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The category of T-filter spaces

Yuan Gao?, Bin Pang*”

?Beijing Key Laboratory on MCAACI, School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 102488, China

Abstract. T-filters serve as an important tool to define mathematical structures and deserve more and more
attention. This paper aims to investigate categorical properties of T-filter spaces. Firstly, it is shown that
the category T-Fil of T-fiter spaces is Cartesian closed, extensional and productive for quotient mappings.
Secondly, the concepts of T-semi-Cauchy spaces and complete T-filter spaces are proposed. It is proved
that the categories of T-semi-Cauchy spaces and T-Cauchy spaces, as bireflective subcategories of T-Fil,
are Cartesian closed, and the category of complete T-filter spaces, as a bicoreflective subcategory of T-Fil,
is strongly Cartesian closed and is isomorphic to that of symmetric Kent T-convergence spaces.

1. Introduction

Filters play an important role in topology. Cartan [5] first used filters to investigate convergence. Later,
Choquet [7] and Kowalsky [29] presented their theories which involve an axiomatization of the concept of
convergence via filters. In this approach, Fischer [16] and Kent [27] further considered convergence struc-
tures. From the categorical aspect, Edgar [9] proved the category of convergence spaces is Cartesian closed.
Combined with uniform structures, Weil [43] introduced the concept of uniform convergence structures.
Afterwards, Cook and Fischer [6] redefined uniform convergence structures by modifying the axioms in
the sense of Weil. Then Lechicki and Ziemiriska [30] studied a general notion of a uniform convergence
structure. In order to establish the relationship between convergence structures and uniform convergence
structures, Bently [3] et al. formalized filter structures, which can be considered as a characterization of
filter merotopic structures in the sense of Katetov [26]. Since then many scholars studied these structures
[4, 28, 33, 41].

The above-mentioned mathematical structures are all defined via filters. These filter-based structures
not only can be used to describe topology, but also have nice categorical properties, including Cartesian-
closedness [2, 34], extensionality [8, 32] and productivity of quotient mappings [35, 39]. This topic has
became an interesting research area known as Convenient Topology [40].

With the development of lattice-valued theory, filters have been generalized to the lattice-valued case,
which leads to a representative type of lattice-valued filters, called stratified L-filters. Many scholars
used stratified L-filters to define different types of lattice-valued mathematical structures. Jager defined
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stratified L-generalized convergence structures [21] and L-uniform convergence structures [24], and studied
their Cartesian-closedness as well as their relationships with stratified L-topology. Considering fuzzy
inclusion orders between L-subsets, Fang [10] and Li [31] proposed L-ordered convergence structures
and investigated their relationships with L-convergence structures. Fang [11] introduced stratified L-
semiuniform convergence structures and L-ordered semiuniform convergence structures, and studied their
Cartesian-closedness. Fang also proposed L-ordered quasiuniform limit structures [12] and stratified L-
preuniform convergence structures [13], and presented their categorical properties. Yang and Li [44]
proposed (L, M)-filter tower structures and studied their completion. Pang et al. introduced stratified
L-filter structures [36], stratified L-ordered filter structures [37, 47] and stratified L-convergence tower
structures [38], and investigated their categorical properties. Zhang et al. [49] used stratified L-filters to
define (L, M)-semiuniform convergence tower structures and discussed its categorical relationships with
(L, M)-filter tower structures. Up to now, lattice-valued mathematical structures via stratified L-filters have
been extensively discussed.

Since T-filters have some advantages compared with stratified L-filters, especially on the generalizations
of lattice background, T-filters are receiving increasing attention. Yu and Fang [45] first used T-filters to
define T-convergence structures and studied the Cartesian-closedness of the resulting category. Afterwards,
Fang and Yue discussed T-diagonal conditions and continuous extension theorem in T-convergence spaces
[14] and constructed a T-filter monad to study its applications in T-convergence spaces [46]. Reid and
Richardson [42] introduced T-Cauchy structures and T-uniform limit structures and investigated their
completions. Recently, Jager and Yue [25] studied T-uniform structures in more detail. Zhang and Pang
[48] proposed the concept of T-convergence groups via combining a T-convergence structure and a group,
and investigated its characterization theorems. Motivated by lattice-valued structures via T-filters, we will
focus on lattice-valued filter structures via T-filters, called T-filter structures in this paper. Actually, it can
be considered as generalizations of T-Cauchy structures [42] and T-quasi Cauchy structures [23].

As the first aim of our paper, we will explore the categorical properties of T-filter spaces, including
Cartesian-closedness, extensionality and productivity of quotient mappings. As the second aim, we will
include T-semi-Cauchy spaces, T-Cauchy spaces and complete T-filter spaces into the framework of T-filter
spaces from a categorical aspect, and also investigate their categorical properties.

2. Preliminaries

In this section, we recall some basic notations and concepts that will be needed in the sequel.

Definition 2.1. ([19]) A complete residuated lattice is a triple (L, <, *), where (L, <) is a complete lattice with
the top element T and the bottom element L, and * is a commutative, associative binary operation such that
(1) T is the unit element for *;
(2) + is distributive over arbitrary joins, i.e., (Vi ai) * B = Ver(ai * ).

For a given complete residuated lattice L, the binary operation — on L can be computed by

aﬁﬁz\/{yeLla*)/sﬁ}.

The binary operation — is called the implication operation on L with respect to *. Further, * and — form
an adjoint pair in the senseof  *y < f & y <a — B forall a, B, y € L. In this paper, we will often use a
complete residuated lattice that satisfies the following distributive law

MID) an\/pi=\/(@AB) VaeL(BliaCL,
i€l i€l

An L-subset of X is a mapping from X to L, and the family of all L-subsets on X will be denoted by L%,
called the L-power set of X. Ty represents the constant L-subset with the value T and Lx represents the
constant L-subset with the value L. For a universal set X, the set of all subsets of X is denoted by P(X).
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All algebraic operations on L can be extended to the L-power set LX in a pointwise way. For each A4,
BelX,aeLandx € X,

(1) (AV B)(x) = A(x) V B(x);

(2) (A A B)(x) = A(x) A B(x);

(3) (A= B)(x) = A(x) * B(x) and (a * A)(x) = a * A(x);

(4) (A — B)(x) = A(x) — B(x) and (a« — B)(x) = a — B(x).

Let ¢ : X — Y be a mapping. Define ¢~ : LX — LY and ¢ : LY — LXby ¢~ (A)(y) = V
allA e L¥and y € Y, and ¢~ (B)(x) = B(¢(x)) forall B€ LY and x € X.

For a given set X, there is a binary mapping Sx(—, —) : LX x L*X — L, defined by

)=y A(x) for

Sx(A,B) = /\ (A) = B(x)

xeX

for any pair (4, B) € LX x LX. Sx(A, B) can be interpreted as the degree of A being a subset of B. Sx(—, —) is
also called the fuzzy inclusion order between L-subsets.

Lemma 2.2. ([1],[25]) For each A, B,C, D € L%, it holds that
(1) A <B=Sx(A,B)=T;
(2) Sx(A, B) * Sx(B, C) < Sx(A,C);
(3) Sx(A,B) * Sx(C,D) < Sx(A=*C,B=D);
(4) Sx(A,B) * Sx(C,D) < Sx(AAC,B AD);
(5) Sx(A,B) A Sx(C,D) < Sx(AAC,BAD);
(6) Sx(A,B) ASx(C,D) < Sx(AV C,BV D);
(7) A < Bimplies Sx(C, A) < Sx(C, B) and Sx(B, D) < Sx(A, D).

Lemma 2.3. ([1]) Let ¢ : X — Y be a mapping. For each A, B € LX and C,D € LY, it holds that
(1) Sx(A, B) < Sy(¢™(A), ¢~ (B));
(2) Sv(C,D) < Sx(¢~(C), ¢~ (D));
(3) Sy (¢~ (A),C) = Sx (A, ¢ (O)).

The notion of a T-filter and that of a T-filter base are due to Hohle [20]. A particular version which
follows here is due to Fang and Yue [14].

Definition 2.4. ([14,20]) A T-filter on X is a nonempty subset IF C LX with the following properties:
(F1) if A € LX with \/ e Sx(C,A) = T, then A € T;
(]FZ) A1 NAy, e Fforall A1, A, €T
(F3) V,exA(x) = T forall A € F.

The family of all T-filters on X is denoted by #,"(X). Given a point x € X, then [x] = {A € LX|A(x) = T}
is a T-filter, and called the point T-filter of x.

Definition 2.5. ([14, 20]) A nonempty subset B C LX is called a T-filter base on X if it satisfies:
(B1) Ve Sx(B,CAD) =T forall C,D € B;
(B2) V,ex C(x) = T forall C € B.

It is obvious that each T-filter is a T-filter base. For a T-filter base B, a T-filter can be generated in the
following way:

Fg = {A e L[ \/ Sx(B,4) = T}.

BeB

Then BB is called a base of Fg.
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Proposition 2.6. ([48]) LetF, G € F," (X) and By, Bg be a T-filter base of F, G. Then {AVB € LX|A € Bg, B € Bg)
and {AV B € LX| A € F, B € G} are both T-filter bases of F N G.

Take any A € LX and B € LY. Then A x B € L**Y is defined by (A x B)(x, y) = A(x) A B(y).

Definition 2.7. ([45]) Let F € 7;7(X) and G € 7,7 (Y). Then

FxG= {D e LX | \/ Sxxy(AXB,D) = T}
A€lF,BeG

is a T-filter on X X Y, which is called the product of IF and G.

Definition 2.8. ([14]) Let ¢ : X — Y be a mapping, F € ¥,"(X) and G € F,'(Y).
(1) The set {¢p~(A) € LY|A € T} is a T-filter base on Y and its generated T-filter is denoted by ¢~ (IF).
That is

o= (F) = {B eL’ | \/ Sv(p~(4),B) = T}.

AcF

Then ¢~ (IF) is called the image of IF under ¢. Obviously, B € ¢~ () iff ¢~ (B) € F.
(2) The set {p—(B) € L* | B € G} is a T-filter base on X when Vyepx) B(y) = T holds forall B € G. If

9=(C) = {A e1X] \/ Sx(¢™(B), 4) = T}

BeG

is a T-filter on X, then ¢=(G) is called the inverse image of G under .

Proposition 2.9. ([45]) Let ¢ : X — Y be a mapping and F,G € F,"(X), H € F,7(Y). Then
1) = (FNG) = = (F) N~ (G);
(2) p=(p~(F)) C F, if ¢ is injective, then = (¢~ (IF)) = F;
(3) H € ¢~ (p=(H)) when ¢=(H) exists, if ¢ is surjective, then H = ¢~ (= (IH)).

Proposition 2.10. ([45],[48]) Let ¢ : X — Uandp : Y — V be mappings, prx : XXY — X, pry : XXY — Y
be projection mappings and F € F,"(X), G € ;" (Y), K € F,/(X X Y). Then

(1) 9= () x =(G) < (¢ x )= (F x G), if L satisfies (MID), then ¢=(F) x =(G) = (¢ X ) (F x G);

Q) pr(EXG) =F, pr7(FxG) =G;

3) pr3 (K) x priy (K) € K.

For other notions on residuated lattices we refer to Bélohlavek [1]; for other notions on T-filters we refer
to Hohle [19] and Yu and Fang [45]; for category theory we refer to Preuss [40].

3. T-filter spaces

In this section, we will introduce the concept of T-filter spaces and present its product space, subspace
and quotient space from the aspect of the resulting category.

Definition 3.1. A nonempty subset y of 7" (X) is called a T-filter structure on X provided that
(TF) Vx e X, [x] € y;
(TF2)VF,G e F,"(X),Fe yand FC Gimply G € y.
For a T-filter structure y on X, the pair (X, y) is called a T-filter space.
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A mapping ¢ : (X,vx) — (Y, yy) between T-filter spaces is called Cauchy continuous provided that
IF € yx implies ¢~ (IF) € yy for all F € 7,7 (X).

It is easy to check that all T-filter spaces and Cauchy continuous mappings form a category, denoted by
T-Fil.

Theorem 3.2. T-Fil is a topological category over Set.

Proof. Given a source {(p]- X — (X, yxf)} | in T-Fil, define yx € ;" (X) by

j€
yx = [FeFT(X)1Vj € o7 (F) € yx,).

Itis straightforward to verify that yx is the initial structure with respect to the source {¢; : X — (X, )/X/.)} jeJ-
Further, it is easy to show the fiber-smallness and terminal separator property. [

By choosing special sources in T-Fil, the product space and the subspace of T-filter spaces in T-Fil can
be defined in a natural way.

Definition 3.3. Let{(Xy,yx,)}1ea be a family of T-filter spaces and {pr, : HueA X, — Xi}rea be the family of
the projection mappings. Then the initial structure with respect to the source {pry : [1,,ep X — (Xi, ¥2)hiea
is called the product T-filter structure, denoted by [];cs ¥x,- The pair (H/\E A XA I aea VX,\) is called the
product space of {(X3, vx,)}1ea. Explicitly,

[Trx = {]I—I e ﬁ( I1 XA) VA e A pry () € yxl\}.

AeA AeA

Definition 3.4. Let (X,y) be a T-filter space, Y C X and iy : Y — X be the inclusion mapping. Then the
initial structure with respect to the source iy : Y — (X, y) is called the sub-T-filter structure, denoted by
Yly. The pair (Y, yly) is called the subspace of (X, y). Explicitly,

Yy = {F e (N]iy (F) € yx).

Since T-Fil is a topological category over Set, there exists a final structure with respect to any sink
{pj: (Xj,7x;) — X}jej. Now let us explore the concrete form of the final structure.

Proposition 3.5. Let {(X;, yx,)ljej be a family of T-filter spaces and {¢; : X; —> Xljej be a family of mappings.
Then yx C F," (X) defined by

yx = {]I—I € 7, (X)|3j € J and AF; € yx, such that (p?(]Fj) C ]I—I} U {[x] eF X)|xe X}

is the final structure with respect to the sink {(p]- (X, rx) — X}jE]. In addition, if the sink {@; : (Xj, yx;) — X}je
is surjective (i.e., X = U¢; @;(X})), then it holds that

yx = {]I—I € 7, (X)|3j € J and AF; € yx, such that (p?(]Fj) c ]H}

Proof. First, we show that yx satisfies (TF1) and (TF2). (TF1) is straightforward.

(TF2) Let F € yx and F € G. If F = [x] for some x € X, then [x] = G since [x] is maximal. This implies
that G € yx. If F # [x] for all x € X, then there exists some j € | and some FF; € yx; such that (p?(IFj) cF.
This implies that (p].:)(]F]-) C G. By the definition of yx, we obtain G € yx.

Next, it suffices to verify that yx is the final structure on X such that for each (Y, yy) in T-Fil and for
each mapping ¢ : X — Y, the mapping ¢ : (X,yx) — (Y, yy) is Cauchy continuous if and only if the
mapping ¢ o ¢; : (Xj,vx;) — (Y, 7y) is Cauchy continuous for each j € J. The necessity is obvious. For the
sufficiency, take any F € yx. If IF = [x] for some x € X, then ¢~ (IF) = [p(x)] € yy. If F # [x] for any x € X,
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then there exists some j € ] and some F; € yx; such that (p?(]Fj) C FF. By the Cauchy continuity of ¢ o ¢,
we have ¢~ o (p?(]F]») € yy. Since ¢~ o (pj:’(IFj) C = (F), we get 9~ (F) € yy.

If the sink {@; : (Xj, yx,) — Xl}j¢j is surjective, ie., X = U]-E] ¢;(X;), then there exists some j € ] and some
xj € Xj such that ;(x;) = x for any x € X. Thus, there exists j € ] and [x;] € yx; such that (p?([xj]) = [x].
Then it follows that

{1 e FT(X)1x € X} € {H € 77 (X)|3j € ] and TF; € yx, such that 7 (F)) C HJ.
This implies that
yx = {]I—I € F,'(X)|3j € J and IF; € yy; such that (p?(]Fj) c ]I—I}
0
As a special final structure in T-Fil, a quotient structure of a T-filter space is defined as follows.

Definition 3.6. Let (X, yx) be T-filter space, Y be a nonempty set and ¢ : X — Y be a surjective mapping.
The final structure on Y with respect to the sink ¢ : (X, yx) — Y is called a quotient structure on Y, denoted
by yy. Explicitly,

yy = {G € ;' (Y)|IF € yx such that ¢~ (F) C G}.

The pair (Y, yy) called a quotient space of (X, yx). In this sense, ¢ is called a quotient mapping.

4. Convenient properties of T-Fil

Preuss [40] proposed some convenient properties for a topological category ¢, namely
(CP1) % is Cartesian closed.
(CP2) ¥ is extensional.
(CP3) The product of quotient mappings in ¥ is a quotient mapping.

According to the terminology of [40], a topological category % is called
(1) strongly Cartesian closed provided that ¥ fulfills (CP1) and (CP3);
(2) a topological universe provided that ¢ fulfills (CP1) and (CP2);
(3) a strong topological universe provided that ¢ fulfills (CP1)-(CP3).

In this section, we will show that T-Fil is a strong topological universe.

4.1. Cartesian-closedness of T-Fil

Recall that a category ¢ is called Cartesian closed provided that the following conditions are satisfied:

(1) For each pair (Y, Z) of ¢-objects, there exists a product Y X Z in ¥

(2) For each pair (Y, Z) of €-objects, there exists a ©-object ZY (called power object) and a ¢-morphism
ev : Z¥ X Y —> Z (called evaluation morphism) such that for each %-object X and each %-morphism
@ : X XY —> Z, there exists a unique %-morphism ¢* : X — ZY such that ev o (¢* X idy) = ¢.

Since T-Fil is a topological category, it remains to show that T-Fil satisfies (2). For each T-filter space,
we denote the set of Cauchy continuous mappings from (X, yx) to (Y, yy) by [X, Y], i.e,,

[X, Y] ={p: (X yx) — (Y, y) | @ is Cauchy continuous}.
Define T, € LY by T,(¢p) = T when ¢ = @ and T, (¢) = L otherwise.
Proposition 4.1. Let (X, yx) and (Y, yy) be T-filter spaces. Define yix,y) € F," ([X, Y]) by
Yixwr = {H € 77 (X, YD | VIF € F,(X), F € yx implies ev™(H x F) € yy|.

Then yix y) is a T-filter structure on [X, Y].
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Proof. It suffices to verify that y[x v satisfies (TF1) and (TF2). (TF2) is straightforward.
(TF1) Take any ¢ € [X,Y] and F € yx. Then ¢~ () € yy. For each B € ¢~ (F), ¢ € [X,Y] and x € X, it
follows that

(Tp X @™ (B))(¢, %) = Top(P) A 9~ (B)(x) < B((x)) = ev™ (B)(¢, %),

which means that T, X ¢~ (B) < ev"(B). Since T, X 9 (B) € [¢] X F, we know ev"(B) € [¢] X F, ie.,
B € ev™([@] X FF). By the arbitrariness of B, we obtain ¢~ (F) C ev=([¢] X FF). Then it follows from (TF2) that
ev=([¢] X F) € yy. This shows [¢] € yixy]. O

Proposition 4.2. Let (X, yx) and (Y, yy) be T-filter spaces. Then the evaluation mapping ev : ([X, Y], yxy]) X
(X, yx) — (Y, yy) is Cauchy continuous.

Proof. Take any K € y[xy] X yx. Then it follows from Definition 3.3 that Prx v(K) € yix,y) and pry (K) € yx.
By Proposition 4.1, we have F € yx implies ev:'(pray](][() x F) € yy for all F € #,7(X). Then we get
eZJ:)(pr[?( Y](]K) x pry (K)) € yy. By Proposition 2.10, it follows that pr, ](]K) x pry (K) € K. Thus, we obtain

[X,Y
ev”(K)eyy. O

Let ¢ : X1 X X, — X3 be a mapping. For each x; € Xj, define a mapping ¢,, : Xo — X3 by
@y, (x2) = @(x1, x2) for all x; € Xo.

Proposition 4.3. Let (X1, 7x,), (X2, vx,) and (X3, yx,) be T-filter spaces. If ¢ : (X1, yx,) X (X2, vx,) — (X3, Vx,)
is Cauchy continuous, then @y, : (X2, vx,) — (X3, Vx,) is Cauchy continuous for all x; € X;.

Proof. It suffices to show that IF € yx, implies ¢’ (F) € yx,. By the Cauchy continuity of ¢, we know
@ ([x1]1 X F) € yx, since [x1] XF € yx, X yx,. Takeany C € ¢~ ([x1] XF), i.e., 9 (C) € [x1] XF. Then it follows
that

Sx (@~ (AxB),O) = \/ Sxpn(AxBe=(C)=T.

A€[x1],BEF A€[x1],BEF

For each x5 € X3, A € [x1] and B € F, we have

pn®B) = \/ Bx)= \/ A@)ABm)< \/ AW)ABE) =@ (AXB)).

Px, (x2)=x3 @(x1,x2)=x3 Q(u,0)=x3

This implies that ¢;”(B) < ¢~ (A X B). Then it follows that

T=\/ Sx@ (AxB)C)

A€[x1],BeF

<\ Sx@g®),0)

A€[x1],BEF

= \/ Sx (@5 (B),C),

BeFF

which implies that C € ¢’ (IF). By the arbitrariness of C, we have ¢~ ([x1] X IF) C ¢’ (FF). Then it follows
from (TF2) that ¢ (F) € yx,. O

By Proposition 4.3, we can define a mapping ¢* : X1 — [Xp, X3] by ¢*(x1) = ¢y, for all x; € Xj.
Proposition 4.4. Suppose that L satisfies (MID). Let (Xi,yx,), (X2,vx,) and (X3,yx,) be T-filter spaces. If

@ (X1, yx) X (X2,vx,) — (X3,¥x,) is Cauchy continuous, then ¢* : (X1,yx,) — ([X2, X3], V[x,,x51) 15 Cauchy
continuous.
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Proof. Take any F € yx,. For each G € yx,, we have ¢~ (F X G) € yx,. Since

ev o (" X idx,)(x1, x2) = ev(@x,, X2) = Qx, (X2) = @(x1, x2),
we get (ev o (¢* X idx,))” (F X G) = = (F x G). By Proposition 2.10, it follows that

ev™ (")~ (F) X G) = ev™ ((p* x idx,)~ (F X G))
= (ev o (" X idx,))” (F X G)
=@~ (FXG) € yx,.

By the definition of y(x, x,;, we get (¢*)7(F) € yix,x,;. O
Theorem 4.5. Suppose that L satisfies (MID). Then the category T-Fil is Cartesian closed.

Proof. Let (X1,yx,) and (X3, yx,) be T-filter spaces. By Propositions 4.1 and 4.2, there exists a T-filter
space ([X1, Xz2], ¥1x,,x,1) and a Cauchy continuous evaluation mapping ev : ([X1, Xz], Yix,.x.1) X (X1, vx,) —
(X2,7x,). Further, for each T-filter space (X3, )x,) and Cauchy continuous mapping ¢ : (X3 X X1, yx, X
¥x,) — (X2, ¥x,), by Proposition 4.4, there exists a unique Cauchy continuous mapping ¢* : (X3, yx,) —
([X1, X2], y1x,,x,1) satisfying ev o (¢* X idx,) = ¢, i.e., the triangle

([,J*Xidxl
X3 XXy ——— [Xl,XZ] X X1

ev
¢

Xa
commutes. This shows the Cartesian-closedness of T-Fil. [

4.2. Extensionality of T-Fil

For convenience, suppose that X is a nonempty set and cox ¢ X. Put X* = X U {oox} and ix : X — X"
be the embedding mapping. Define T, : X* — L by Teoy(x*) = T whenever x* = ooy, and T, (x") = L
otherwise.

Recall that in a topological category ¥, a partial morphism from X to Y is a ¥-morphism ¢ : Z — Y
whose domain is a subobject of X. A topological category ¢ is called extensional provided that every
¢-object Y has a one-point extension Y*, in the sense that every ¢-object Y can be embedded via the addition
of a single point coy into a ¢-object Y* such that for every partial morphism ¢ : Z — Y, the mapping
@* : X — Y* defined by ¢*(x) = ¢(x) whenever x € Z, and ¢*(x) = coy whenever x ¢ Z, is a ¥-morphsim

and the following diagram
V4 Y
iz\l/ \|/iy
X

— Y
Proposition 4.6. ([15]) Let IF € 7, (X) and F* = iy (IF) N [oox]. Then i (F*) = IF.

.

P
commutes.

Proposition 4.7. Let (X, yx) be a T-filter space. Define yx- € F,"(X") by
yx- = {F € 7, (X) i (F) exists and i (F) € yx} U {F € 77 (X") |i§ (FF) does not exist}

Then (X*, yx-) is a T-filter space.
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Proof. It suffices to verify that yx- satisfies (TF1) and (TF2).

(TF1) For each x € X", if x € X, then i{ ([x]) exists and i{ ([x]) = [x] € yx. If x = ooy, then i ([cox]) does
not exist, i.e., [cox] € yx-. This implies that [x] € yx- for all x € X*.

(TF2) Let F € yx- and IF C G. If i (G) does not exist, then G € yx-. If i5 (G) exists, then i§ () exists. This
implies that i (IF) € yx. Since i (IF) C i (G), we obtain i (G) € yx. Hence G € yx-. O

Theorem 4.8. T-Fil is extensional.

Proof. Let (X, yx) be a T-filter space. By Proposition 4.7, we obtain a T-filter structure yx- on X*. First, we
show that (X, yx) is a subspace of (X, yx-), i.e., yx-|x = Yx, where yx:|x = {]F € 7—"LT(X) |i5 (F) € VX*i' For each
IF € yx:Ix, we obtain i{ (F) € yx-. Take any A € i’ (F). Then it follows from iy (A) € FF that

T=\/ig@ = \/ Alix@) = \/ A@.

xeX xeX xeX

Then i§; (i (F)) exists. This implies i§; (i (IF)) € yx. Since IF = i (i (IF)), we obtain IF € yx. Thus yx:|x C yx.
Conversely, for each F € yx, i (i (F)) exists and iy (i7 (IF)) = F imply i3 (F) € yx-. Hence F € yx:|x. This
shows yx C yx-Ix.

Next, we show that (X", yx) is the one-point extension of (X, yx). Let (Y, yy) be a T-filter space, (Z,yz)
be a subspace of (Y, yy) and ¢ : (Z,y7) — (X, yx) be a Cauchy continuous mapping. Define ¢*: Y — X*
by ¢*(y) = ¢(y) whenever y € Z, and ¢*(y) = cox otherwise. There is a commutative diagram as follows:

(Z,vz2) —r s ¥x)

Yyy) ——— Xyx)

In order to show the Cauchy continuity of ¢* : (Y, yy) — (X*, yx-), it suffices to verify that G € yy implies
(¢")7(G) € yx- forall G € F,"(Y).

Case 1: i5; (G) does not exist. Then there exists B € G such that \/,.; B(z)<T. Let a = /.7 B(z). Define
ax-: X* — Lbyax-(x) =aforall x € X*. Let p = ax: V Tey. Then

o ey | YEZ
(@)~ BN = B’ V) = {T, vez
This means B < (¢*)(B). Thus, we get (")~ (B) € G, i.e., B € (¢*)7(G). Since

\/ @ =\/p = \/(ax v T )@) = a<T,

xeiy (X) xeX xeX

we know i§ ((¢*)7(G)) does not exist. By the definition of yx-, it follows that (¢*)7(G) € yx-.

Case 2: i, (G) exists. Since G C 7 (i5 (G)), G € yy and (Z, yz) is a subspace of (Y, yy), we know i5 (G) € yz.
By the Cauchy continuity of ¢, we obtain ¢~ (i5(G)) € yx. Let H=¢7 (i5 (G)). By Proposition 4.6, we get
iy (H?) = H, where H" = i (¢7(i5 (G))) N [cox]. Then it follows from the definition of yx- that H* € yx-.
Next, we will prove H* C (¢*)7(G) by the following two steps.

Step 1: (¢*)~(G) has the T-filter base B; = {(¢*)~(B) | B € G}. By Proposition 2.6, H" has the T-filter base

B, = {i3; (9 (i5 (B)) V Ty | B € GJ. Since

ix (p~ (i B)(") = \/ ¢~ (iz (B)(x) =

1 X" =o00
ix(x)=x" ! X

{\/(p(z):x*,zEZ B(Z), X' € X/
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and

@) BE) = \/ By)=

P (y)=x*

it follows that i’ (¢~ (i5 (B))) = (¢*)”(B) A Tx. This implies that B = {((¢*)”(B) A Tx) V Ty |B € G}.
Step 2: Let A € H". Then

\/(p(z)zx*,zez B(Z), xeX,
Vzeyjz B(2), X' = ooy,

T= v Sx-(C, A)

CeB,

= \/ Sx((@) " B) A Tx) V Teoy, A)

BeG

< \/ Sx((9)°(B),4)

BeG
= \/ Sx-(D, A).
DeB,

Hence A € (¢*)7(G).
By Step 1 and Step 2, we obtain H* € (¢*)7(G). Then it follows from (TF2) that (¢*)~(G) € yx-. Thus,
¢ : (Y, vy) — (X', yx-) is Cauchy continuous. [

4.3. Productivity of quotient mappings in T-Fil

In this subsection, we will define the product of an arbitrary family of T-filters, which can include the
product of two T-filters as a special case. To this end, we first give the following propositions.

Proposition 4.9. Let {F} en € 7"LT(X). Then the following statements are equivalent.
(1) There exists H € F,"(X) such that Fy € H forall A € A.
(2) Foreachn € N, {Ai}'L; C A, Vyex AL Ai(x) = T where A; € By, foralli=1,--- ,n

Proof. (1) = (2) It is straightforward.
(2) = (1) Let

{A e L¥| \/ \/ \/ SX(/\Ai,A) = T}.
nelN { /\I” CAVi= n,A,EIFAi i=1

Then we will show H satisfies (IF1)—(IF3).
(F1) If \/ gegg Sx(B,A) = T, then

r=V[smas\ NV s(Aa)<V VY s(Aaa)
BeH neN (A}, CA Vi=1, n,A;€F,, i=1 neN {A}L, CA Yi=1,- n,A€F,, i=1

This shows A € H.
(IF2) Take any C, D € IH. Then

n

=V VOV s(Aag Y Y Y s(As)

meN (A} CA Vi=1, m,A;€F), i=1 neN {u; }] 1SA V=1, n,B]-e]FM j=1

n
VAV VY Vs Aan Asican)
meN {A ym CAne]N {y L CA Vi= mAe]F\ Vij=1,- n,B/e]F“/. i=1 j=1

m+n

<\ V \/ Sx(q/_\lEq,C/\D)

m+neN l,B,,l;l":*l"gA Vq=1,- ,mm+1,-- ,m+n,E,,e]F5q



Y. Gao, B. Pang / Filomat 38:27 (2024), 9567-9591 9577

where {f, ;”*” ={A, -, A, i1, , tin). Hence CAD € H.
(IF3) Take any A € H. Then

=V OV s(Asa) (Y Aaw)

neN [}, CA Vi=1, n,A;€F, xeX i=1
i=1 i

n

VYV V \/ Sx( AZ,A /\A(x) \/ A,

xeX nelN {A; ]” CAVi=1, ,n,A; €Fy, i= xeX

This implies that \/,.x A(x) = TforallAc H. O

Proposition 4.9 implies that the supremum of an arbitrary family of T-filters exists when it satisfies (2).
As a corollary of Proposition 4.9, we present the concrete form of the supremum when it exists.

Corollary 4.10. Let {Falaea € F,"(X). If for each n € N, {Ai)L, € A, Vyex Al Ai(x) = T where A; € Ty, for
eachi=1,--- ,n, then

VEsfacriy VoY sx(éAi,A)zT}.

AeA { neN (A}, CA Vi1, n,A€F),

In particular, for IFy, IF, € TLT (X), by Proposition 4.9, we know that IF; VIF, exists when V/ ,x A(x) AB(x) =
T for all A € [F; and B € [F,. Then

F VIF, = {CGLX| \/ Sx(AAB,C) = T}.
AelF;,BelF,

This is coincident with that in [18].

Proposition 4.11. Let {X;}1en be a family of nonempty sets and {Fp} en be a family of T-filters, where for each
A€ N FyreF (X)) Foreach A € A, pry : [1,ep Xu — X is the projection mapping. Then \/ e pri (Fy) exists.

Proof. For convenience, let X = [],ca Xy By Proposition 4.9, it is enough to show that for each n € N,

AV, C Aand A; € pr&(Fy) foralli =1, ,1, V,ex Al Ai(x) = T holds. By Definition 2.8, we know
i=1 pry, Ura; xex N\i=1 y

VB,eF, Sx(py (Bi), Aj) = T foreachi =1,--- ,n. This implies

\/ Sx(p5, (B, A x---x \/ Sxlps (B, A)x--x \/ Sx(py,(Bu) A) =T

Ble]F,\1 BZEIF,\i BnEIF,\n

Foreachi=1,---,n,take B; € [F).. Then

V( Am B))w=\/ /\B(Pm(x

xeX i=1 x=(xy)eX i=1

=/ Bi@) A ABux,)

Yi=1, ,TL,X).i EXA{

> Bi(xa,) -+ % Bu(xa,)
Yi=1, ,H,X}liEX,\i

= \/ Biwi)sx \/ Buxa)
x), €X0y X1, €X0,

=T.
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Further, it follows that

T=\/ Sx5B), AN+ \/ Sxps(B),A)+---x \/ Sx(py(Bn),Ar)

Ble]F,\1 B,-eIFAI B,€F,,
=/ Sk (Br), A s+ Sxlpry (B), A+ -+ » Sx(p (Bu), Av)
Vi=1, 1,B;eF,,
< \/ S (/\ pl";\_(B,'), A,)
Vi:l,-“,n,B,'E]FA i=1 i=
n n
= \/ ( /\pr/\ (B)) /\Al * \/ PV/\ < (B ))(x))
Vi:l,--»,n,BielF,\ i= xeX
= v( VoS A pri B, \ A)+( N\ pri (B >)<x>)
xeX i=1,~~,n,Bi€IF,\I i=1 i=1 i=1

< \/ /\Ai(x)
xeX i=1
as desired. O

By Propositions 4.9 and 4.11, the product [ ] e Fi of a family of T-filters {IFy} ca can be defined via the
supremum of {pr{ (IFa)}iea-

Definition 4.12. Let {X,} ca be a family of nonempty sets and {Fp} ea be a family of T-filters with [F, €
F, (X)) for each A € A. Then

[TE:=\/prcen = {AELX|\/ V V SX(QA“A):T}

AeA AeA neN (A}, CA Vi=1, n,Aieprt (Fy,)
is called the product of {IF;},en.

Proposition 4.13. Let {Xa}aea e a family of nonempty sets, pra : [1yen Xy —> Xa be the projection mapping,
Fyr € F," (X)) for each A € Aand F € F," ([ 1)ep X2). Then the following statements hold:

(1) Fx € pr? (Il ea Fy) forall A € A;

() [Treapry (F) € F.

Proof. (1) For each A € A, it follows that
Fy Cpriy (pri(Fy)) pr?( \/ pr:f(]FH)) = pr?( H ]Fy)'
SN UeA
(2) Take any B € [] e pry’ (F). Then

n

VOV OV s(haeT

neN AL, CA Vi=1, ,n,Aieprf\:i(prz(]F)) i=1

Since pr{(pr7(F)) C Fforall A € A, we get

n

T:\/ \/ \/ SX(/H\A,-,B)S\/ \/ SX( Ai,B)<\/SX(A/B),

nelN {A,-}‘T’:lgA Vi=1,- ,n,A;€F i=1 neN AL, A;eF i=1 A€eF

which implies that B € IF. By the arbitrariness of B, we obtain [] ¢, pry (IF) C IF, as desired. [J
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Proposition 4.14. Let {IFa} e, be a family of T-filters with IFy € F,7(X,). Then

H F, = {A c LH,’\ X/\ \/ \/ \/ S]‘I/\E\X).( Z}PT;(BA,)rA) = T}'

AeA neN ()7, CA Vi=1,- 1B, €F,,
Proof. By Definition 4.12, we have [] e Fr = V yep pri (F2). Then
n
Ace H]FA — A€ \/prA (F,) = \/ \/ \/ Sl‘[AEAX,\(/\AAﬂA) =T.
AeA AeA neN (A}, CAVi=1, m, Ay, epr (Ey) i=1

Since

\/ \/ \/ SH,‘EAXA(/H\AA,‘,A

/\,}l" LCEA Vi= n,A,\iEpr/‘;‘i(]FAi) =1
n

= \/ \/ SH,\eA XA( /\ Ap A
neN (AL CA Vi=1,"',n,AA,€PVTi(]FA,-) i=1

( \/ SHAeA Xa (pr)Tl (B/\l ) A/\l) oo \/ SH,\eA X (PT’Z (BA,,)/ A/\,,))

BAl E]F/\l B,\”E]F)\n

= \/ \/ \/ \/ SH,\EAXA(/\AA,,A *
=1

neN {A;)IL CA Vi= ,n,AAiEprT(IF,\‘)Vi:L---,n,B,\ie]F,\l,
1

SH,\eAXA(pr;(B/\l)/A/\l) PR SHMX‘(P”;\_(BA ) A/\ )

\/ \/ \/ \/ SHAEAX/\ /\A/\/ SH\E\X/\ /\P”/\ (B/\) /\A}\

neN (A}, CA Vi= ,n,AA,.EprT(IF,\‘)Vi:1,---,n,B,\ie]F\
1

\/ \/ \/ SH/\eA X/\( /\ pr; (BAi)I A)
i=1

nelN l/\ CA Vi= ,n,B/\I. EIF,\I

<V V \ St /\ Py B1), A)

nENH{ANL, CA Vi=1, n,pri-(By,)epri (Fy,) i=1
1 1
n
<V VoV snax(Adna
neN {A L CA Vi=1, ~,n,A,\iEpr;(IF,\i) i=1
i

it follows that

n

\/ \/ \/ SH/\EAXA(/\pr(/\_i(BAi)/A) = \/ \/ \/ SH/‘EAXA(/n\AAi,A

nEN {AYL, CA Vi=1, 1,B;, €Fy, i=1 neN (A}, CA Vi1, n,Ay epri (Fy,) i=1
- 1
Hence we obtain

AEH]FA<=> \YARV \/ SHAGAXA(/H\A,\,.,A):T

AeA HEN (AL, CA Vi1, Ay, €pre (Fy,) i=1
1

— \/ \/ \/ SHAeAX/‘(Z}pr;\_i(BA")’A) =

nelN [/\,v]{’:lgA Vi=1,- 1,By,€Fy,
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Corollary 4.15. Let IFy € F,"(Xq) and IF, € 7, (X3). Then

Fi X, = {A € LXlXXZ | \/ SX1><X2(B1 X BZIA) = T}
B1€lFy,Br€lF,

Note that the product of two T-filters in Corollary 4.15 coincides with that in [45] and it is obvious that
[B1 X By € LX"*X2|B; € TFy,B, € T} is a T-filter base of F; X F,. This demonstrates that the product of
an arbitrary family of T-filters defined herein can be considered a reasonable generalization of product of
filters.

Lemma 4.16. Suppose that L satisfies (MID). Let {p) : Xa — Yaliea be a family of surjective mappings and
{IFi}aca be a family of T-filters with Fy € F,"(X,). Then

NEIRRIEES

AeA AEA AeA

Proof. Let

[Tiea @2
[Trea Xa e [Trea Ya

P”AJ/ \[‘W

\
X/\ on 7 YA

be the product commutation diagram. First, we verify

([T (=)< [oress

AEA AEA AEA

by the following three steps:

Step 1: Take any A € (JTyea 1)” (ITrea Fr). Then (T en 1) (A) € [11ea Fa. By Proposition 4.14, we
have

=\ V V Snmxﬂ( Z}P@(BA[)/(H(PA)(_(A))

nelN {Ail;’zlgA Vi=1,- 1By €F, AEA

VOV s [TEd([Te) @)

nelN {/\1];1:1QA Vi=1, ,B) €, AEA AEA

(where By = Tx, when A € {Aq,---, A,}).

Foreachn € N, {A)}!., C A, let By, € Fy, foralli=1,--- ,nand let By = Tx, when A ¢ {A1,---, A,}. Then let
Ey = ¢ 7(B)) for any A € A. Since @, is a surjective mapping, we obtain Ey = Ty, when A & {A,---, A,}.

Since By, € IF), and By, < @3 (¢’ (By)) foralli =1,---,n, we have ¢ (p;’(B))) € Fy,, i.e, ¢ (Ey) € Fy,.
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Step 2: For each y € [] s Yo, we get

([TE)® = ([Tex B)w) = )\ o3 B

AeA AeA AeA

:/\ \/ Ba(xa)

AEA pa(xa)=Yya

:/”\ \/ Ba,(xa)

i=1 @, (xa;)=ya;
=/ Bu@wA \ Bu A\ Byt
P, (2,)=y2, P2, (¥2,)=Y2, Pan(Xan) =Y

= \/ \/ ABM(M) (by MID)

P (2)=yay Pan(a,)=va, =1

= \/ /\ B(xa)

V/\EA,({),\ (X}L)=}/A AeA

=V ([I3w

(IThea p)(X)=y AeA

= ([Tes) (I

AeA AeA

By the arbitrariness of y, we obtain [] e, Ex = ( ITaca (p;\)_)( ITaca BA).

Step 3: Since

TV s T[T @)

neN (A}, CA Vi=1, n,By,€Fy, AeA AeA

=\ 'V V SHAE\Y,\((H%)H(HBA),A)

neN (A}, CA Vi=1, 1By, €F), AeA AeA

< \/ \/ \/ Shen Y,«( H EA,A) (by Step 1 and Step 2)

neN (AL, CA Vizl, - ngi (Ex)EFy, AeA

VOV sn([[e

neN (AL, CA Vizl, - n Ey €3 (Fy,) AeA

- \/ \/ \/ SH/\EA YA( /\ EIVI (E)\,-)/ A)/

neN (AL CA Vi1, ,n,E; €7 (Fy.) i=1
i=1 i~V T

it follows from Proposition4.14 that A € [] 5 ¢ (IF2). By thearbitrariness of A, wehave ([Tyen ¢2)7 (I1en Fa) €
[Thea @3 (F2).
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Conversely, by Proposition 4.13, we have

[Ter®o<[[or(erz([]F)

S
- [T T[o (I
- [Toe(([T (L] )
=([Te)"(IT%)

where the second equality holds since ¢, o pra = qry o [ e @y This proves that

([Tes) (TT%) = [T orEn.

AEA AEA AeA

O

Theorem 4.17. Suppose that L satisfies (MID). Let {¢p) : (X,,yx,) — (YA, Yv)}hiea be a family of quotient
mappings in T-Fil. Then the product mapping

[Tow: (0 T = (I T

PESAN AEA AEA AEA AEA
is a quotient mapping.

Proof. Define

X, yx) = ( H Xa, H VXA) and (Y, yy) = ( H Yy, H VY,\)-

AEA AeA AeA AEA

By Proposition 3.3, we have
yy={He FT(Y)|VA € A,qry (H) € yx, }.
By Definition 3.6, we know
=
Y, = {11( e F (V)| 3G € yx, s.t.,(H ¢1) G)c ]K}.
AEA

In order to show that [],cs @2 is a quotient mapping, it suffices to verify that yy = /. For each K € )%,
there exists G € yx such that (][ 5 91)7(G) € K. By the definition of yx, we know pr’(G) € yx, for all
A € A. Since ¢, is a quotient mapping, it follows that

qr?(( I1 qu)) © = (gm0 []01) ©) = (@1 0pr)=(©) = T (r7(G)) € ..
AeA AeA

By gr3 o ( [Tica @ /\):)(G) C gr7 (K), we have g7 (K) € yy, foreach A € A, which implies K € yy. This shows
Yy S Vv



Y. Gao, B. Pang / Filomat 38:27 (2024), 9567-9591 9583

Conversely, let H € yy. By the definition of yy, we have gr7”(H) € yy, for each A € A. Then for each
A € A, there exists Iy € yx, such that 7’ (IFy) € 77 (IH) since ¢, is a quotient mapping. Let

Fi = {F1 € 7, (X2) | Fy € yx, and 7 (F2) € qr7 (H))

for each A € A and let
Hﬁ={f;A—>Hﬁ|VAeA,f(A)eﬁ}
AeA AeA

be the set of choice functions, i.e.,

YA e A, AF, € yx,,st, 97 (Fy) C gy (H) & 3f € H Fa,s.t, YA € A, o2 (F(N) € gr (H).
AEA

Then there exists f € [ e Fa such that 97 (f(4)) € gr7(H) for each A € A. It follows from Proposition 2.9
that gr{7 o7 (f(A)) € Hforeach A € A. Thisimplies that \/ e, g7 097 (f(A)) € H, ie, [11ep 97 (f(A) € H.

By Lemma4.16, we obtain there exists [ ] 15 f(A) € yx such that( ITica qu):)( ITiea f(/\)) = [Taea 97 (f(A)) S
H. Then it follows from the definition of )/ that H € y{. By the arbitrariness of H, we obtain that

yy<Cyy,. O
By Theorems 4.5, 4.8 and 4.17, we obtain the following theorem.

Theorem 4.18. Suppose that L satisfies (MID). Then T-Fil is a strong topological universe.

5. Subcategories of T-Fil

In this section, we will propose T-semi-Cauchy structures, T-Cauchy structures and complete T-filter
structures, which can be considered as generalizations of semi-Cauchy structures, Cauchy structures and
complete filter structures respectively. Then we will establish their categorical relationships with T-filter
structures as well as their categorical properties.

5.1. T-SChy

Definition 5.1. A T-filter structure y on X is called T-semi-Cauchy provided that
n
(TSChy) If there exist [Fy,--- ,IF, € y such that m F;xF;, CFxF, thenF € y.
i=1
For a T-semi-Cauchy structure y on X, the pair (X, y) is called a T-semi-Cauchy space.

The category of T-semi-Cauchy spaces, as a full subcategory of T-Fil, is denoted by T-SChy. For
convenience, we use [ : T-SChy — T-Fil to denote the inclusion functor.

Proposition 5.2. Let (X,y) be a T-filter space. Define y° C F,"(X) by

n
y® = {]F eﬁT(X)|3]F1,~~ JF, €y,s.t, ﬂ]Fix]Pi g]Fx]F}.
i=1

Then (X,y°) is a T-semi-Cauchy space.
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Proof. (TF1) and (TF2) are obvious. It remains to verify (TSChy). Suppose that Gi,---,G, € y° and
Ge 7—“LT(X) such that NL; G; X G; € G x G. For each G, by the definition of y°, there exist Fj, - - - , Fjy, such
that ﬂ;"z’l Fi; xF;; € G; X G;. This implies that there exist F1,- -+, Fipy, -+, Fir, -+, Fip, -+, Fur, -+, By,
such that

M-+, n
FyxFy €[ GixG CGxXG.
q=1 i=1

This shows G € y°, as desired. [

Proposition 5.3. Suppose that L satisfies MID). If ¢ : (X, yx) — (Y, yv) is a Cauchy continuous mapping between
Tfilter spaces, then ¢ : (X, y5) — (Y, 7)) is a Cauchy continuous mapping between T-semi-Cauchy spaces.

Proof. Take any IF € y5. Then there exist IFy, - - -, IF,, € yx such that iz, FixF; C FXTF. Since ¢ : (X, yx) —
(Y, 7y) is Cauchy continuous, there exist ¢~ (IFy), -, ¢~ (F,) € yy such that
ﬂ ¢~ (F;) x ¢~ () = ﬂ(@ X @)~ (F; X Fy)
i=1 i=1
= (@xe)([ |FixF)
i=1
C (px @)~ (FxIF)
=~ (F) x ¢~ (),

where that the first and the last equalities follow from Proposition 2.10. By Proposition 5.2, we obtain
@~ (F) € y§. This shows ¢ : (X, %) — (Y,7}) is a Cauchy continuous mapping. [

By Propositions 5.2 and 5.3, we get a functor.

T-Fil — T-SChy
F:¢ Xy — (X))
p — 9

Proposition 5.4. Suppose that L satisfies (MID). Then F is a left adjoint to 1.

Proof. Ttis easy to verify that F oI = idr-schy and I o F(X,y) = (X,)°) 2 (X, y) for each T-semi-Cauchy space
(X,y). Thus, Fis a left adjointto I. [J

By Proposition 5.4 and Theorem 2.2.12 in [40], we get
Corollary 5.5. Suppose that L satisfies (MID). Then T-SChy is a bireflective subcategory of T-Fil.
Corollary 5.6. Suppose that L satisfies (MID). Then T-SChy is a topological category.
Lemma 5.7 ([25]). If L is distributive, then for each IF, G € F," (X) and H € F,"(Y),
(FNG)xH = (FxH)nN (G xH).

Lemma 5.8. Suppose that L satisfies (MID). Let Hy, Hy, H € F,"(X) and F € 7,7 (Y). If (H; x H;) N (Hx XHy) C
H x H, then

((H X ) x (H; x F)) N ((Hy X F) x (Hy X F)) € (Hx F) x (H x F).
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Proof. Define a mapping @ : (XX X) X (Y XY) — (X X Y) X (X X Y) by

o((x1, %), (11, 92)) = (1, 11), (2, 2)),

Then ¢ is bijective. By Corollary 4.15, we know Bpxn = {A X B| A, B € H} is a T-filter base of H X IH and
Brxp = {C X D|C,D € F} is a T-filter base of IF x [F. This implies that

B; = {¢~((A x B) X (Cx D)| A X B € Bypa1, C X D € By ))

is a T-filter base of ¢~ ((H x IH) x (F X IF)) and
B, ={(AXxC)x(BxD)|A,BeH,C,D € [F}

is a T-filter base of (IH x IH) X (IF x [F). Since ¢ is bijective, it is easy to verify that B; = B,. This implies that
¢~ ((H x H) x (F x F)) = (H x F) x (H x F).

Since (H; x Hp) N (H, X Hy) € H x H, it follows from Lemma 5.7 that
(L x Hy) x (F x ) 0 ((Hy x Hy) x (F x F)) € (H x H) x (F x F).

This implies that
((Hy x ) x (Hy x F)) 0 ((Hz x F) x (Hz x )
= = ((Hy x Hy) x (E X F)) 1 o= ((Hz x Hy) X (F X )
= ¢~ (((Hy x Hy) x (F x F)) 0 ((Ha x Hy) X (F x F)))
C o= ((H x H) x (F x F))
= (Hx F) x (Hx ),
as desired. O

Theorem 5.9. Suppose that L satisfies (MID). Then T-SChy is Cartesian closed.

Proof. By Corollaries 5.5 and 5.6, we only need to verify that T-SChy is closed under the formation of power
objects in T-Fil. Let (X, yx) be a T-filter space and (Y, yy) be a T-semi-Cauchy space. By Proposition 4.1,
the power object in T-Fil has the following form

Yixn = {H € F (X, YD VI € F/ (X), F € yx implies ev™ (H x F) € yy].

It remains to show that yxy; satisfies (TSChy). If there exist Hy,--- ,H, € y[xy] such that Nt H; x H; C
H x H, then it follows from Lemma 5.8 that

ﬂ(]I—Lx]F)x(]Hix]F)Q(]Hx]F)x(]I—Ix]F)
i=1

foreach F € yx. Since H; € y[xy| foranyi =1,-- -, , it follows that ev= (IH; X F) € yy. This shows that there
exist ev™(H; X F),--- ,ev™ (IH, X [F) € yy such that

ﬂ ev=(H; X IF) X ev™ (H; x F) = (ev X ev)f*( ﬂ(lHi x TF) x (H; X F)| € ev™ (H x F) x ev™ (H x F).
i=1 i=1

Since (Y, yy) is a T-semi-Cauchy space, we obtain ev™ (IH X [F) € yy. By the definition of y[xy], we have
Heyxy. O
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5.2. T-Chy
Definition 5.10. ([42]) A T-filter structure y on X is called T-Cauchy provided that

(TChy) FnNGeywhenever F,G € y and F V G exists.
For a T-Cauchy sturcture y on X, the pair (X, y) is called a T-Cauchy space.

The category of T-Cauchy spaces, as a full subcategory of T-Fil, is denoted by T-Chy. For convenience,
we use | : T-Chy — T-Fil to denote the inclusion functor.
Let y(X) = {y | (X, ) is a T-Cauchy space}.

Proposition 5.11. Let (X,y) be a T-filter space. Define y* C F,"(X) by

v = (TS F 017 € y(X) and y < 7).
Then (X, y*) is a T-Cauchy space.
Proof. It is easy and is omitted. [

Proposition 5.12. Let (Y, yy) bea T-Cauchy spaceand ¢ : X — Y beamapping. Then y* = {IF €eF, (X) |9~ (F) € yy}
is a T-Cauchy structure on X.

Proof. 1t is straightforward to verify that * satisfies (TF1) and (TF2).
(TChy) Let F, G € y* such that F vV G exists. Then ¢~ (F) € yy and ¢~ (G) € yy. For each A € ¢~ (F) and
B € 9= (G), it follows that ¢~ (A) € IF and ¢ (B) € G. Since F V G exists, we have

\VAarBw = \/ ArB)y) = \/(ArB)p®) = \/ (@~ (4) A p=(B)E) = T.

yeY yep(X) xeX xeX

This implies that ¢~ (F) V ¢~ (G) exists. By (TChy), we obtain ¢~ (F N G)=¢~(F) N ¢=(G) € yy. Thus,
FnGey'. O

Proposition 5.13. If ¢ : (X,yx) — (Y, yy) is a Cauchy continuous mapping between T-filter spaces, then ¢ :
(X, v3) — (Y, »3) is a Cauchy continuous mapping between T-Cauchy spaces.

Proof. By Proposition 5.12, we know )% = {IF € 7,7 (X)| ¢~ (F) € y3} is a T-Cauchy structure on X. By the
Cauchy continuity of ¢ : (X, yx) — (Y, y) and yy C y3, we get yx C 7. This shows that )y is a T-Cauchy
structure satisfying yx C y. Then it follows that y§ C 7. Take any IF € y¥. Then IF € . By the definition
of y, we have 7 (F) € y7. O

By Propositions 5.11 and 5.13, we construct a functor.

TFil — T-Chy
G:{ (X V) — (X, V*)
¢ i ¢

Proposition 5.14. G is a left adjoint to I.

Proof. It follows immediately from the facts that G o I(X, ) = (X, y) for each T-Cauchy space (X,y) and
IoG(X,y) = (X,y*) 2 (X, y) for each T-filter space (X,y). O

By Proposition 5.14 and Theorem 2.2.12 in [40], we obtain

Corollary 5.15. T-Chy is a bireflective subcategory of T-Fil.
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Corollary 5.16. T-Chy is a topological category over Set.
Proposition 5.17. Suppose that L satisfies (MID). Then T-Chy is Cartesian closed.

Proof. By Corollaries 5.15 and 5.16, it suffices to show that T-Chy is closed under formation of power objects
in T-Fil. Let (X, yx) be a T-filter space and (Y, yy) be a T-Cauchy space. Then

Yixy = {H € FT (X, YD VI € 7 (X), F € yx implies ev™ (H x F) € .

Next, we will verify that y[x y] satisfies (TChy). Take any H;, H, € y[xy; such that H; Vv H; exists. In order
to show H; N H; € y[xy;, we divide into three steps.
Step 1: Take any @; € H;, @, € H, and Ay, A € F. Then

(D1 X A1)(@, x) A (D2 X A2) (¢, X)
(px)e[X,YIxX

- \/ (D1 A D2)(@) A (A1 A Ag)(x)

(px)e[X,Y]xX

> \/ @ AD)@)+\/ (A1 A A)E)
Qe[X,Y] xeX

=T.

Then for each W; € H; X F and W, € H, X F, it follows that

T= \/ Sixvpxx (P X Ag, Wq) * \/ Sixvixx (P2 X Ay, W)
®,€H,,A€F ®,eH,,A>€F

< \/ \/ Sixyixx((P1 X Ar) A (D2 X Az), W1 A W)
®,€H;,A€FF ®,eH;,A€F

* ( (D1 X Ap) A (P2 X A)(, x))
(px)e[X,Y]xX

- \/ \/ \/ (Slx,lex(((Dl X A1) A (Pa X Az), Wq A \yz))

@, €H;,A;€F ®€Hy,A€F (p,x)€[ X, Y]XX
# (@1 X A1) A (@2 X A2)) (@, %)
<\ @Aw)ew.

(px)E[X,Y]xX

By Corollary 4.10, we know (IH; X F) v (IH, X [F) exists.
Step 2: Take any G; € ev™ (IH; X F) and G, € ev=(IH, x [F). Then

T=\/ (@ (G)Aro"(G))p,x) (byStep1)
(px)E[X,Y]xX

=/ Gilev(p, %) A Galev(p, x))
(px)e[X,Y]xX

= \/ Gi(p(x) A Ga(p(x))

(px)E[X,Y]xX
= \/ (G1 AG2)(y)
yep(X)

<\/ (G A G

yey
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Hence ev™ (IH; X F) Vv ev™ (IH; X FF) exists.
Step 3: Take any F € yx. Then ev™”(H; X F) € yy and ev”(H,; X F) € yy. By Step 2, we know
ev” (H; X F) v ev™(H;, X F) exists. Since yy satisfies (TChy), we obtain ev™ (IH; X IF) N ev™ (IH, X F) € yy.

By Proposition 2.10 and Lemma 5.7, it follows that ev™ ((IH; N IHy) X IF) € yy. This shows H; N1H; € y[xy].
Thus, yx v satisfies (TChy). O

5.3. T-CFil
Definition 5.18. A T-filter structure y on X is called complete provided that
(TC) Forany [ € y, there exists x € X such that F N [x] € y.

For a complete T-filter structure y on X, the pair (X, y) is called a complete T-filter space.

The category of complete T-filter spaces, as a full subcategory of T-Fil, is denoted by T-CFil. For
convenience, we use I : T-CFil — T-Fil to denote the inclusion functor.

Proposition 5.19. Let (X,y) be a Tfilter space. Define y© C F,"(X) by
Ve = {IF eF(X)|Ax € X,s.t, FN[x] € y}.
Then (X, y°) is a complete T-filter space and y° C y.

Proof. 1t is easy to check y* satisfies (TF1), (TF2) and (TC). Take any FF € y°. Then there exists x € X such
that F N [x] € y. By (TF2), we obtain IF € . Thus, y° Cy. O

Proposition 5.20. If ¢ : (X,yx) — (Y, yy) between T-filter spaces is Cauchy continuous, then ¢ : (X,7%) —
(Y, between complete T-filter spaces is Cauchy continuous.

Proof. Take any IF € 5. Then there exists x € X such that FN[x] € yx. Since ¢ : (X, yx) — (Y, yy) is Cauchy
continuous, it follows that there exists ¢(x) € Y such that

=) Nlp()] = e~ ([EN[x]) € .
By the definition of ), we obtain = (FF) € y{. O
Thus, we get a functor.

T-Fil — T-CFil
H:¢ (X)) — (X9
¢ = %

Proposition 5.21. H is a right adjoint to L.

Proof. Foreach T-filter space (X, y), weget[oH(X,y) = (X,y°) € (X, y). Then Hol = idr-cgi1 and [oH C id+-gi1.
This implies that H is a right adjoint to I. [

Further, we can get the following conclusions.
Corollary 5.22. T-CFil is a bicoreflective subcategory of T-Fil.
Corollary 5.23. T-CFil is a topological category.

Theorem 5.24. Suppose that L satisfies (MID). Then T-CFil is strongly Cartesian closed.
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Proof. It suffices to show that T-CFil satisfies (CP1) and (CP3). By Corollaries 5.22 and 5.23, it is enough to
check T-CFil is closed under formation of products in T-Fil [40] (see Corollary 3.1.7 and Proposition 3.2).
Let (X, yx) and (Y, yy) be two complete T-filter spaces. Then their product in T-Fil is

yx X yy = {]I—I € F (XX Y)|pry(H) € yx,pry (H) € yy}.

Now it remains to prove that yx X yy satisfies (TC). Take any H € yx X yy. Then pri(H) € yx and
pry (H) € yy. Since (X, yx) and (Y, yy) satisfy (TC), it follows that there exists x € X and y € Y such that
pry (H) N [x] € yx and pr’(H) N [y] € yy. Then pry(H N [(x, y)]) € yx and pry (H N [(x, y)]) € yy, which
implies H N [(x, y)] € yx X yy. Hence, by the definition of yx X yy, we obtain yx X yy satisfies (TC). O

In the classical case, there exist close relationships between complete filter spaces and symmetric Kent
convergence spaces. Next, we will introduce the concept of symmetric Kent T-convergence spaces and
study its relationships with complete T-filter spaces.

Definition 5.25. ([17]) A mapping lim : ;" (X) — P(X) satisfying the following conditions:
(TC1) x € lim[x];
(TC2) F € G implies lim F C lim G;
(TCK) x € im [F = x € lim([F N [x]);
is called a Kent T-convergence structure on X. The pair (X, lim) is called a Kent T-convergence space.

The category of Kent T-convergence spaces is denoted by T-KConv.

Definition 5.26. A Kent T-convergence structure lim on X is called symmetric provided that for each
F,Ge 7—“LT(X) andx,y € X,

(TCSK) yelimGand G C FN[x]imply x € limIF.

The pair (X, lim) is called a symmetric Kent T-convergence space.
The category of symmetric Kent T-convergence spaces, as a full subcategory of T-KConv, is denoted
by T-SKConv.

Proposition 5.27. Let (X, lim) be a Kent T-convergence space. The following statements are equivalent.
(TCSK) y € im G and G € F N [x] imply x € lim IF.
(TCSK’) y € im(FF N [x]) implies x € lim F.
(TCSK”) y e imF and Ao A(x) = T imply x € im [F.

Proof. (TCSK) = (TCSK’) It is straightforward.

(TCSK’) = (TCSK”) Suppose that y € limF and Ay A(x) = T. Then F C [x]. This implies that
y € imF = lim (F N [x]). Hence x € lim IF.

(TCSK”) = (TCSK) Suppose that y € im G and G € F N [x]. Then A 4cg A(x) = T. By (TCSK”), we get
x € imG. Thus, x e limF. O

Proposition 5.28. Let (X,y) be a Tfilter space. Define lim,, : F,"(X) — P(X) by
lim, F = {x € X|F N [x] € y}.
Then (X, lim,) is a symmetric Kent T-convergence space.

Proof. (TF1) and (TF2) are straightforward.
(TCK) For each FF € #,7(X) and x € X, we have

xelimFe Fnxley = Fn[x]N[x] € y & x € lim,(F N [x]).

(TCSK”) Let y € lim, (IF N [x]). Then IF N [x] N [y] € y. Hence, we obtain x € lim,(FN [y]) € lim, F. O
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Proposition 5.29. Let (X, lim) be a Kent T-convergence space. Define yim C ;' (X) by
Yim = {F € 77 (X)| Ix € X, s.t,, x € im F}.
Then (X, y1im) is a complete T-filter space.

Proof. (TF1) and (TF2) are obvious. It is enough to show that i, satisfies (TC).
(TC) Let F € yiim. Then there exists x € X such that x € limF. Since (X,1im) is a Kent T-convergence
space, we obtain x € lim(IF N [x]). This shows IF N [x] € yjim. O

Proposition 5.30. (1) If¢ : (X, yx) — (Y, yy) between T-filter spaces is Cauchy continuous, then ¢ : (X, lim,,) —
(Y, lim,,, ) between symmetric Kent T-convergence spaces is continuous.

@) If p : (X limx) — (Y, limy) between Kent T-convergence spaces is continuous, then @ : (X, Viimy) —
(Y, Viim, ) between complete T-filter spaces is Cauchy continuous.

Proof. (1) TakeeachF € 7,7(X)and x € Xsuch thatx € lim,, F. Then FN[x] € yx. Since ¢ : (X, yx) — (¥, yy)
is Cauchy continuous, it follows that ¢~ (IF)N[¢(x)] € yy. By Proposition 5.28, we obtain ¢(x) € lim,,, ¢ (IF).

(2) Take each IF € yjim,. Then there exists x € X such that x € limx IF. By the continuity of ¢ : (X, limy) —
(Y, limy), we know ¢(x) € limy ¢~ (IF). By Proposition 5.29, we obtain ¢~ (F) € y1im,. O

Theorem 5.31. T-CFil is isomorphic to T-SKConv.

Proof. 1t suffices to show that y;m, = y and lim = lim,,, for each complete T-filter space (X,y) and each
symmetric Kent T-convergence space (X, lim).
First, we prove yiim, = . Take any FF € TLT (X). Then

F € Yiim, & Ixe X;s.t,x € lim,F e dx e X;s.t,FN[x]ey = TFey.

Since y satisfies (TC), IF € y implies that there exists x € X such that F N [x] € y. Thus, yiim, = ).
Next, we show lim = lim,, . Take each x € X and IF € #,7(X). Then

x €lim, F &= FN[x] € yim & Jy € X;s.t., y € lim(FF N [x]).

Since lim satisfies (TCSK’), we obtain x € limF. If x € limF, by (TCK), we obtain x € lim(FF N [x]). Hence
x € lim,, TF. This shows lim,, = lim, as desired. [J

6. Conclusions

In this paper, we introduced the notion of T-filter spaces and its product space, subspace and quotient
space. We investigated some convenient properties of T-Fil and proved T-Fil is a strong topological
universe. Additionally, the concrete form of the product of an arbitrary family of T-filters was presented.
Further, we got T-SChy and T-Chy are bireflective subcategories of T-Fil and T-CFil is a bicoreflective
subcategory of T-Fil. Moreover, we showed that T-SChy and T-Chy are Cartesian closed, and T-CFil is
strongly Cartesian closed.

Reid and Richardson [42] investigated several types of completions of T-Cauchy spaces and Jager [23]
studied completions of T-quasi-Cauchy spaces. This implies that the framework where completion is dis-
cussed can be extended. Yang and Li [44] studied completions of (L, M)-filter tower spaces. This motivates
us to consider completions of T-filter spaces and provide a unified approach to different completions of
T-Cauchy spaces.
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