relationships between complete filter spaces and symmetric Kent
convergence spaces. Next, we will introduce the concept of symmetric Kent ⊤-convergence spaces and
study its relationships with complete ⊤-filter spaces.

Definition 5.25. ([17]) A mapping lim : F ⊤L (X) −→ P(X) satisfying the following conditions:
(TC1) x ∈ lim[x];
(TC2) F ⊆ G implies limF ⊆ limG;
(TCK) x ∈ limF⇒ x ∈ lim(F ∩ [x]);

is called a Kent ⊤-convergence structure on X. The pair (X, lim) is called a Kent ⊤-convergence space.

The category of Kent ⊤-convergence spaces is denoted by ⊤-KConv.

Definition 5.26. A Kent ⊤-convergence structure lim on X is called symmetric provided that for each
F,G ∈ F ⊤L (X) and x, y ∈ X,

(TCSK) y ∈ limG and G ⊆ F ∩ [x] imply x ∈ limF.

The pair (X, lim) is called a symmetric Kent ⊤-convergence space.
The category of symmetric Kent ⊤-convergence spaces, as a full subcategory of ⊤-KConv, is denoted

by ⊤-SKConv.

Proposition 5.27. Let (X, lim) be a Kent ⊤-convergence space. The following statements are equivalent.
(TCSK) y ∈ limG and G ⊆ F ∩ [x] imply x ∈ limF.
(TCSK′) y ∈ lim(F ∩ [x]) implies x ∈ limF.
(TCSK′′) y ∈ limF and

∧
A∈F A(x) = ⊤ imply x ∈ limF.

Proof. (TCSK) =⇒ (TCSK′) It is straightforward.
(TCSK′) =⇒ (TCSK′′) Suppose that y ∈ limF and

∧
A∈FA(x) = ⊤. Then F ⊆ [x]. This implies that

y ∈ limF = lim (F ∩ [x]). Hence x ∈ limF.
(TCSK′′) =⇒ (TCSK) Suppose that y ∈ limG and G ⊆ F ∩ [x]. Then

∧
A∈G A(x) = ⊤. By (TCSK′′), we get

x ∈ limG. Thus, x ∈ limF.

Proposition 5.28. Let (X, γ) be a ⊤-filter space. Define limγ : F ⊤L (X) −→ P(X) by

limγ F =
{
x ∈ X |F ∩ [x] ∈ γ

}
.

Then (X, limγ) is a symmetric Kent ⊤-convergence space.

Proof. (TF1) and (TF2) are straightforward.
(TCK) For each F ∈ F ⊤L (X) and x ∈ X, we have

x ∈ limγ F⇐⇒ F ∩ [x] ∈ γ⇐⇒ F ∩ [x] ∩ [x] ∈ γ⇐⇒ x ∈ limγ(F ∩ [x]).

(TCSK′) Let y ∈ limγ(F ∩ [x]). Then F ∩ [x] ∩ [y] ∈ γ. Hence, we obtain x ∈ limγ(F ∩ [y]) ⊆ limγ F.
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Proposition 5.29. Let (X, lim) be a Kent ⊤-convergence space. Define γlim ⊆ F
⊤

L (X) by

γlim =
{
F ∈ F ⊤L (X) | ∃x ∈ X, s.t., x ∈ limF

}
.

Then (X, γlim) is a complete ⊤-filter space.

Proof. (TF1) and (TF2) are obvious. It is enough to show that γlim satisfies (TC).
(TC) Let F ∈ γlim. Then there exists x ∈ X such that x ∈ limF. Since (X, lim) is a Kent ⊤-convergence

space, we obtain x ∈ lim(F ∩ [x]). This shows F ∩ [x] ∈ γlim.

Proposition 5.30. (1) Ifφ : (X, γX) −→ (Y, γY) between⊤-filter spaces is Cauchy continuous, thenφ : (X, limγX ) −→
(Y, limγY ) between symmetric Kent ⊤-convergence spaces is continuous.

(2) If φ : (X, limX) −→ (Y, limY) between Kent ⊤-convergence spaces is continuous, then φ : (X, γlimX ) −→
(Y, γlimY ) between complete ⊤-filter spaces is Cauchy continuous.

Proof. (1) Take eachF ∈ F ⊤L (X) and x ∈ X such that x ∈ limγX F. ThenF∩[x] ∈ γX. Sinceφ : (X, γX) −→ (Y, γY)
is Cauchy continuous, it follows thatφ⇒(F)∩[φ(x)] ∈ γY. By Proposition 5.28, we obtainφ(x) ∈ limγY φ

⇒(F).
(2) Take eachF ∈ γlimX . Then there exists x ∈ X such that x ∈ limX F. By the continuity ofφ : (X, limX) −→

(Y, limY), we know φ(x) ∈ limY φ⇒(F). By Proposition 5.29, we obtain φ⇒(F) ∈ γlimY .

Theorem 5.31. ⊤-CFil is isomorphic to ⊤-SKConv.

Proof. It suffices to show that γlimγ = γ and lim = limγlim for each complete ⊤-filter space (X, γ) and each
symmetric Kent ⊤-convergence space (X, lim).

First, we prove γlimγ = γ. Take any F ∈ F ⊤L (X). Then

F ∈ γlimγ ⇐⇒ ∃x ∈ X, s.t., x ∈ limγ F⇐⇒ ∃x ∈ X, s.t.,F ∩ [x] ∈ γ =⇒ F ∈ γ.

Since γ satisfies (TC), F ∈ γ implies that there exists x ∈ X such that F ∩ [x] ∈ γ. Thus, γlimγ = γ.
Next, we show lim = limγlim . Take each x ∈ X and F ∈ F ⊤L (X). Then

x ∈ limγlim F⇐⇒ F ∩ [x] ∈ γlim ⇐⇒ ∃y ∈ X, s.t., y ∈ lim(F ∩ [x]).

Since lim satisfies (TCSK′), we obtain x ∈ limF. If x ∈ limF, by (TCK), we obtain x ∈ lim(F ∩ [x]). Hence
x ∈ limγlim F. This shows limγlim = lim, as desired.

6. Conclusions

In this paper, we introduced the notion of ⊤-filter spaces and its product space, subspace and quotient
space. We investigated some convenient properties of ⊤-Fil and proved ⊤-Fil is a strong topological
universe. Additionally, the concrete form of the product of an arbitrary family of ⊤-filters was presented.
Further, we got ⊤-SChy and ⊤-Chy are bireflective subcategories of ⊤-Fil and ⊤-CFil is a bicoreflective
subcategory of ⊤-Fil. Moreover, we showed that ⊤-SChy and ⊤-Chy are Cartesian closed, and ⊤-CFil is
strongly Cartesian closed.

Reid and Richardson [42] investigated several types of completions of ⊤-Cauchy spaces and Jäger [23]
studied completions of ⊤-quasi-Cauchy spaces. This implies that the framework where completion is dis-
cussed can be extended. Yang and Li [44] studied completions of (L,M)-filter tower spaces. This motivates
us to consider completions of ⊤-filter spaces and provide a unified approach to different completions of
⊤-Cauchy spaces.
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[20] U. Höhle, Probabilistic topologies induced by L-fuzzy uniformities, Manuscr. Math. 38 (1982), 289–323.
[21] G. Jäger, A category of L-fuzzy convergence spaces, Quaest. Math. 24(4) (2001), 501–517.
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