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Inequalities for Golden Lorentzian manifolds with gsm U-connection
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Abstract. This study aims to establish Wintgen and Chen-type inequalities for submanifolds of golden
Lorentzian manifolds endowed with generalized symmetric metric U-connection (gsmc). Isometric im-

mersion of warped product manifold into the same ambient space form has also been studied. Moreover,
equality cases have been discussed.

1. Background

In 1970, the notion of the polynomial structure was brought to light by [18, 19] and this development
inspired the geometers to study golden structure on the Riemannian manifold in [13]. Some applications
of golden mean have been taken into consideration in [21] and integrability results are clubbed in [17]. For
more literature, see [1, 10, 22] etc.

On the other side, Wintgen inequality credited to P. Wintgen [30] is a sharp geometrical inequality
producing a relationship between intrinsic and extrinsic invariants. The famous DDVV conjecture was
represented in [15]. A lot of work has been done on this so far. For more details, see [4, 8, 16, 26].

In 1993, Chen considered submanifolds of real space form [5] and introduced the basic idea for the sharp
relationships between intrinsic invariants and extrinsic invariants. Later on, Chen-like inequalities were
also studied in many other ambient spaces [7, 14, 23, 25] and the references therein.

While constructing an example of Riemannian manifolds with negative sectional curvature, warped
product manifolds were introduced in [2]. It is known that warped products have applications in different
branches of Mathematics as well as in Physics. For example, generalized Robertson-Walker space-time is a
Lorentzian warped product (see [12, 28, 29] for more literature).

Let F; and F, be Riemannian manifolds of positive dimensions endowed by Riemannian metrices gr,
and gr,, resp. and denote by f any positive function on F;. Assume F; X F, with its projection 7t : F1XF, — F4
and 1) : F{ xF, — F,. The warped product N = F; X¢F; is the manifold F; X F, equipped with the Riemannian
structure such that

IXIP = 1. COIP + P(rE)In.(OIP, X € TaN.
Hence, one obtains

9= 95+ 96,
f represents a warping function of the warped product.
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The present study aims to establish generalized Wintgen and Chen-type inequalities for submanifolds
immersed in golden Lorentzian manifolds endowed with g.s.m. U-connection. Isometric immersion of
warped product submanifolds in the same ambient space form has also been studied. Moreover, equality
cases have been discussed.

2. Preliminaries

2.1.
Assume (M™, g) stands for m-dimensional Riemannian manifold and ¢ be (1,1)-tensor field holding
[10, 20, 22]

(p2 =@ +],
then ¢ introduces a golden structure on M. Suppose (M, g) represents a Riemannian manifold and ¢ is a
golden structure on M. When

g(ph, L) = g, pla), VY, € I(TM), 1)

holds, then (M, g, ¢) becomes a golden Riemannian manifold. One should also note that
g(h, ¢h) = 9(¢°h, k) = glph, L) + g(h, L).
Assume L to be an almost product structure on M. In this case [20]
1
Q= E( \/EL + I)

produces a golden structure on M. On other side, when ¢ induces a golden structure on M, then [20]

1
L=—Qp-1
V5
becomes an almost product structure on M.
Express the Riemannian curvature tensor of locally golden product space form M as [10]

FVE+3)e1 +(xV5+3
R(l, )5 = (FV5+3)cr 10( V5 +3)cp (i )1 — g, 1))
+V5-1Dg+EFV5-1
" : )C110(+ )2 [9(ply, I3)l — g, 13)]
+ g(ZZ/ 13)(Pll - g(ll, 13)(PZZ] (2)
+
+ = 5 2 [g(pls, Is)ph — g(@ly, 13)pla].

Definition 2.1. [11] Let (M™, g) be semi-Riemannian manifold with g having signature (—, +,+, ..., +(m —1 times))
and satisfying (1). In addition to this, if M is equipped with a golden structure @, then it is known as a golden
Lorentzian manifold.

[11] The torsion tensor T for any golden Lorentzian manifold (M, g, @) is expressed as
T(h, ) = —afu(l)la — u(l)h} = Plu(h)pla — u(l)ph}, ©)

in above case a, f indicate smooth functions on M and V is used for generalized symmetric connection
(g.s.c.). For any 1-form u and unitary vector field U, we have

u(ly) = g(U, ).

V represents a g.m.c. if

otherwise, V is known as non-metric connection.
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Definition 2.2. [11] Let (M, g, @) be golden Lorentzian manifold and V denotes the g.s.m. connection ((a, f)-type).
For any parallel vector field U, V is said to be a generalized symmetric metric U-connection on M.

Let (M, g, ¢) stand for locally golden product Lorentzian manifold with generalized symmetric metric
U-connection. Then we write the scalar curvature concerning this connection [11]:

(FV5 +3)c1 + (£ V5 + 3)c, — 1002

= m—&)m
10 ( )
+V5 - 1)c; + (FV5 - 1)ex — 10a
+ ( Jor +( 0 )2 P [(2me — 2)traceq]
c1 +co — 562
#[(tmae@)2 — tracep — me]. 4)
Further, from Theorem 2.7 [11], we have

Connection type Scalar curvature
a semi-symmetric (A = a®)(m — e)m + BQ2me — 2)traceq + C((tracep)? — tracep — me)
B quarter symmetric | A(m — &)m + B(2me — 2)traceq + (C — p2)((tracep)? — tracep — me)
Semi-symmetric (A = 1)(m — &)m + B(2me — 2)traceq + C((trace)? — tracep — me)
Quarter symmetric A(m — e)m + B(2me — 2)traceqp + (C — 1)((tmce<p)2 — traceqp — me)

. _ FVEH3)e+EVE+3)e, (2 VB-1)er+(F V5-1)c, _ c+te
in above case A = ,B = 0 and C = ===.

10
Let N be the submanifold of the locally golden product Lorentzian manifold M™ with g.s.m. U-
connection and V and V be the Levi-Civita connections on N and M, respectively. Next, denote the shape
operator by S5 and normal connection by V+. Then, we have

Vil = Vil + h(ly, 1)

and
V1,6 = =85l1 + V15, 3€T(N),

in this case, h means the second fundamental form. Also
9(Ssh, 12) = g(h(l, I2), 0).

We have Gauss equation as [3]
R(l, I, 15,15) = R(y, b, 15,15) — g(h(ly, ls), h(lz, 1)) ®)
+g(h(ly, 13), h(l2, 1)),

here I1,15,15, 1, € T(TN), R and R mean curvature tensor of M and N, resp. Next, we recall [8]

IR(1,h)E1, &) = gRM(I1,h)Er, &) + g([Se,, S, 11, 1), (6)

where &1 and &, are normal vector fields satisfying
[Séll SEz] = 551 552 - 552551‘

Assume that {uy,...,u,} and {141, ..., 1} be orthonormal basis of T,N and TjN, resp. Then

n

1
7—{ = Z ;h(ui/ ui)r (7)

i=1
and

WP =Y g(htus, ), hws, up)). ®)

1<i,j<n
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Next, for any plane section 7 C T, N, denote the sectional curvature of N by K (n). Therefore,

Y K nw) 9)
1<i<j<n
and
plp) = K(ui A uj). (10)
I’Z(Tl h 1) 1<LZ]‘<I1
Represent the normalized normal scalar curvature of N by [27]
ot = 21_l
n(n 1)
= DM MR D
1<i<j<n n+1<r<s<m
Similarly [8],
_1ly 2
K=g X, (reelS, S (12)
in this case, 5; means the shape operator of N in the direction of &, ¢t = n + 1, ..., m. We also have [27]
2 (_
PN = nn—1) K. (19
That implies
_ 1 2
Kn = 5 n+1;s<m(trace[5,, Ss])

Z Z g([Sr/ Ss]u;, Ll]-)z.

n+1<r<s<m 1<i<j<n
One can also establishes [27]
- r S r 1,8 2
YD IR DNULALANIE (14)
n+l<r<ssm 1<i<j<n k=1
Finally, recall the following results.

Theorem 2.3. [16, 26] Let us suppose that p > 2 and n be two integers and Ay, ..., A, be n X n real symmetric
matrices. Further, assume that [.,.] means the commutator of two matrices and ||.|| indicates the Hilbert-Schmidt
norm of a matrix. Then we have the following inequality

i A, Al < Z 1AaIP).

a,p=1

In addition to this, equality holds if and only if, under some rotations, Ay, ..., A, are null matrices, except only two of
them which can be written as

0a 0 ... 0 a 0 O 0
a 00 ... O 0 —a O 0

B 000 ... 0 Bt,B 0O 0 O 0 Bt,
000 ... 0 0O 0 0 ... 0

in this case a is real number and B is an n X n orthogonal matrix.
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Lemma 2.4. [5] When one represents by c1, ..., c;,d the (t + 1), t > 2 real numbers provided

t t

(;ck)zz(t—n(;cim),

then, 2cicp > d and equality holds if and only if

C1+C=C3="'+=C(t

3. Generalized Wintgen Inequality

From now on, fix M" for the locally golden product Lorentzian manifold endowed with generalized

symmetric metric U-connection.
Theorem 3.1. For submanifold N" isometrically immersed in M™. We have

L (FV5+3)c1 + (= V5 +3)c; — 1047

2 .
IHIF > p+p 100 =1) (n—e¢)
(=V5-1)c; + (FV5 - 1)c; — 10ap
- 507 =) [(ne — 1)traceq]
Gt o) — trace —
5072 = 1) [(tracep)” — tracep — ne].
Moreover, (15) satisfies equality case if and only if given some orthonormal frames {u,, ..
reduces to
0 0o 0 0 O
0o 0, 0 0 O
0 0 & 0 O
Sn+1 = . . . . . . ’
0 0 O o 0
0 0 O 0 O
0y + O 0 0 0 O
0 -0 0 0 O
0 0 02 0 O
Sn+2 = . . . . . . ’
0 0 d 0
0 0 0 0 0
o 0 0 ... 0 O
0 6 0 ... 0 O
0 0 & ... 0 O
Sz = . . . . . . ’ Sppa=-=5,=0,
0 0 0 ... 8 O
0 0 0 ... 0 0

where 81,0,, 03 and O are real functions on N.

(15)

g and U, .. Ul 5

(16)

(17)

(18)
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Proof. In the light of (5), we have
FV5+ +(x=V5+ - 10a?
Z R 0, 10310 (FV5+3)c1 (1 0«/5 3)c2 — 10a (n— e

1<i<j<n

(=V5-1)c; + (FV5 - 1)c; — 10ap
€. 5 t
+(i V5 = 1)c; + (FV5 - 1)c; — 10ap

5

+n raceq

traceq

+C1 +Cr — 5ﬁ2
5
+n?||HIP = |1k

[(traceqp)? — tracep — ne]

We also know that
2T = Z R(Ll,‘, Uj, uj, ui),

1<i<j<n
that produces
- 1042
—_— (FV5+3)c1 + (?0«/§+ 3)c, — 10a (n— ey
+vVv5-1 FV5—-1)c; — 10
N (= V5-1)c; + (: (;/_ )e2 — 10ap (e - Dtrace]
+c —5p%
%[(tmcego)2 — traceq — nel + n*||H|* — ||h]>.
Taking view of (10), obtained equation is
- 1 20112 — (112
p= IR = AP
+(¢«/§+3)c1 + (V5 +3)c, — 10a2(n g
10(n - 1)
(V5 = 1)c; + (FV5 = 1)c; — 10ap
1
+ 502 -1 [(ne — 1)traceq]
C1+C— 5ﬁ2 2
+w[(tmcego) — tracep — nel.

Now, use u for traceless part of /1, i.e.
p=h-Hg,

then it implies

llull? = IRl = nllHP.
This way, one obtains

(FV5 +3)c1 + (£ V5 + 3)c, — 1002

p = IHIP+ 10(n - 1) =9
+V5—1)c1 + (F V5 1)ez — 10
— 582 1
_,_%[(tmceqo)2 — traceqp — ne] — i —1) .

9612

(19)

(20)

(21)

(22)

(23)
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On the other side, fora =1, ...,m, define A, : TN — TN as
9(AX,Y) = g(u(X, Y), o).

That indicates
Ap =54 — 9(7{, )l

implying

YA AP = ) IS, SollP (24)

a,p=1 a,p=1

and
Y AR = il (25)
a=1

Next, taking into use (6) and (11), one obtains

1 _ 1 -
P =TT ‘;1”[5&, SsllP. (26)

Thus, (24) and (26) produce

Y Aw, AGlI2 = n(n = 1)%(p*) 27)

a,p=1
Therefore, using Theorem 2.3 for Ay, ..., A, one obtains
1
<
p= nn-1)

where (25) and (27) have been employed.
Also, in view of (23), one writes

I, (28)

1 - ,  (FV5+3)c; + (V5 +3)c; — 10a?
oI = P+ =T (n-¢)
+V5-1 FV5-1)c; — 10
+ S ) ;(1(:2_ =0 )2 ap [(ne — D)tracep] (29)
c1+C— 552 5
+W[(tmcego) — traceq — nel - p,

thereby establishing inequality (15) with the help of (28).
Finally, one concludes on the same lines as in [Corollary 1.2, [16]] that equality holds in (15) if and only
if 5 takes the form of (16), (17) and (18) to some suitable orthonormal frames. [

Corollary 3.2. For Riemannian manifold N" isometrically immersed in M"™, we have these relations

(a) M™ equips a-s.s.m. U-connection

L (FV5+3)cs + (£ V54 3)c, — 1047

IHIP = p+p 00— 1) (n—e¢)
+V5-1 FV5-1
_& 5);11;_(;) )2 [(ne — Vtracep]
c1+Cy

—_—— 2 —_— —_—
562 - [(traceq)” — traceqp — ne].
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(b) M™ endows p-q.s.m. U-connection

L FV543)c + (= V5+3)0

2
IHI® = p+p 10(n - 1) "=
B (i \/g - 15);:;;'_(;)\/5 — 1)C2 [(ng — 1)t1’ﬂC€(P]
_ g2
‘%%%?%iwww@”*m“¢‘ml

(c) M™ equips s.s.m. U-connection

1 (¢‘/§+3)C1+(i\/§+3)C2—10

IHIP = p+p 00— 1) (n—¢)
+V5 - Doy + (FV5-1
_= V5 gz;;_t) )2 [(ne — 1)traceq]
_55711;—62 ) [(traceq)? — tracep — ne].

(d) M™ endows q.s.m. U-connection

L (FV5+3)c+ (=V5+3)e

IHIP = p+p 106~ 1) (n—¢)
+V5-1 FV5-1
_& 5);11;_(;) )c2 [(ne — Vtracep]
c1+c—5 P
_m[(tmce(p) — traceq — ne).

Additionally, equality holds in the above case if and only if with some orthonormal frame {u1, . .., Uy, Ups1, . .., U},
operator 5 reduces to

00 o 0 ... 0 0
0 0, 0 ... 0 O
0O 0 6 ... 0 O
Sni1 = . . . . . . ’ (30)
0 0 O 01 0
0 0 O 0 0
0 + O 0 0 0 O
0 -0 0 0 O
0 0 db ... 0 0
Sni2 = ) ) . N 31)
0 0 0 d 0
0 0 0 0 0
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0 0 0 ... 0 O
0 6 0 ... 0 O
0O 0 03 ... 0 O
Sn43 = . . . . . . ’ Sppa=-=5,=0, (32)
0O 0 0 ... 03 O
0O 0 0 ... 0 0O

where 81,0,, 03 and O are real functions on N.

Remark 1. The main theorem of this section is the generalization of some Wintgen-type inequalities
for submanifolds in golden product space forms equipped with different connections, including semi-
symmetric, quarter-symmetric, a-semi-symmetric, etc. It also generalizes results of [8]. Some examples
that can verify the equality case of Wintgen type inequality are given in [1, 8].

It is known that submanifold that attains equality in generalized Wintgen type inequality is termed as
Wintgen ideal submanifold investigated in [4, 14, 24]. One knows that totally umbilical submanifolds and
super-minimal surfaces provide basic examples of Wintgen ideal submanifolds in S* and S°, respectively.
It is a difficult task to classify these submanifolds completely. In Riemannian space forms, these have been
classified to [31]: the reducible ones, the irreducible minimal ones (up to Mobius transformations), and the
generic (irreducible) ones. This one is an open problem to obtain a classification for these submanifolds in
locally golden product space forms equipped with several connections.

4. Chen type optimal inequality

Let N" be Riemannian manifold isometrically immersed in M™ (locally golden product Lorentzian
manifold endowed with gsm U-connection). Consider some local orthonormal frame field
{u1, ..., Up, tps1, ..., uy} and let m = Spanfuy, up} for any p € M, u,4q is parallel to H(p). Then, we can
write

(FV5 +3)c1 + (£ V5 + 3)cr — 1002

o = m (n—éen
LEV5- Do+ (:; 0\/5 2= 1006 ) dytrace ol (33)

+2(C1 + C52 — 5‘82)

where we have used (4) and (5).
Further, fix

[(tmcap)2 — traceqp — ne] + n?|H|? - ||k

_—_213_2
3 = 2T) - IHIP = (0 - 20?)

_(FV5+3)cs + (& V5 + 3)c; — 1002

0 (n—en
+V5—1)c; + (F V5 —1)c; — 10
_( V5 -1y (Z(;/_ )2 ap [(2ne — 2)tracep]
2 - 542
—M[(tmcego)2 — tracep — nel. (34)
Above two equations (33) and (34) produce
2 2

» _ MIH]

3+ P = = (35)
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simplifying to
Zh”“ = (1=13+ (- DY 0P+ Y (R + Z Z(hs 7). (36)
j=1 i#] s=n+2i,j=1
Taking
h’fr 7 hg;1/ . Ian:hzzll
b= :+Z(hn+l)2+ Z Z(hs )2
i#j s=n+2i,j=1
implying
hn+1hn+1 > = :+Z(hn+1)2 + Z Z(hs )2 (37)
i#] s=n+2i,j=1

where Lemma 2.4 has been applied.
Next, let (1) = g(puq, u2), where I‘Iz(nq,) € [0,1], independent of the choice of 11, u,. Then, one writes
the sectional curvature K(rt) of N" associated with 7 with the help of (5) as follows

R = lpelPlel(B - ap) - (2 - ) + F1+ A
+ellpeslPI(B - aﬁ)—(“” B - (2 2)r(m,)
~262(B - ap) + (llper Pllpeal? + 1)( 1+C2—ﬁ), (39)

where A
Equations (37) and (38) result

_ (7 V5+3)c1+(= V5+3)cs B= & V5-1)c1 +(F V5-1)cz
- 5 7 - 5 .

Km > lperlPlel(B-ap) - (A2 - )+ F1+ 4
+ellpeslPL(B - ap) - (52 o -1 - (- 2)i(m,)
=268 - ap) + (lper Pllpeal? + (52 = §2) + 23
b2 YO+ Y Ik, Z Uia + 5 Z Z (152
i#] s=n+2 s=n+1 s=n+2i,j=1
= llperlPel(B — ap) - — B+ + A
+ellpesl PL(B - af) - % -1 - ()P,

268 - ap) + (lpeilPllpeal? + D2 - )

2 Z (hn+1 2 Z Z(hs )2

i#j>2 s=n+2i,j>2

£ Y VU057 + 0521+ 5 Y Oy + 1P, (39)

s=n+1 i>2 s=n+2
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i.e., we have
Kn) 2 ligelllel(B - ap) - (——

+ellpesl P[(B — ap) — (—5—

1 +C2

-BN+Bl+A
-] - (2

-2£2(B - aﬁ)+(||<P€1||2||(P€2||2+1)(

o - ary2,)

C1+C2 ﬁ)+§:

Next, we define the Riemannian invariant by
u(p) = T(p) — inf{K(m)lm € T,M, dim 7 = 2}.

Hence, (34) and (40) will conclude

() < 1P —5)+ o IAG +

1
+§(B — 2ap)[(ne — Vtracep — elllper|* + llpeall* — 2¢)]

) - a’]

(n? — ne)

+
+(¥ — BO)[(traceqp — V)traceq + e(|lper|? + llpeal)]
c1+ ¢
~(=5= = Plne + lperlPllpel + 1]

C1+C2

—Bla(ne — 1)tracep + ﬁll(pelll ]+ (———= )I‘Iz(n(p).

9617

(40)

(41)

(42)

Furthermore, the equality is satisfied in (42) if and only if equality sign holds in all the previous

inequalities along with Lemma 2.4:
1 _ . .
hl?;* =0,i#j>2,
hii:hzi:hﬁj:0,52n+2,i,j>2,
Wit =hytt=0,i>2,
hi, +h, =0,s>2n+2,

n+1 n+l _ n+1__”_ n+1
R o g

One can fix {e1, e} fulfilling h”’rl 0 and denote by ¢ = h{;,d = h3,,c+d = hj; = ...

117
express the shape operators 5;, s E {n+1,...,m} in the following shapes:

c 0 0 0
0 d 0 0
0 0 c+d ... 0
S = .. . . . ’
00 0 0
00 0 c+d
and
h;l hig 0 ... 0
B, -k, 0 ... 0
0 0O 0 ... 0
5= . .. | n+1<s<m
0 0 0 0
0 0 0 0

= I1,,. Hence one can

(43)

(44)
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Above discussion can be summarized as:

Theorem 4.1. Let N" be Riemannian manifold isometrically immersed in M™. Then

) < wIHIEGE ) + U AG + ) - )
+3(B = 2af)(ne ~ Dytrace  elllperlP + lipesl? - 2¢1]
+(E22 - ) (traceq — Vtracep + e(lper]P + peslP)]
(52 - e +llpelPllpeall + 11

~Bla(ne - traceg + fliper ] + (- 2y,

Further, equality holds in above equation if and only if for {1, ..., Up, Uns1, . - ., Un), S reduces to (43) and (44).

From the above result, we obtain the following immediate consequences:

Corollary 4.2. For Riemannian manifold N" isometrically immersed in M"™, we have the following inequalities

(a) M™ equips a-ssm U-connection

n—2 nn—¢)
=1 "

1
+§B[(ne — Dtracep — e{|lperll* + llpeal* — 2&}]

[AG + ——) -]

Wu(p) < nHIR 7 AG* g

+
+<—C1 CZ)[(tmce(P — Dtracep + e(lpenl® + llpealP)]

_(C c+ Cz )l_lz(ﬂ(p).

2)ne + llpeulPlipealP + 11 + (=2

(b) M™ endows B-gsm U-connection

n—2 nn-¢) 1 1
-t T2 PGt Ty

1
+§B[(ne — Dtracep — e{ll(pelll2 + ||(p€2||2 —2¢}]

Lu(p) < n?|HIX )]

+
HEZ2 = Pltraceq — Dtracep + e(lper] + lipeal)]
c1+c¢C
~(F5—- ﬁz)[ne +llperlPllpezl + 1]

—Bliperll? + (A2 (m,).

(c) M™ endows ssm U-connection
-2 nn—-¢e), 1 1
-t T2 Gt ) U

1
+§B[(ns — Dtracep — e{|lperll* + llpeal* — 2¢}]

Hu(p) < r2IHIPGr

+
+(—C1 CZ)[(tmce(p — 1)tracep + 5(||(P€1||2 + ||(P€2||2)]

—(

(551

2)lne + ligerlPllpeal? + 11 + (22 (12p)-
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(d) M™ equips gsm U-connection

-2 nn—¢) 1

) = WP =)+ W IAG + )
+3Bl(ne — trace — ellper P+ llpeal? — 2¢1]
+(C1 J5r e_ 1[(tracep — 1)tracep + (llpeill* + llpeall*)]
(22 - D)ne +liger Plipezl + 11

c1+¢C
~llperl? + (=) (my).

Moreover, inequalities of the above four cases become equality if and only if for {uq, ..., Uy, Uns1, - . ., Un), Operator
S appears like (43) and (44).

Remark 2. For different settings of p and g, one can define some more structures on M, see [20] and our
results can be studied on manifolds equipped with these new structures.

5. Warped Product Submanifolds of M™

In 2002, Chen [6] investigated isometric minimal immersion of n-dimensional warped product subman-
ifolds N = N1 X¢ N, in real space forms M"(c) and established the following inequality:

A f n?
— < —|IHIF +
S IHII” + mc,
here n; = dimN;, n = n1 + n,. Furthermore, equality is valid in this relation if and only if N is mixed totally
geodesic.
Suppose N = N; X; N, be a warped product and D; and D, be the distributions due to vectors tangent
to leaves and fibres, resp. Then

1
Vil =Vl = ?(llf)lz, li € Dy, € D,.

This way, one can write the sectional curvature for the plane spanned by /; and I3 as

1
Ky A) = g(Vi, VLI =V, Vil 13) = }{(Vhll)f ~L2f).
Hence, one writes
A -
Tf = Zl‘K(uj Aug), se€f{m+1,..,n} (45)
=

Theorem 5.1. Let ¢ stands for an isometric immersion of submanifold N1 X¢ N of dim n into M™ (locally golden
product Lorentzian manifold endowed with gsm U-connection). Then

Af < (n + np)?

f 47’[2

here dimN; = n;,i = 1,2 and A stands for Laplacian operator of M.
In addition to the above, (46) identically holds for equality if and only if ¢ is a mixed totally geodesic immersion.

IHIP + nic, (46)
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Proof. Put
2 - _ 2
o = 2o e (FV5 +3)c1 + (£ V5 + 3)cr — 10a (n— e
2 10
+V5—-1)c;1 + (FV5—-1)c, — 10
_( V5 Jo+ & V5 - e, ap [(2ne — 2)tracep]

10
2(c1 + ¢ — 5‘82)[
5
so that (33) may be expressed as

n*IHIP = 2(o + IIP).

(tracep)? — tracep — ne],

9620

(47)

(48)

Consider some local orthonormal frame {uy, ..., u,} of T,N in such a way that {uy, ..., u,, } are tangent to

Niand {u,...,u,,} to Ny. In this way, (48) produces

here
n n

_ 1,n+1 _ n+1 _ n+1
a=hi",c _tht ,C3 = Z b,

t=n1+1
d=o+ Y (P -

t=2
n+ly,n+1
z htztz ht3t3 - z
1<ti#t)<n

2<t #t3<m m+1<ty#t5<n

n+lypn+1
taty ““tsts *

Using Lemma 2.4, one writes

n+lypn+l n+lypn+l
Z hh t htztz + Z htgtg ht4t4 2
1<t <tr<m m+1<ts<ts<n 1<ti<tr<n
and equality holding if and only if
1] n
n+l _ n+1
Z htl T Z hfzfz '

t=1 ty=n1+1

Further, the Gauss equation produces

n2A7f = T- Z K(etl/\etz)_ Z

K(Etl A etz)

1<t <tr<m n+1<t1<t,<n
= Pi— ) (- o)
1<ti<tr<m
- P2 - Z (hg:;hzzl - (h?;;j 2)’
m+1<tz<ts<n
where
(F V5 +3)c1 + (£ V5 + 3)c, — 1002
Py = (m —e)m
20
+V5-1)c; + (F V5 —1)cr — 10a
( o (20 )2 ’B[(ans — 2)traceq]

(c1+ ¢ —5p%)

2_ —_—
10 [(traceq)” — traceqp — ni €]

Yoz Y appe ) Y

r=n+2 ty,tr=

(49)

()1, (50)
1

(51)
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and
B _ 2
b _ B3+ S 0\/5 He = 10 o,
(i \/g _ 1)C1 + (12(;/5 - 1)62 - 100(ﬁ [(27125 — Z)tTaCQ(P]

(c1+c2— 5ﬁ2)[
10
Using (50) and (52), one obtains

(tmceqo)2 — traceq — nye].

nzA_f P (F V5 +3)c1 + (= V5 + 3)c, — 1002
f 20
(V5 - 1)c; + (FV5 - 1)c; — 10ap

— 10 [(ne — 1)traceq]

(n—en

+ ¢y — 52
- %[(tmce(p)2 — tracep — ne]

+ nlnzc—%g—i Z Z (h;tz)z

r=n+11<t;<ny n+1<t<n

- Y (Y s Y

r=n+2 1<t1<m r=n+2 ni+1<t<n
_ (FV5+3)c1 + (£ V5 +3)c, — 1002
< T- (n—en
20
+V5—-1)c; + (FV5—-1)c, — 10
— ( V5 )1 (+\/_ )2 ap [(ne — D)tracep]

10

— 5p?
_ a+e -5 6120 P )[(tmceqo)2 — traceqp — nel

1
+ 1’111’[2C—§Q
1
= L—Ln2||H||2+n1n2c (52)

This establishes the required inequality (46).

Additionally, it is clear from the above proof that equality holds in (46) if and only if hf;zl =0,1<t <

ny,m +1 < t, < n. This is equivalent to the fact that ¢ is mixed totally geodesic. The converse part is
obvious.
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