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Existence of positive solutions for mixed fractional differential
equation with p-Laplacian operator

Nuket Aykut Hamal**, Ilayda Ozbasak®

?Department of Mathematics, Ege University, 35100 Bornova, Izmir-Turkey

Abstract. In this paper, by using Avery-Peterson fixed point theorem, we establish the existence of at least
three positive solutions for fractional order differential equation involving the Caputo fractional derivative
and the Riemann-Liouville fractional derivative. An example is also presented to illustrate our main result.

1. Introduction

The existence of solutions for fractional-order boundary value problems have become an important
area of investigation in recent years. We refer the readers to [1, 3, 5, 9, 13, 17] and the references there
in. These studies use the fixed-point theory in cones. The differential equations with p-Laplacian operator
have been background in physics. Therefore, boundary value problems of fractional differential equations
with p-Laplacian operator have been greatly studied, see [2, 6, 7, 8, 16, 18]. Some authors investigated the
existence of solutions for a class of mixed fractional differential equations by using different methods. For
some interesting results on mixed fractional boundary value problems in literature [4, 6, 8, 10, 11, 19, 20].

In [6], Li worked on multiple positive solutions for nonlinear mixed fractional differential equation with
p-Laplacion operator:

Dy, [(Pp (D3+u(t))] + f(t,u(t)) =0,t € (0, 1),
[0, (D2.u@)]” =0, i=1,2,--- ,m,
1

-2
¢y (Dg.u) = Y bi[ 9y (D)),
i=1

(u(o))(]) :O/ j:O,].,Z,"' ,Tl—l,
-2
D tu(l) = ) Dy u(é),

i=1

where2<n<a<n+1l,1<m<B<m+landm+n+l<a+p<m+n+2 ¢yu)=uf>up>1
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In [13], Min et al. investigated the uniqueness of positive solutions for the singular fractional differential
equations involving integral boundary conditions:

Dg.u(t) + f (£ u(t), Dytu(t), Dgu(t), -, Dy *u(t)) = 0, te (0,1),
u(0) = D)u(0) = D)2u(0) = --- = D) *u(0) = 0,

il 1
Db u(1) = fo h(s)DE u(s)dA(s) + fo a(s)Dh: u(s)dA(s),

where DE')K u, Dg’j u, Dgﬁ u, k=1,2,---,n—2)and Dgiu (i =1,2,3) are the Riemann-Liouville derivatives
andn—-1<a<n, k—=1<ay, ye<k (k=1,2,---,n=-2), n—k-1<a-a<n—-kn—-k-1<a-y<n-k
(k =12---,n- 2)/ Vn-2 — Qnp-2 =0, ,81 2 ,82/ ,Bl = ,83/ o _ﬁi > 1, ,Bi —ay2 20, (l = 1/2/3)/
f :(0,1) X (0,+00)"1 — [0,+0c0) is a continuos function and a,h € C(0,1), A is a function of bounded

variation, fon h(s)Dg. Lu(s)dA(s), fol a(s)Dgr Lu(s)dA(s) denote the Riemann-Stieltjes integral with resprect to

Inspired by the above papers, we discuss the existence of positive solutions for the mixed fractional
differential equation with p-Laplacian operator:

"D [$p(D§u@)] + fit,u®) =0, te©1),

¢, (D5.u@)]" =0, i=1,2,,m,

-2
dp (D3.1(0)) = Y bi [0y (D3 ()], M
i=1

@@O)y? =0, j=0,1,2,---,n-1,

1
Dy u(1) = fo nh(s)Dgflu(s)dA(s)+ fo a(s)D3 M u(s)dA(s),

where2<n<a<n+l,1<m<p<m+1, 0<n<1,Dy, is the standart Riemann-Liouville derivative and
CD@ is the standart Caputo derivative, f : [0,1] X [0, 00) — [0, 0) is a continuous function and 4,1 € C[0, 1]
and ¢,(u) = luP~?u, p > 1. Aisafunction of bounded variation and foq h(s)Dg- Lu(s)dA(s), fol a(s)Dgs Lu(s)dA(s)
denote the Riemann-Stieltjes integral with resprect to A.
In this study, we assume that following conditions are satisfied:
1-2

(H1) 0<é1 <& <+ <&02<1,0<bh;<1,i=1,2,--- ,l—2areconstantsand2bi< 1,
i=1

7 1
(H2) f Ih(t)dA(t)+ f a(hdA() < 1,
0 0

(H3) f(t,u):[0,1] X [0, +00) — [0, +00) is a continuous function.

By using Avery-Peterson fixed point theorem, we get the existence of positive solutions for the boundary
value problem (1). The organization of this paper is as follows. In section 2, we provide some definitions
and preliminary lemmas which are key tools for our main result. In section 3, we give and prove our main
result. Finally, we give an example to illustrate how the main result can be used in practice.
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2. Preliminaries and lemmas

In this section, we present some neccessary definitons and related lemmas, which can be found in
[12, 14, 15].

Definition 2.1. The Riemann-Liouville fracitonal integral of order a for a function y : (0, +00) — R is given by

1 ¢
Ig.y(t) = @ fo (t—s)*y(s)ds, a >0

provided that such integral exists, where

+00
T'(a) = f e x* dx.
0

Definition 2.2. For a continuous function y : (0,4+00) — IR, the Caputo derivative of fractional order o > 0 is
defined as

1 t
a - - _ o\n—a-1
Dg.y(t) = T —a) jo‘ (t—5s) y(s)ds,
where n = [a] + 1, provided that the right side is pointwise defined on (0, +00).

Definition 2.3. For a continuous function y : (0,+c0) — IR, the Riemann-Liouville derivative of fractional order
a > 0 is defined as

1 (d\" [

Dg.y(t) = Toi—a) (E) j(; (t =)' y(s)ds,
where n = [a] + 1, provided that the rigt side is pointwise defined on (0, +00).
Lemma 2.4. Let o > 0, then

I5.°Dg.u(t) = u(t) + co + c1t + ot + -+ + ¢yt
forsomec;eR, i=0,---,n—=1, n=[a]+1
Lemma 2.5. Let o > 0, then

I8 D& u(t) = u(t) + cit* ' + et 2 4 -+ 4 0t
forsomecie R,i=1,---,n, n=[a]+1.

Lemma 2.6. Let y € C[0,1] be a given function, then the solution of the boundary value problem

D} [¢p (Dg.ut)] + ) =0, te©),

¢, (D5u@)]” =0, i=1,2,,m,

1-2
¢y (D, u©) = Y b9y (D5 u(z)] @
i=1

(u(o))(]) = OI ] = 0/ 1/2/' e, n = 1/

1
D tu(l) = fon h(s)DS: u(s)dA(s) +f0 a(s)D3 u(s)dA(s),
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is given by
u(t) = ct*t - m ]o‘ (t — )" w(s)ds, (3)
where
1 il t 1 t
f w(s)ds —f h(s)f w(s)dsdA(t) —f a(s)f w(s)dsdA(t)
o = 20 0 0 0 0 ) )
(1-061-02)T(a)
in which
o1 = f ! h(H)dA(L), (5)
0
1
6y = j{: a()dA(t), (6)

-2

doh f (@ -y f (s =0 y(r)dr

=1

e T a— "
(1= ) br(p)
i=1

g is the universe function of ¢,(u), i.e. 1/p+1/g=1

Proof. Firstly, we take the fractional integral of both sides of the equation. From Lemma 2.4, we get
1 t
D& u(t)) =do+dit + -+ dpt" — — f (t — 1)F y(t)dt
O (D) = do + @ Jo ’

From the condition [qb,, ( (0))](1) 0, i=1,2,---,m ,wecanget
di=dy=---=d,, =0.

Thus, we have

0 (D810) = o = £ f (t - Py, )

and by using the condition ¢p u(O) Zb [(j)p - u(&i ) ], we get

sz =0ty
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Then,

ot = 0Py
I'(B) ‘

Taking integral from O to ¢, we have

Dgﬁxl(t) = gbq [do -

f f(S—T)ﬁ Ly(t)dr
(t=5)"""py | do -

1 = ta—l ta—Z ta n-1 .
ut) =c +0c “+ Cpi1 +_1"( ) ) ds
On the other hand, together with (u(O))j =0,j=01,2,---,n—1,wecangetc, =c3 = -+ = cy41 = 0. Thus
we obtain,

sz (- oy f (s — P y(r)dr
M(f)—clfal“‘mf(t—s)a Y|~ = [ 12 ] T(B) ds
I

- zbi
i=1

=ct*t = m f (t = 5)* w(s)ds.

Then, boundary condition Dg:lu(l) h(s)D Lu(s)dA(s) + fo a(s)Dg- Lu(s)dA(s) implies that

f w(s)ds — f h(t) f w(s)dsdA(t) — f a(t) f (s)dsdA(t)

“= (T—01 - o)L (@)

Substituting c; into u(t), we have

f w(s)ds — f h(t) f (s)dsdA(t) — f a(t) f (s)dsdA(t) ot ﬁ fot(t—s)“_lw(s) s

(1 =61 - 62)[(a)

u(t) =

This completes the proof. [J

Lemma 2.7. Suppose that the condition (H1), (H2) and (H3) hold, then u(t) is a non-negative and non-decreasing
function.

Proof. It is obvious that w(s) > 0,

u(t) = ct*t = mf(t s)* w(s)ds

f w(s)ds — f h(t) f (s)dsdA(t) — f a(t) f dsdA(t)ta_l_ ot o

=61 =52 (@) @ J, VO

>
=0.

Similarly, we can say that u’(t) > 0. Then, we get that u(t) is a nonnegative and nondecreasing function.
This completes the proof. [
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Let us introduce the Banach Space E = C[0, 1] with the norm ||u|| = trr}(e)aﬁlu(t)l and we define the cone:
<[o,

P = {u € E : u(t) is nonnegative and nondecreasing function for t € [0, 1]}

and operator T : P — E given by

t
Tu(t):clt“‘l—ﬁ fo (t — )" Lw(s)ds

where ¢; and w(s) are defined by Lemma 2.6.
Lemma 2.8. T : P — P is a completely continuous operator.

Proof. From Lemma 2.7, we can get that the operator Tu(t) is non-negative and non-decreasing. Thus,
T : P — P. In view of continuity of f(t, 1), we have T is a continuous operator for ¢ € [0, 1].

Let QO c P be bounded. By (H3), we get that there exists a constant L > 0 such that f(t,u) <L, t € [0,1],
u € QQ, we have

-2 &

LY b f (G-l f (1 - opldr
i=1 0 0
w(s) < ¢y ) + )
[1 - Zbi] T(B)
i=1 -
. L
- -2
[1 - Zbi] T(B+1)
i=1
So, we get

¢
Tu(t) = c1t*7! - ﬁ j; (t — )" Lw(s)ds

fo (s

< 0 @@
- 1=6-6)I(a)

1971
<
- -2 -1
(1-61 - 62)T(@) [(1 = Y T+ 1)]
i=1
Consequently,
1971
ITull <

-2 -1
(1 - 61 — 5) (@) [(1 - Zbi)r(ﬁ + 1)}

i=1
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In the following we will proof that T(Q) is equicontinuous. For t1,t, € [0,1]. t; < t;, u € Q, we have

|(Tu)(t2) = (Tu)(t:)l =

A —f (tr — 8)* w(s)ds — e 157 + —f (t = )" w(s)ds

<c 't“ 1o ti” 1| + — @ f(; (2 = 5)* Lw(s)ds —j(; (t, — 5)* w(s)ds

< 1 L (ta—l _ ta—l)
T (1 =061 — 6)T () -2 2 1
(1= ) bi)r(p+1)
i=1 -
1 L Lo
i T(a+1) 1-2 (t; — 1)

- Zbi)r(ﬁ +1)
i=1

We have the right-hand side of the above inequalities tends to zero if t; — t;. Using Arzela-Ascoli Theorem,
we have T is a completely continuous operator. [

Let P be a cone in real Banach space E; y, 0 be two non negative continuous convex functionals on P; @
be a non-negative continuous concave functionals on P and ¢ be non-negative continuous functionals on
P. Then, for positive real numbers #, 7, c and d, we define the following sets:

P(y,d)={xeP: y(x)<d},
Py,w,r,d)y={xeP:r<wx),ylx) <d},
P(y,0,w,1,c,dy={xeP:r<wk),0x) <cykx) <d,
QW ¥ hd)={xeP:h<y(x),y(x) <d}.

Theorem 2.9. ([9]) Let P be a cone in real Banach space E. Let y and 0 be non-negative continuous convex
functionals on P, w be a non-negative continuous concave functionals on P, and 1 be a non-negative continuous
functionals on P satisfying (Ax) < A(x) for 0 < A < 1 such that, for some positive numbers d and M,

w(x) <YP(x) and |Ix|| < My(x) forall xe€ P(y,d).

Suppose further that T : P(y,d) — P(y,d) is completely continuous and there exist positive numbers h, r and ¢ with
h < rsuch that:

(C1) {xeP(y,0,w,1,c,d) : w(x) > r} # 0and w(Tx) > r forx € P(y, 0, w,1,c,d),
(C2) w(Tx) > rforx € P(y,w,r,d) with 6(Tx) > c,

(C3) 0¢ Q(y, ¥, h,d) and Y(Tx) < hand x € Q(y, ¢, h,d) with P(x) =

Then T has at least three fixed points x1,%2, X3 € m such that

y(x) <d, fori=1,2,3

and
r<w(x)), h<ylx), y)<r Ps3)<h.
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3. Main Result
To prove that (1) has three positive solutions, the following convex and concave functionals are defined
by
y(u) = 000) = () = maxju(t)l, @) = min fu(b).

te[&2,1]

Theorem 3.1. Assume that there exist positive numbers h,r,c,d withh <r < < ¢ <dand f holds the following

& 21
conditions:

(H4) f(t,u) < (dMq)P1, for (t,u) € [0,1] X [0, d],
(H5) f(t,u) > (rMp)P~L, for (t,u) € [0,1] X [r, c],
(H6) f(t,u) < (hMl)p_l,for (t,u) € [0,1]1 x [0, H],

where

1-2 -1
M = (1 -6 - 5)T(a) {[1 - Zbi] TR+ 1)] )
i=1

and

-2 -1
(1-61 - 62)T(e) la =) bir(p + 1)]
i=1
M2 =

1-2 -1
[Zbiéf] (1- &) &)
i=1
Then the problem (1) has at least three positive solutions uy, up, uz satisfying

y(u)<d fori=1,2,3
and
r<ow(), h<iy(up), yu)<r, Yus)<h.
Proof. Now, we prove that all the conditions of Theorem 2.9 are satisfied. We will show that T : P(y,d) —
P(y,d). For u € P(y,d), by assumption (H4), we get
aM;

1-2 g-1"
a- Zbi)r(/a + 1)}
i=1

w(s) <

Then,

Tu(t) = ct*! - m f (t = 5)* tw(s)ds

f(; w(s)ds

T (1-061-62)I(a)

< dM;

q-1

1-2
1 -6, — 6,)T(a) [[1 - Zbi] T +1)
i=1

=d.
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We obtain, T : P(y,d) — P(y,d).

To prove that (C;) condition holds, taking uo(t) = (r + c)/2, we get
y(ug) = 0(ug) = (r+¢)/2,  w(uo) = (r+0c)/2,

and
y(o) = (r+c)/2<d, O(up)=(r+c)/2<c, wlug)=(r+c)/2>r.

As aresult, {x € P(y,0,w,1,c,d)lw(x) > r} # 0. Forallu € P(y, 0, w,1,c,d), by (Hs), we have
w (Tu) = min_[Tu(t)| = [Tu(&-2)|
te[&),1]

1 Ei2
=0 &) - @) fo (&2 — )" w(s)ds

1 n t 1 t
Lw(S)dS_L h(t)fo‘w(s)dsdA(t)—fO‘ a(t)]o‘w(s)dsdA(t)

a—1
= 1-01 - 5)T(@) =

El-2

1-2
_F(a) | w(s)ds

1
oo

1- 61 62)1“((1 5 -2

(
q-1
l (M)’ szg’g .

) ds
&2
a- Zbl LB +1)
i=1 éa—l
(1-061-062)T(a) 2

This shows that the condition (C;) is satisfied. Let u € P(y, w, r,d) with 6 (Tu(t)) > c, we have

w (Tu) = mln [Tu(®) = [Tu(&1-2)|

‘712

El2
=& - % L (E1-2 = 9)* " w(s)ds,

and

0 (Tu) = max |[Tu(t)| = Tu(1)
te[0,1]

— _L ! _ a1
=0 l"(a)fo(l s)* w(s)ds
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Then

1 Ei2
o (i) = 50T =&} - 7 fo R
£

T

1
f (1 = s)* Lw(s)ds
0

> 0.

So we can get w (Tu) > 5?__219 (Tu) > 5?__2% > r, that is, w (Tu) > r which shows that the condition (C;) is
satisfied.

Next we will prove that the condition (C3) holds. Assume that u € Q(y, ¢, h, d) with /() = h. Then by
(Hg), we have

hM,
-2 -1
[(1 - Zbi)r(ﬁ + 1)}
i=1

Thus, we have

w(s) <

Y (Tu) = max [Tu(t)] = Tu(1)

1 n t 1 !
Lw(s)ds—[) h(t)Lw(s)dsdA(t)—j; a(t)ﬁw(s)dsdA(t)

- 1 ' a—1
= (1- 61 - 62)(a) " T fo (1 - )" Lw(s)ds

1
f w(s)ds
0

< v @
T (1-61 -0 (@)
hM;

<

-2 -1

(1 =61 — 6)T(a) [(1 - Zbi)r(ﬁ +1)
i=1

=h.

Consequently, the condition (Cs) is satisfied. We get that the boundary value problem (1) has at least
three positive solutions u;, u; and u3 such that

y(ui)<d fori=1,2,3

and

r< w(ul)r h < lnb(uZ)/ 7/(“2) <r, lnb(uS) <h.

This completes the proof. [
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4. Example

Consider the following boundary value problem :

Dy [¢p (D§.u(®)] + FL,u) =0, te(©,1),

oy (D3.u@)]” =0, i=1,2,,m,

1-2
¢y (Dgu(0)) = Y bi [0y (DG u(z))]
i=1

w(@©)?=0,j=0,1,2,---,n—1,

1
Dgu(1) = j; qh(s)Dgflu(s)dA(s)+ j; a(s)D3 u(s)dA(s)

wheren=2,m=1,1=4,04=25=150=02,0,=03,p=3,1=0.1,& =0.1,& =02and

t4, 0<t<1l, 0<uc<?2,

Ftu) = t* +400(u — 2), 0<t<1, 2<u<3,

! t*+400+10w—3), 0<t<1, 3<ux<35
t#* + 720, 0<t<1, u>35.

Additively, if we choose A(f) =, a(t) = §, h(t) =1,h = 2,r =3, ¢ = 35 and d = 40, then f(t, u) satisfies the
following inequalities:

f(t,u) < (M) ~ 7933994663, (t,u) € [0,1] x [0, 40],
f(t,u) > (rMp)P™" ~ 486.45, (t,u) €0,1] x [3,35],
f(t,u) < (WM )P~ ~ 1.983498666, (t,u) € [0,1] x [0,2].

In this case all the conditions of Theorem 2.9 are satisfied. Hence, by Theorem 2.9, we prove that the
boundary value problem has at least three positive solutions u1, u; and u3 such that

y(u)) <40 fori=1,2,3

and
3<w(u), 2<iyur), yuz)<3, Pluz)<2.
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