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Abstract. In this paper, our aim is to examine the hypersurfaces in almost meta-Golden Riemannian
manifolds. First, properties of the induced structure on a hypersurface by meta-Golden Riemannian
structures were investigated. After that a necessary and sufficient condition obtained for a hypersurface of
a meta-Golden Riemannian manifold to be invariant. Then, totally geodesic, minimal and totally umbilical
hypersurfaces were analyzed in the meta-Golden Riemann manifold, respectively. Invariant and non-
invariant hypersurfaces of meta-Golden Riemann manifolds were also characterized. The relationships
between the eigenvalues of the golden structure and the invariant and non-invariant hypersurfaces of the

meta-Golden Riemann manifolds were investigated. Finally three examples of such hypersurfaces were
given.

1. Introduction

In recent years, a new polynomial structure, called as Golden structure, and its generalization, metallic
structure, have been studied by many authors, and the geometry of these structures has been investigated.
Crasmareanu and Hretcanu initiated the theory of Golden manifolds by defining a polynomial structure
on a differentiable manifold which is Q(X) = X? — X — I, [3]. Structure polynomials are useful tools for
producing new geometric structures on differentiable manifolds from the class C. Ozkan and Peltek,
similarly defined a silver structure and a bronze structure on a differentiable manifold with structure
polynomials Q(X) = X? — 2X — I and Q(X) = X? — X — 2I, respectively, based on a similar idea in [11, 12].

The ways in which the golden ratio appears in nature and applied sciences are well known. In recent
years, the golden ratio has frequently emerged in modern physics research and holds a significant place in
nuclear physics. A close connection between the transition from Newtonian physics to relativistic mechanics
and the golden ratio has been revealed, and the golden rectangle has been used in the theory of special
relativity to derive time dilation and Lorentz contraction. Moreover, thanks to the golden ratio, interesting
and important results have been produced in Kantor spacetime, in conformal field theory, in the topology
of 4-manifolds, in mathematical probability theory, in Kantor fractal theory, and in El Naschie’s field theory,
[10]. These cases reveal the research of numberless objects that satisfy the golden ratio necessity through

2020 Mathematics Subject Classification. Primary 53C15; Secondary 57R15.

Keywords. Chi ratio, Golden structure, meta-Golden structure, meta-Golden hypersurface.
Received: 26 September 2023; Revised: 24 March 2024; Accepted: 09 September 2024
Communicated by Mica S. Stankovi¢

* Corresponding author: Serife Nur Bozdag

Email addresses: feyza.esra.erdogan@ege.edu.tr (Feyza Esra Erdogan), cumali.yildirim@inonu.edu.tr (Cumali Yildirim),
serife.nur.yalcin@ege.edu. tr (Serife Nur Bozdag)



F E. Erdogan et al. / Filomat 38:27 (2024), 9593-9606 9594

the world. One of them was the view that a logarithmic spiral provides the Golden ratio. However, Barlett

[1] has shown that this assertion is untrue and also proves that an important class of logarithmic spirals

delivers the meta-Golden Chi ratio wonderfully. In [1], same fulfillment was built ground the meta-Golden
1+ Vaf+s 1+5

2f 2 -

In Riemannian (also semi-Riemannian) manifolds, different geometric structure allow important con-
sequences to occur while investigating differential and geometric properties of submanifolds. Manifolds
with such differential geometric structures have been studied by several authors in [2-7, 11, 12, 14-16].

In the light of above discussions, $Sahin and $ahin [13] introduced a novel manifold called as meta-
Golden Riemannian manifold. This manifold was erected by means of the Golden manifolds and the
meta-Golden ratio.

This paper is divided into three parts. In section 2, meta-Golden structure, meta-Golden Chi ratio,
Golden structure, structure induced on hypersurfaces of Golden Riemannian manifold are mentioned. In
the third section, properties of induced structures on hypersurfaces in meta-Golden manifolds with a spe-
cial view towards minimal, totally umbilic and totally geodesic hypersurfaces are investigate, respectively.
As well as, three examples are given.

ratio y = , where £ =

Note: After that for the sake of shortness, the terms AMGR manifold instead of almost meta-Golden
Riemannian manifold and MGR manifold instead of meta-Golden Riemannian manifold will be used for
the remainder of the article.

2. Preliminaries

In studies conducted until 2019, it was claimed that the logarithmic spiral satisfies the Golden ratio.
However, in 2019, Bartlett ([1]) demonstrated that this argument is not true and proved that an important
class of logarithmic spirals perfectly satisfies the meta-Golden-Chi ratio. The geometric interpretation of
the meta-Golden-Chi ratio y is similar to the geometric interpretation of the Golden ratio ¢. The relationship
between the meta-Golden-Chi ratio } and continued fractions was established by Huylebrouck, who also
provided its geometric interpretation, [8]. From Figure 1 in [13], the authors obtain } = % + %, therefore

they get
1
Xz—zfc—1=0- (1)
Thus, the roots of (1) find as
1+ 4 Lz
PF + Z

2
The correlation between the meta-Golden Chi ratio ¥ and continued fractions was found in [8]. We denote

the positive roots by
1 1+ 1
-+ 4+ 5
ot £
X - f’

which is called the silver mean of inverse of golden mean and the negative roots by

™=

=

- 4+#
5 .

Also, by direct computation, it is easy to see that

x=%—x. @)
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Then we have
L=k X 3)
and
£ =L+ 1 (4)

Hretcanu and Crasmareanu [3], introduced that 8 is an almost Golden structure which is an endomor-
phism on a manifold M, if

BPX1 = BXa + Xy ©)

is provided for X; € [(TM"). Hence, let § be a Riemannian metric on M, then (g, f) is called an almost
Golden Riemannian structure if

J(BX1, Y1) = (X4, fY1) (6)
for Xy, Y1 € T(TM"). From (6), we get

J(BXa, BY1) = g(Xq, BY1) + (X1, Y1). )
Therefore (M, B, 7) is called as almost Golden Riemannian manifold.
Definition 2.1. Let J be an endomorphism on an almost Golden manifold (M, B) which satisfied

BI*X; = BXy + Xy (8)

for every X; € T(TM). Then 3 is called as an almost meta-Golden structure and (M-, , 3) is called as an almost
meta-Golden manifold, [13].

Theorem 2.2. Let 3 be an endomorphism on an almost Golden manifold (M, B). At that case, 3 is almost meta-
Golden structure iff

I =pF -9 +I 9)
where I is the identity map, [13].
Definition 2.3. Let J is almost meta-Golden structure on (M, B, §). If 3 is compatible with g on M¢, namely

79Xy, Y1) = Xy, Y1), VXy,Y; € T(TM) (10)
or

3(3X1, Y1) = g(BX4, IY1) — (X4, IY1) + 3(X4, Y1) (11)
then (M-, B, g, g) is called almost meta-Golden Riemannian manifold (AMGR) for X1, Y1 € [(TM), [13].
Proposition 2.4. J is an isomorphism on T,M, for every p € M, [13].
Proposition 2.5. Let (M-, $, 3, 7) be an AMGR manifold. In that case;

1 If £ is the eigenvalue of the Golden structure 3, then y and } are the eigenvalues of the meta-Golden
structure.
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2 If 1 — £ is the eigenvalue of the Golden structure 3, then

1 1 1 1
N e oot e

2 T 2

Gu =
are the eigenvalues of the meta-Golden structure, [13].

Proposition 2.6. Let (M, §) be an m—dimensional Riemannian manifold and J is almost product structure on M.
Then J induces two meta-Golden structure on (M, 7), as follow;

J=A9J +8.T (12)
where ((A, + B.)* = £+ (A. + B.), [13].

Theorem 2.7. Let (M, B, 3, 3) be an AMGR manifold, 3 is integrable if the Codazzi-like equation is ensured for
any Xi,Y; € T(T M) given as follows;

(Vsx, Y1 = F(Vx, I)Y1 =0.

Also if V3 = 0, therefore (M*,B, 3, 3) is a meta-Golden manifold and meta-Golden structure 3 is integrable. If
V3 =0then VB =0, [13].

Now let’s mention about structures induced on hypersurfaces of a Golden Riemannian manifold. We

admit the covariant differential in M* by V and in M* by V. We admit by A the Weingarten operator on
T M with respect to the local unit normal vector field N of M" in M.

Proposition 2.8. Let M* be a hypersurface of (M, B,9) almost Golden Riemannian manifold. Then the induced
structure Il = (B, g, u, &1, ¢) on M provides the following equalities:

1 B2(X4) = BXa) + Xa — u(Xn)&

2 u(B(X1)) = (1 - qu(Xq)

3ul)=1+c-¢?

4 B(&1) =(1-0)&

5 u(Xq) = g9(Xy, &)

6 g(BX1, Y1) = g(Xq,BY1)

7 9(BX1, BY1) = g(Xq, BY1) + 9(X1, Y1) + u(Xq)u(Y1)

for every X3, Y, € T(TM), c € C°(M), uis a 1-form, [3, 9].
Moreover, we have
[
BN

BXy +u(X3)é and B: I(TM)— I(TM)
&1 +cN BX)" =Xy

3. Hypersurfaces of Meta-Golden Riemannian Manifolds

In this section, we will investigate the equations of the structure reduced onto the hypersurface of a
meta-Golden Riemannian manifold and the properties it satisfies. Furthermore, we will define invariant
and anti-invariant hypersurfaces and examine the geometries of these hypersurfaces.
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Let (M*, 3, 3,7) be a AMGR manifold and M" is a hypersurface of M*. We admit by A the Weingarten
operator on TM* with respect to the local unit normal vector field N of M* in M.

Let J be (1, 1) type tensor field on hypersurface M*, J be the meta-Golden structure, g be the Riemannian
metric, v be a 1-form on hypersurface. Then for each p € M*, we can write

T,M = T,M @ T,M™.

Via above equation for any X3, & € I'(TM*), N € L(TM*), we get
X5 = X4 + o(X4)N, (13)
IN =E+DN, beC®(M) (14)

and
J:T(TM) - T(TM), IX;=(3X))".
On the other hand, Gauss and Weingarten formulas are given as follows;
Vx, Y1 = Vx, Y1 + h(X3, Y1)N, (15)

Vx, N = —AnXq (16)

where h(X1, Y1) = g(AnX1, Y1) is the second fundamental form in TM* and X3, Y; € T(TM). If we apply
J to equation (13) and consider equations (9) and (10), we get

BIX: — 3% +Xq = IIXy +0(Xq)IN. (17)
Then by using (13) and (14) in (17), we obtain
BSXl + U(Xl)ﬁN - le -oX))N+X; = S2X1 + U(le)N +0(X1)E + bU(Xl)N (18)

Here, let’s assume that the structure induced from the Golden structure to the tangent bundle of hypersur-
face of a Golden Riemannian manifold is invariant. Therefore (TM*) C TM* and B(TM'*) C TM**. Then
let BN = ¢N, where ¢ = t or ¢ = 1 — £ and from (18), we have

ﬁ_ﬁxl + U(Xl)CN - ﬁXl — U(Xl)N +X; = Sle + U(le)N + U(Xl)é + bZ)(Xl)N (19)

By equating the tangent and normal components of equation (19), we respectively obtain the following
equations;

32Xy = B9y - IXq +Xg —v(X4)&, (20)
2(3X4) = (c — 1= b)v(Xy). (21)

Also for a meta-Golden structure, if we apply J to the equation (14), we obtain

J°N = 3£+ bIN.
Then via equations (9) and (10), we get

BE+DBBN — &+ (1 —b)N = FE +0(TEN + bé + °N. (22)
By equating the tangent and normal components of equation (22), we have

JE=BE - (1+Db),

bBN + (1 — b)N = v(E)N + bN.
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Then for BN = ¢N, we obtain
(&) =b(c—-1)+1-b.
As well as, for X; € T(TM*) and N € T[(TM**), by using (10), (13), (14), we find

o(X1) = 9(X4, &) (23)
and from g(ﬁXl,Yl) = g(Xy, fle), we have
9(3X4, Y1) = (X4, IY1). (24)

Then if we apply (9) and (10) to equation (13) and consider that f3 is invariant, we get

g(ﬁxl + U(Xl)N, SYl + U(Yl)N) = g(ﬁ_xl, SYl + U(Yl)N)
— g(Xl, SYl + U(Yl)N) + g(xl,Yl).

Finally, we obtain
g(3Xq, Y1) + v(Xq)v(Y1) = g(BX1, Y1) — g(Xq, IY1) + g(X1, Ya). (25)
Thus, we can give the following proposition.

Proposition 3.1. Let (M, 3, 3,9) be a AMGR manifold and M be a hypersurface of M. If the structure induced
from Golden structure to the tangent bundle of hypersurface of a MGR manifold is invariant, then the structure
I1=(3,B,9,9v,&,b) induced on M* by the meta-Golden structure I, satisfies the following equalities:

1 92X = BIXq - IX; + X4 — o(X1)&

2 9(3X4) = (c =1 -b)v(Xy)

30&)=blc-1)+1-0

4 JE=PE-(1+Db)E

5 v(X1) = g(Xy, &)

6 g(3X1, Y1) = g(X1, IY1)

7 9(3Xq, 3Y1) = g(BXq, IY1) — g(X4q, IY1) + 9(X3, Y1) — v(Xq)o(Y1).

From here on, it will be assumed that the golden structure of the meta-Golden structure is invariant on the
hypersurface of the MGR manifold.

Remark 3.2. If b = ¢ — 1 and b is a constant function on M®, in this case vo I = 0, Jv = BE — ¢& and
lol> = cb—b+1- b2 Namely, l0ll> = 1 or more generally, if M is a non-invariant hypersurface according to the

2
meta-Golden structure, we have Im(b) € (—}éi f +4, _h '2(1_ﬁ)2+4) and ||lv|| = Veb—b+1 - b2

The following result characterizes the invariance of the real hypersurface of the meta-Golden Riemannian
manifold.

Proposition 3.3. M is an invariant and orientable hypersurface in (M*, B, 3,5) AMGR manifold if and only if

Y

b= >
or
,_ (-px JA-p7+4
2

in the induced structure from (ﬁ_, f‘,?) meta-Golden structure to (3,8, 9,0, &, b).
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Theorem 3.4. Let M* be hypersurface of a MGR manifold with structure (M, B, 3,9). If the meta-Golden structure

Jis parallel with respect to the Levi-Civita connection V denoted on g, then the structure I1 = (3,8, g,v, &, b) induced
on M by the structure 3 has following properties:

1 (Vx, 3)Y1 = g(AnXa, Y1)E — v(Y1)ANX,

2 (Vx,0)Y1 = g(AnXq, Y1)b - g(AnXq, 3Y1),

3 Vx, & = —=JANX] + DANX,

4 Xi(b) = —20(ANXq)

where —-IN = & e T(TM"), Jisa (1,1) tensor field in M* and X3, Y; € T(TM).

Proof. By using X = 3Xj + v(X1)N, VI = 0 and the following equality
(Vx, Y1 = Vx, JY; - IVy, Y4,

we have, §X1 JY, = fﬁlel. Then if we consider Gauss and Weingarten formulas, we find
IVx, Y1 = Vx,(3Y; + o(YD)N),
I(Vx, Y1 +h(X1, Y1)N) = Vx, Yy + h(Xy, IY)N (26)

+0(Y1)(=AnX1) + N(Vx,v(Y1)).
Using (13), (14) in (26) , we get

IVx, Y1 + 0(Vx, Y1)N + h(Xq, Y1)& + h(Xq, Y1)bN = Vx, 3Y1 + h(Xq, IY)N
- U(Yl)ANX1 + Vxlv(Y1)N.

By equating the tangent and normal components of the above equation, we find

(Vx, 3)Y1 = h(Xq, Y1)E + o(Y1)AnXq (27)
and

(Vx,0)(Y1) = h(X4, Y1)b — (X1, 3Y). (28)
If we use (10) and VI = 0, we have

Vx, &+ X4 (BN + bVx, N = ~JANX;.
From here, we obtain

Vx, & +h(Xq, &N + Xq(b)N + b(-AnXq) = —FANXG — v(ANX)N.
Thus, identifying the tangent and normal components, respectively, we find

Vx, & — bANX: = —JANX
and

9(AnXq, &) = v(ANXY),

h(Xi, &) + Xa(b) = —v(AnX).
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Hence, we have
Vx, & = =JANX) + DANXy (29)
and
X (b) = —20(AnX)). (30)
U

Remark 3.5. If we take the function b = 0 on M®, in this case we findvo 3 =0, I& :_EE — &and ||&|]* = 1. More
generally, if M is a non-invariant hypersurface of meta-Golden Riemannian manifold M, then

1 for the eigen value ¢ of the Golden structure B,

e VIRE  po ViR
2

d —
> an

Im(b) = (

2 for the eigen value 1 — { of the Golden structure B

_1—,é+ Vi + (1= £)? nd

2 Cm ==

Im<b>=[cm= 1-¢- W)

and

lEll = Veb—b + 112

Remark 3.6. Let (M*,3,3,7) be a MGR manifold, for & = 0, which is equivalent to v = 0, this indicates that
3 |pe= 3 and SN = bN. In another saying, M is an invariant hypersurface of the (M, 8, 3,§) MGR manifold if
and only if the normal vector N, whose eigenvalue is the function b, is the eigenvector of the meta-Golden structure
on the hypersurface M.

Proposition 3.7. M be an oriantable and invariant hypersurface of MGR manifold (M, B, 3, 7) if and only if the
structure I1 = (3,8, g,v, &, b) induced on M* by the meta-Golden structure (ﬁ_, 3, §) has the function b which is equal
to either

2
o= J‘“—“# 31)
or
p = 12O Vz(l_’é)2+4. (32)

Proposition 3.8. IfT1 = (J,,9,v,¢&,b) is the induced structure on a hypersurface M isometrically immersed in a
MGR manifold (M, B, 3, §) then for every X; € T(TM"),

(IX; +bXy) L&
Proof. From v(3X;) = (¢ — b — 1)v(Xj), we have
g(OXq +bXq,E) =0 IXg + (c—b-1)X; LE.
Especially, if b = ¢ — 1, then we have
IX; €& =X eT(TM) | Xq LE).
Therefore, we get

TM =KerJ @ &L,
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Remark 3.9. If we consider
(Vx,0)Y1 = g(AnXq, Y1)b — g(ANXq, 3Y1),
and from (24), we obtain
(Vx,0)Y1 = g(0ANXG — JANX, Y1)
here using Vx, & = —3ANXq + bANXG, we get
(Vx,9)Y1 = g(Vx, &, Y1).

Proposition 3.10. Let M* be an invariant hypersurface with V3 = 0 on (M*,B, 3, §) MGR manifold and T1 =
(3,8, 9,&,0,b) is induced structure on M. In this case V3 = 0.

Proof. From the following equality
(Vx, 9)(Y1) = Vx, 3Y; - OV Yy,
since M" is invariant, we get
(Vx, (Y1) = Vx, IY; — IV, Y1,
Via Gauss formula, we find
(Vx, 9)(Y1) = (Vx, 3)Y1,
(Vx, I)(Y1) = Vx, 3Y1 = h(Xq, IY1)N = IVx, Yq + h(X3, Y1) IN.
Here, M is a invariant hypersurface, then we get
(Vx, 9)(Y1) = Vx, 31 = (X, YN = TVx, Y1+ 1(Xy, YN = (Vx, DY,
Therefore, the proof is completed. [

For the following theorem, let us remind that if 1 = 0, equivalently the Weingarten operator A = 0, then
M is said to be completely geodesic.

Theorem 3.11. Let (M, 8,3, §) be a MGR manifold such that the meta-Golden structure 3 is parallel with respect

to the V connection. Let M be a non-invariant hypersurface of Mand T1 = (3, E, g,&,v,b) be a induced structure
on M from M. In this case, the following expressions are equivalent;

1. M is totally geodesic,

2. V3 =0,
3. VE=0,
4. Vo =0.

Proof. If M is totally geodesic. In this case from (27), we have
(Vx, D)Y1 = g(AnX1, Y1) = o(Y1)An X,

Then, since M is totally geodesic, A = 0 and Vx, 3 = 0.
Also, for

(Vx,0)Y1 = g(AnXy, Y1)b — g(ANX, TY),
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if A = 0, we obtain Vv = 0. As well as, for
Vx, & = =3ANX] + BANX,
we get
A=0=>VE=0.
Therefore (1)=(2),(3),(4).
Now let show that (2)=(1),(3),(4).
If V3 = 0, from (27), we have
JANXT, Y1)E+v(Y1DANXG =0 VX4, Y] e I(TM).
Taking the inner product of above equation with Y; € I'(TM"), we find
2g9(AnX1, Y1)o(Y1) = 0.
In this equation, if we get Y; = &, we have
gANX1, OIEIF = 0, & € T(TM).
Since ||&]|* # 0 and M"* is non-invariant hypersurface of M, then we have
g(ANX1, &) =0, ¥X; e I(TM).
On the other side, in equation (27), if we take Y; = AnXj, we get
gANX, ANXG)E + 0(ANX)ANX; = 0.
Then, from (33), we can write

g(ANX1, AnX1) =0,

9602

(33)

hence, we find that, if ANX; = 0, then M is totally geodesic. Also from A =0, we have V& = 0and Vv = 0.

Now we need to show that (3)=(1),(2),(4).
If V& =0, then we have Vx, & = ~JANX) + bANX; = 0, namely,

JANXq = DANX.
Applying 3 to the both side of the above equation, we have
F2ANXq = bIANXy = PPANX.
From equation (20), we find
BIANX) — JANXI + ANXg — 0(ANXG)E = PPANX.
Considering equation (30) and ||£]| = 1, we obtain

1 X (b)é

ANXy = = (—207e
N =\ —eh+b—1

), VXi € [(TM).

(34)
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If we apply J to the both side of JANX; = bANXj, for BE = ¢&, c € R, we find

ax < X0

and
Xi(b)
2IE11

Since ||&]| # 0, we have X (b) =0orb = C“ , therefore, from (34), we obtain AxX; = 0 for every X; € I'(TM").
Namely M is totally geodesic so VI = 0 and Vv = 0.
If Vo = 0, then VI = 0 so M is totally geodesicand V& =0. O

(2b* — be — b)E = 0.

Recall that a hypersurface M* in the meta-Golden Riemannian manifold (M, B, J, §) is said to be minimal
if

trace(An) = Z g(Anej, e))
=1

vanishes identically, where {ey, e, ..., ¢,} is an orthonormal basis of the tangent space T, M" in every point

peM.

Theorem 3.12. Let M* be an invariant hypersurface of a MGR manifold (M-, B, 3,9), 3 is parallel according to V
Levi-Civita connection on M* and T1 = (I, B, g,&,0,b) is induced structure with (3, g) on M*. If

Z(Ve]ﬂ)e]- = Z U(Ej)A(Ej),
= =

then, M* is minimal.

Corollary 3.13. If IT = (J, E, g,¢&,0,b) is the induced structure from an umbilical hypersurface M* in a meta-Golden
Riemannian manifold (M¢, B, 3, ) with VI = 0, then we obtain

(Vx, 9)Y1 = A[g(Xq, Y1)& = g(&, Y1)X],

(Vx,0)Y1 = Alg(Xq, Y1)b — g(Xq, IY1)],

Vxlé = —S/\Xl + b/\Xl = /\(le - le),

Veé = —A(BE — (1 +2b)S),

Xi(b) = —2A9(X4, &),
forany X1,Y, € I(TM).

Theorem 3.14. Let M be an invariant umbilical (A # 0) hypersurface in a MGR manifold (M-, 5,3, g) with
VI =0and I = (3,B,9,&,0,b) be the induced structure on M* by (B, f_},g‘). Therefore, 3 = —(c + b)I where

, 2
c and b are constant function on M* equal with the golden number ¢ = £ and b = —w orc=1-¢and
p= 00 Va-£r+4
——

Corollary 3.15. Let M be a hypersurface in a MGR manifold (M*,B, 3, §) with VS = 0 and T1 = (3,5, 9,&,0,b)
is the induced structure on M* by (B, 3, 7) with I = b, then V& = 0.

Thus we can give the following theorem.
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Theorem 3.16. Let M be a hypersurface in a MGR manifold (M, B, 3,9) with VS = 0 and 11 = (I, B, 9,&,0,b)
be the induced structure on M* by (B, 3, g) with B = bl. Then we obtain only one of the following conclusions;

i M is invariant hypersurface and b is a golden number where b is given with (31) or (32).

ii M is non-invariant totally geodesic hypersurface in the MGR manifold (M*, 3, 3, 7).

Example 3.17. Let B> be an Euclidean space. Then, B° is an almost Golden manifold with golden structure p given
as

B:E —E
(X1,X2,X35,Y1,Ys) = (€Xq,£X0,£X3, (1 = £)Y1, (1 - £)Y2).

Now, we define an endomorphism 3 an (1>, p) by
J3: B -F
(X1, X2, X3, Y1, Y2) = (1Xq, ¥Xo, ¥ X3, —XY1, —XY2).

e E v

Here x = 5

, 15 called "the silver mean of golden mean” satisfies the

P=ti+1

identity and X is the meta-Golden Chi ratio. Therefore J is a meta-Golden structure. Thus (E°, B, 3) is an almost
meta-Golden manifold. Now we consider

3 2
SHr) = 106, X0, X5, Y1, Ya) £ ) (X2 + Y (YR =72,

i=1 j=1

which is a submanifold of codimension 1 in .

In every point (X1,X2,X3,Y1,Y7) € S*(r), we take into account the normal vector field to S4(r) given by
N = 1(X1,X, X5, Y1, Vo).
In every point (X1, X5,X3,Y1,Y>) € E, we find a tangent vector on S4(7).

(X1, X2, X3, Y1, Y2) € T(x, %%, Y,,Y,)(S*(r)) if and only if

X X5 + X0 Xo + X3X3 +Y 1Y +Y,Y, =0.

From the decompositions of 3 (N) and 5(X1,X2,X3,Y1,Y2) respectively, in tangential and normal components on
T(XlrXZ/XSrerYZ)(S4(r))/ weﬁnd

J(N)=E+DN,

I0X1,X2,X5, Y1, Y2) = 5(X1, Xa, X5, Yy, Ya) + 0(X1, X2, X5, Yy, Y2)N

where X = (X1,Xa, X, Y1, Y2) is a tangent vector field on S*(r), 3 is an (1,1) tensor field on S*(r), & € I(S*(r)), v
is a 1—form on S*(r) and b is a smooth real function on S*(r).
Using b = (IN,N), & = SN - bN,

(X1, Xp, X3, Y1, Y2) = (X1, X2, X3, Y1, Y2), &)
and

I(X1, X2, X3, Y1, Y2) = (X1, X0, X5, Y1, Ya) — 0(X1, Xo, X, Y1, Ya)N,
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the elements of the induced structure I1 = (3,8,(,),&,v,b) on S4(r) by the meta-Golden structure (3,(,)) on IE® are
given as follows;

CAEL D) = MERY)P)
_ 72 ,

b

KL 0G2) = M2 (Y)?)

73

1
&= ;(Xxll)ﬁxz,)'(xs, —XY1,—xY>2) - (X1,X2,X3,Yq,Y>),

o(X) = 19(IX, X) - bg(X, X),

IX = IX - %g(ﬁx, X)N + bg(X, X)N
where X = (X1, X2, X3, Y1, Y?) is a tangent vector field on S*(r). In conclusion, S*(r) is a non-invariant hypersurface.

Example 3.18. Let B be an almost golden structure;

B: B> >E°
(X1, X2, X3, Y1, Y2) =(EX1, £X0, X35, (1 = £)Y1, (1 = £)Y2).

where B be a Euclidean space. )
Then, we define (1,1) tensor field 3 on (IE°, B) by

5 SE°
(X1, X2, X5, Y1, Y2) =X, 1Xo, ¥ X5, —¥Y1, —XY>),
2
where ¥ = w.
It is easy to see that I is a meta-golden structure on E° and so (E°, B, 3, ) is an almost meta-golden Riemannian
manifold, where § is the usual Euclid metric on .

Now, we consider a hypersurface M of B> given by Y1 = Y,. Then T M is spanned by

d d d d d 1 4 d

Y Z:_I Z:_r Z=_+_, N:————
8x1 2 axz 3 8x3 4 &yl &yz \/E(&yl &yz)

In this case since IB(T M) € TM then M is an invariant hypersurface of E°.
Then let calculate the function b as follow; from b = §(3IN, IN), we get

e

2

7z =

b=

Example 3.19. Let 8 be an almost golden structure;
B:E —F°
(X1, X2, X3, Y1, Y2) =(EX1, £X,£X5, (1 = £)Y1, (1 = £)Y2).

where IE° be a Euclidean space. )
Then, we define (1,1) tensor field 3 on (IE°, B) by

9. E° SE°
(X1, X2, X3, Y1, Y2) = (X, xXo, xX5, —XY1,—XY2),
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e+
Ly

where ¥ =

It is easy to see that I is a meta-Golden structure on E° and so (E°,B,3, 3) is an AMGR manifold, where § is
the usual Euclid metric on IE°.

Now, we consider a hypersurface M of E® given by
X1 =cos(Xp) +sin(Xs), Xy = cos(Xs) — sin(Xy).
Then T M is spanned by

) d d d ) d d
Zy = —sm(Xz)a—x1 - COS(X2)&_x2' Zy = COS(X3)8_x1 - sm(Xg)g—x2 + 8_x3'
d d
ls=—, Zy=—
3 8y1 8y2

and
d . d d
N = —cos(Xg,)a—x1 + szn(Xz)a—x2 + cos(Xp — X3)8_x3' X, > Xs.

In this case since IB(TM) € TM then M is a non-totally geodesic invariant hypersurface of IE°.
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