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New generalized ¢)—Atangana Baleanu Caputo fractional derivative on
fuzzy Darboux problem
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Abstract. In this study, we initiate a new concept of generalized ¢p—Caputo Atangana Baleanu fractional
derivative by combining the ¢—Caputo and Atangana Baleanu fractional derivatives with respect to the
generalized Mittag-Leffler kernel which preserves information and solves a variant of Darboux’s Problem
for fuzzy implicit fractional differential equations. Using fixed point approach, we prove various existence
and uniqueness results. The practical significance of our findings is further proven by an application. The
presented results enrich, extend and generalize several prior findings in the literature.

1. Introduction

Fractional derivatives are mathematical concepts employed in mathematical analysis to describe non-
integer powers of derivation and integration operators. Fractional derivatives are applied in a number of
areas of physics, including electromagnetism, acoustics, mechanical modeling of rubber and materials with
viscoelastic properties that retain the memory of past deformations ( see e.g. [9]).

The concept of fuzziness [17] is incorporated into the classical fractional calculus to develop fuzzy
fractional calculus. Particularly, an extension of the Caputo derivative used in fuzzy fractional calculus
is the Atangana [6]. The Atangana-Baleanu-Caputo derivative is distinguished by its non-local and non-
singular kernel that is connected to various applications [2, 14]. Comparatively, the Caputo derivative,
a local fractional derivative that is often employed in fractional calculus [13]. The generalized Casson
fluid model including heat generation and chemical reaction is one example of how it is used to describe
numerous phenomena. Recent studies investigated the FFDEs using the generalized Atangana-Baleanu
fractional derivative [1, 3, 15, 16].

In this paper, we initiate a new concept of generalized p—Caputo Atangana Baleanu fractional derivative
by combining the ¢p—Caputo and Atangana Baleanu fractional derivatives with respect to the generalized
Mittag-Leffler kernel which preserves information and solves a variant of Darboux’s Problem for fuzzy
implicit fractional differential equations. Using fixed point approach, we prove various existence and
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uniqueness results. First, we study the existence and uniqueness of solutions to fuzzy hyperbolic par-
tial differential equations with non-local conditions using generalized ¢ — ABC by applying the Banach
contraction principle to the following fractional differential equations with initial conditions:

ABC DT, 0) = glu, 0, L, 0)] = f (u,, Cu, 0), APODE T C(u, 0)); (1)

(u,v) € ] =10,a] X [0, D]

C(u,0) = p(u);u € [0,a],
C(0,v) = Y(v);v € [0, b] )
¢(0) = ¥(0)

where a,b > 0, ABCD 77 is the generalized ¢p—ABC fractional derivative of order 9 = (8;,9,) €
0,11 x(0,1], f : I X Reg x Rg = Ry and g : ] X Rg — Ry are a given continuous function, ¢ : [0,4] —
Rg, ¢ : [0,b] — Rg are given absolutely continuous functions with (1) = ¢(u,0), (v) = ¢(0,v) for each
u € [0,a],v € [0,b] and C(0,0) = 1(0) = p(0).

This paper is structured as follows. In section 2, we present some basic definitions of fractional integrals
and derivatives. The Basic model formulation of the generalized ¢p—ABC fractional derivative and appli-
cation of fractional calculus is demonstrated in Section 3. The existence the uniqueness and uniqueness of
the problem solution are established in Section 4. Finally, section 5 specifically provides some illustrative
remarks and examples.

2. Preliminaries

Here we briefly discuss some basic concepts and main properties of fuzzy sets and functions as well as
fuzzy calculus. we refer to Ry the set of all fuzzy numbers on RR.

Definition 2.1. [10] we define the fuzzy set Y in Ry by a function
Y: R —[0,1],
where Y (t) is the membership degree of T to Y. Y is also supported by
supp(Y) = {r e R| Y(7) > 0},

Definition 2.2. [11] Let us consider Y : R — [0, 1], Y is called a fuzzy number if it satisfies the following properties

1. Y is normal,
2. Y is upper semi-continuous,
3. Y is fuzzy convex,

4. {t e R|Y(7) > 0} is compact.

A fuzzy number can be represented as an r-level as follows
Y ={teRY(t) >}
We can write in interval form as follows
(YT = [x(), ()]
which satisfies for r € [0, 1] the following conditions:

e Y(r) is a increasing left continuous function.
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e Y(r) is a decreasing right continuous function.

o Y(r) <Y().

Definition 2.3. [5, 7] Let y € R,C = [(, (] and x = [k, x]. Then
L Cox=[C+x(+%]

[yC,yCly >0,
2. yoC= B
[yC ycl,y <O.

3. We noted © the H-difference,
w © C makes sense if it exists ® € Ry such that v = (@ @ for all w, C € Ry,

4. The Hausdorff distance is defined by

dy : Rg Xx R —» R*

dp(C, %) = sup max{|C —x],IC - ).
re[0,1]

5. The uniform distance is given by
d(C,x) = sup du(C(7), x(1)).

7€[0,1]

Definition 2.4. [8] The generalized Hukuhara difference (gH) of two fuzzy numbers is defined as follows

O @ = C (i) w=w+CCor

) =( &

gH (i) @ =aw+(=1)C
Forall, w,® € R¢.

Definition 2.5. [8] Let ¢ € (0,1) and h be such that £ + h € (0,1), then the generalized Hukuhara derivative of a
fuzzy valued function C : (0,1) — Ry at £ is defined as

o i S+ 1) S (L)
€0 = im =

Let C = [(,C].
o If Cis Caputo (i) — gH differentiable then, {’ = [g’,zl].

e If Cis Caputo (if) — gH differentiable then, I’ = [Z,, ¢ ] .

3. Generalized Fuzzy ¢p—ABC Fractional Derivative

To introduce the concept of generalized fuzzy fractional derivatives ¢—ABC in a fuzzy environment,
we will provide basic information about fuzzy fractional derivatives. In the remainder of this section, we
introduce the basic theory and identify some of the necessary results used in this paper.
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Definition 3.1. Let 7 € [0,a], and C € Ly, [0,4] is a fuzzy-valued function. Then The fuzzy RL-integral of order 9
is defined as

RLC(r) = % fo T(T — )" C(s)ds, 3)

F(S):f 9 le ™ .
0

Definition 3.2. Let C € Ly, [0, a] is a fuzzy-valued function, we define the fuzzy partial fractional integral of order
9 = (91, 92) by

where, I'(+) is the Gamma function defined by

RLy 9 _ 1 “ T i1y 8-l
10,9 = Frgreg o | @9 =0 s, @

Assume that {(t, 7) = [{(g, 1), {(7, )] with r € [0,1].
o If ((7,7)is Caput(_> (i) — gH differentiable then,
RS, C(rr) = [F (), *H (e 7).
e If (7, r) is Caputo (ii) — gH differentiable then,
RLIs,C(nr) = [F T, 7), M 7))
Definition 3.3. Let us consider ¢ € C([0,a];R;) and C € Lg,[0,a]. The fuzzy ¢—Riemann Liouville fractional

integral of level S of the function C is written asy

RLITWC(T):% fo O’ (5)(P(7) = (s)) > C(s)ds. 5)

Definition 3.4. Let us consider ¢ € C([0,a];R;) and C € Lg,[0,a]. The mixed ¢—Riemann-Liouville integral of
order 9 = (91, 92) of u is denied by

1 U U
RLy 8¢ e :—ff ")’ (¢
X(p(u) = P(9))* " (P(v) = p(1) 71 (s, Hdtds.
In what follows, we give the AB definition in Caputo’s sense and the AB integration. Let AB(J) be a
normalization function such that

3
AB(0) = AB(1) = Tand AB(9) = 1= 3+ .

Definition 3.5. The fuzzy derivative ABC and the integral AB of a function C € Lgr,[0,a] of order § are given
respectively as follows

mepen = 20 [k (-5 9o, %
0
and
ABISC(1) = asl(7) + BT (S + DREII (), (8)

o i
where E(T) = Z m is the Mittag-Leffler function and
i=0

1-9 1

= B P T AR e)
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The following definition is a generalisation of the previous definition.

Definition 3.6. Let 9 € (0,1) and ¢ € C([0,a], R). The generalized ¢ — ABC derivative of a fuzzy number valued
function C(t) on interval is defined in the the following form,

D = T2F 0 [ Gue ok, (5 (00 -06))as )

where

(o)

(V)iti
4 _ 2 '
ES,y(t) = L TGS + 1) 9>0, u>0, (10)

with (y); is the Pochhammer symbol standing for

Mi=y+D+2)...(y+i-1), (@o=1 y=#0.

Remark 3.7. Here y can also take on negative integers. We can also write (y); in the form of a gamma function, as
follows

L(y +1)
T(y) ’

Definition 3.8. Let us consider 9 € (0,1), ¢ € C([0,a;R\]) and C € Lg,[0,a]. The generalized fractional integral
operator ¢ — AB is defined as

)=

Y k
AB Y50 _ Y d RL7kS;¢
LH7g(r) —;( i ) Bon—go k. (11)

Theorem 3.9. The generalized ¢p — ABC fractional derivative of given 9 can be expressed as:

ABC 1~ Y5¢ _AB(S) = (y)k (kS) 9 k kS+1¢C(T)
D7) = Z:;‘ (SK) k! ( 1- s) 50 (12)

Proof. Based on the Mittag-Leffler concept Ef; H(T) given by (10) and the formula of ¢p—Riemann Liouville,
we get

D) = G © [ o (75 (00 -009) )
AB(S ’ (7/) - k9
T 1-9 Qf CW(S)O;; k!F(kSk-i- y)(l 9) (60 - 06) " ds,

AB(S ) -9 T ()
- Ztk'l”(k);:y)(l—S) © ¢()‘P()®(¢(T) 06) " ds,

AB(\9 () (kB) -
- Z (k9), K (= s) F(k9+1) f ¢()‘P(S)®(¢(T) 06) " ds,

AB(S ()i (k) S ko+1;0 C'(T)
= Z (SK) k! (_1—9) Ao
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Theorem 3.10. Let us consider C € Lg,[0,a], 9 € (0,1) and ¢ € C([0,a;R,]) then, the following assertion is
satisfied:

ABC If,y,m (ABC Df’“'w) C(t)) = C(7) 641 C(0). w

Proof. Based on the concepts of generalized ¢ — AB fractional integrals (11) and generalized ¢ — ABC
fractional derivatives (12), we have

ABC If,w;(PABc DS'#'VKP (7)),

_ RL7kS;p ABCySttyip
Z( )AB(S)(l— g P

1-9 apcyouyi v S RL 7k8;0 ABC 1y S/ Yip
= —Arp + S A— TS DMk ,
AB@E D@ kZ:; k | AB(9)(1 - 9y o e

C1-9ABE) v ;G 9 o (1)
T AB®) 1-9 & (j9), (_1—9) ¢’ (1)

SAB®) v ;G99 Ve T
RL kS0 _ j9+1;
+Z( )AB(S)(I o1 L 1o9 Lt G, ( 1—\9)17 &)’

Z(V) (JS)( 9 )f 10 €0
GOt N 1=9/77 ¢(1)

9 ;GO 9\ jsaie C)
+Z( K )(ﬁ) o kMZ G9! ( 1—9) I chTz)’

Z (V) (]‘9) ( 9 )] Ij8+1;¢)c (7)
(9t \ 1=9/7 ¢'(7)

iG99 Vo ise1 T(T)
Z( )(ﬁ) o sz (79),)! ( 1—9)148 quz)’

Z »);(G9) ( 9 )] o+ &0
(GOt \ 1=8)"7" ¢ (1)

: 0G99\ awssne C(0)
)4 (j+k)9+1;0
*Z;( e L s

— R C'(t) Z ); (j9) ( 9 )j Ijs+1;¢&

qb (t) (]‘9);1]' 1-9 ¢’(T)
MG 9V ansrse ()
Y o (j+o9+1;9 &' (T)
+;( k )( b ]ZO o Crs) Y ey
= C(7) ©gn C(0).

O

In the following theorem, we review Krasnosel’skii’s fixed point theorem, which is used to verify the
existence and uniqueness of solutions to the problem (1)-(2).



F. 1. A. Amir et al. / Filomat 38:27 (2024), 9673-9688 9679

Theorem 3.11. (Krasnosel’skii fixed point theorem for fuzzy metric spaces) Allow M to be a non empty, closed and
convex subset of C (I, &) and assume that Q and H map M into S and

i) Qs continuous and compact,
ii) Qt + Hs € M, for every t,s € M,
iit) H is a contraction mapping.

Then, there exists a fixed point for Q + H in M, that is, there is s € M for which Qs + Hs = s.

4. Fuzzy differential equations involving ¢—ABC fractional derivative

In this section, we consider non-local conditional fuzzy hyperbolic partial differential equations involv-
ing fractional derivatives ¢—ABC as follows

AR L, 0) = g, 0, L, 0))] = f (1,0, L, 0), APDL" L, ) ; (14)
(u,v) € ] =10,a] X [0, D]
C(u,0) = p(u);u € [0,a],

¢(0,0) = ¢Y(v);v €0, 0] (15)
¢(0) = ¥(0)

where a,b > 0, ABCDE;,“’M) is the generalized ¢—ABC fractional derivative of order 9 = (81,9,) €
(0,11 x(0,1], f : I X Reg X Rg = Ry and g : ] X R — Ry are a given continuous function, ¢ : [0,4] —
Rg, ¢ : [0,b] = Ry are given absolutely continuous functions with (1) = ¢(u,0), (v) = ¢(0,v) for each
u € [0,a],v € [0,b] and C(0,0) = ¢(0) = ¢(0).

For the existence of solutions for the problem (14)-(15) we need the following lemma.

Lemma 4.1. Let the function f : [ X Ry X R = Ry and g : | X R — Ry be continuous. Then problem (14)-(15)
is equivalent to the problem of the solution of the equation

w(u,v) = 4D g (u, 0, (1, 0) + BLATP o, v)) + f(u, 0, (1, 0) + 2B wo(u, v), w(u, v)) ,
and if w € C(J) is the solution of this equation, then

C(u, ) =, v) + L w(u, v), (16)

where
n(u,v) = pu) + P(v) - ¢(0).

Proof. let’s set
ABCDSYR L, 0) = w(u, v) (17)

Using the generalized ¢p—ABC fractional derivative definition, applying the operator 4B°D #7* to both
sides of (17) and the relation (13) of theorem 3.10, we get

C(u, v) = C(u,0) — C(0,0) + C(0,0) = “PLA"? wo(u, v),

C(u, 0) = n(u,0) + L P w(u, v),
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with
n(u,v) = C(u,0) + £(0,0) — C(0,0) = @(u) + P(v) — ¢(0).
So, by taking the value of (1, v) in (14), we find

w(u,v) = ABEDLH g (u, 0,0, 0) + LA wo(u, v)) + f(u, 0,0, 0) + LA w(u, 0), w(u, v)).

This means that the solution to problem (14)-(15) is equivalent to problem (16), provided that w(u, v) is the
solution to equation (4.1). [

Further, we present conditions for the existence and uniqueness of a solution of problem (14)-(15).
Theorem 4.2. Assume that the following hypotheses hold:
(H1) f:]xRg xRy = Ry and g : | X Re — Ry are a continuous function;

(Ha) Forany C,¢&,0,w € C(J; Ry) verifying C(u,0) = &(u,0) = (1) and C(0,v) = &(0,v) = Y(v) and there exists
A>0,0<06;p <1such that

d(f(u,0,C,0); f(u,v, &, w)) < Ad(C; &) + 6d(0; w)

and
d(g(u,v,0); 9(u,v,&)) < pd(C; &).

let’s set

_AB®)AB®) v () (_ 9 )k = (0 (_ 9 )f
A_épl—sl 1-9, ék'r(k91+y) 1-9 X;]‘F(]Sz+/vl) 1-9,

and

1=

V4 k _ k91
O - ;( ;{/ ) i (p(a) — $(0)) y

D AB(Sl)(l - Sl)k‘ll"(ksl + 1) i

(y) 9(9®) - pO))™
j ] AB(®:)(1 = )71 T(j8; + 1)’

1]
(=1

If

_d-pa-9)

o< A (18)

then there exists a unique solution for IVP (14)-(15) on J.
Proof. Transform the problem (14)-(15) into a fixed point problem.
Consider the operator .4 : C(J) — C(J) defined by,
N (O, v) = n(u,v) + LI w(u, v),
where w € C(J) such that
w(u,v) = ABCDLS,;)‘")/@;] (u,v,C(u,v)) + f (u,v,C(u,v), w(u,v)).
By Lemma 4.1, the problem of finding the solutions of the IVP (14)-(15) is reduced to finding the solutions

of the operator equation .#'(C) = C.
We proceed as follows
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Case Caputo (i) — gH differentiable: The problem (14)-(15) is equivalent to the following fractional differ-
ential system

ABCD S [g(u, v) - g, (u, v, (u, 0),C (1, Z)))] =f (u, v, (u, 0),C (1, v)),'(u, v)€e] 19)
Cw,0) = ' ;C'(0,0)=¢'(), uel0,alvel0,b]

and
D [T ,0) = e (1,0, 0 (1,0), T (0,0))] = by (1,0, 80,0, T (,0));(0,0) € ] 20)
C(,0)=9');C(0,0) =9 (), uel0,avelob]

We define the operator .4 by
AN, 0) = 17w, 0) + L o, 0),
with
' (w,0) = @"(u) + P'(v) — ¢(0).
Let C, & € C(J). Then, for (u,v) € |, we have
d (A (), 0 N (ENw,0)) = d (PPLd P w(u, 0); P 1d " o(u, ),

where w, 0 € C(J) such that

w(u,v) = ABCD{?U“ v ¢)g (u,v,C(u,v)) + f (u,v,C(u,v), w(u,v))
and
o(u,v) = “BDI g (u, v, Eu,0)) + f (1,0, &(u,0), 01, 0).

So,
d (N (), 0); A (E)w,0)) < d (PPLd7PABCDRET g (u, 0, Cu, 0)); AP Lt P ABCDE g (u, 0, &1, 0)) )
+d<ABlidef(u v, C(u,v), w(1,v)); ABISWd)f(u v,&(u,v),0(u, v)))
By (H>), we have
d (AB I;j;}#%‘i’ABCDg;]HJ e g (u,v,C(u, v)) ;4P IS ALY ABC DS ALY 9,0, &, v)))
<d(g(u,v,Cu,v); 9,0, EW0))+d(gw,0,0u,0);9w,0,Eu,0)))
+d(g(0,,8(0,0));9(0,7,£(0,0))) +d(g(0,0,8(0,0)); 9 (0,0,£(0,0)),

< pd (C(u,v); E(u,v)) + 0+ 0+ 0.

Thus,

d (APL VP ABCDEY g (u, 0, L, 0) AP L P ABCDR g (1,0, E(u, 0))) < pd (T (u, ); € (1, )
(21)

and
d(ABIS’“’V;d’f (u,v,C(u,0), w(u, v));ABIfZ’J”’y;¢f (u,v,&u,v),0(u, v)))

Sk 14 9/
Y 2
= Z‘( )AB(Sl) 1= 91T (k1) Z‘( ] ) AB(8:2)(1 = 9,)/71T(j92)

’ ’ _ k91-1 _ 7921
x fo fo & (96 OO0 - §E) (o) - H(B)
wd (F 1,0, 5, ), 006 ) £ (5, £ £6, B, (s, 1)) dtds,
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with
4 (f (1,0, C(s, 1), @(s,1); £ (5,1, &(s, 1), 9(5, 1))
< A (L(s, t); &5, 1) + 0d (w(s, ); 0(s, £)
(1= 0)d (f (1,0, L(5, 1), (5, 1)) f (5,1, (5, ), 0G5, 1),
< Ad(C(s, t); &(s, 1)) + 0d (ABCDgz’,” R qbg (u,v, &(u, v)) ; ABCD#? ¢>g (u, v, C(u, v))) ,
: AB(91) AB(9,) Ok 9
< M)+ 1-91 1-9, kz_;‘ KT (k91 + ) (_ 1- 81)
Zo‘ T (182 + 1) ( 1= 92) d(g(u,0,E(u,0));9 (,0,Cu,0))),
AB(31) AB(82) g
< Ad(Clo 12, 0) + 0p —( 91) 1 —( 822) Z k!F(lEgzk+ 1) (_1 —181)
204 ]lr(]‘92+y ( 1= ‘9 ) d (&(u,v)); C(u,v)).
Consequently
d(f (u,0,C(s,1), (s, D) f (5,1, £(5, 1), 0(5,1)) < (q i;\)d(é(u, 0)); L(u,v)),
where

o)

AB(\9 ) AB(32) ) 9
A=0p37 311 = 922 Zk'r(k81k+ y)( = 91) ; 'r(]sz+y)( 1—292)'

Which implies that
d(ABIS’“’WPf (u,v,C(u,v), a)(u v)) 'ABIEUH v (Pf (u,v,&,0),0(u, v)))
( | 57w
AB($1)(1 - Sl)k 1T (kS1) AB(92)(1 — 92)/71T(j95)

X

(F53) [ [ 000000 - 660000 - o)™ w0t o s,

(y) 31 (9(@) — p(0)) ZV:( ) 9((b) - H(0))/*
= k] AB(81)(1 — 91)F1T (k91 + 1) AB(92)(1 = 9,)/71T(j82 + 1)

X

(T ) (E(u,0)); C(u, v)) .

Thus,

d(ABIfoW(Pf(u v, C(u,v), w(u,v)); ABISW(‘)f(u v,&(u,v),0(u, v))) (A A

= )d (€0 Cw,0),
(22)

where

0-) (V) @) - O (V) S6(b) — $(0)
K JAB®)(1 - 81Tk + 1) 4\ T ] AB(S2)(1 = 827 T(j82 + 1)
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Finally from (21) and (22), we find

A (A (), 05 N (), ) < [p +e (q t;\)] 4 (w00 (u,0)).

By .4 is a contraction, and hence .4 has a unique fixed point by Banach’s contraction principle.

Case Caputo (i) — gH differentiability: The problem (14)-(15) is equivalent to the following fractional
differential system

ABCDR T [ (w,0) = g, (1,0, (1, 9), € (,0))] = fr (w,0,C'(1,0),T (,0)); (w,0) € ] )
C'(u,0) = fr(u);g(O, v) = f(v), u€[0,a],v€[0,b]

and
ABCDE;)H,)/KP [Zr(u, v) —h, (u, v, (u,v), Z’(u, v))] =k, (u, v,C'(u, U),Zr(u, v)) ;(u,v)e] (24)
T w0 =9 w);C0,0) =y, ucl0alvel0,b].

Transform the problem (23) into fixed point problem, so we consider the operator:
A @Yt 0) = 17w, 0) 1 w(u, o),

with
7 (1,9) = 9'(1) + Y/ (2) — p(0).

Similarly, we can show that there exists at least one solution to the problem (14)-(15).
U

The following result is based on a Krasnosel’skii fixed point theorem for fuzzy metric spaces.

Theorem 4.3. Assume f : [ X RF X Rg = Re and g : ] X Ry — Ry satisfying assumptions (Hy) and that the
following hypotheses hold

(H3) There exist D; E; F; G € C(J;Ry) and C € C(J;Ry) which checks C(u,0) = @(u) and C(0, v) = Y(v) such that
d(f(u,,C,£);0) < D(u, v) + E(u, 0)d(C; 0) + F(u, v)d(&; 0)

and . .
d(g(u,v,0);0) < G(u, v)d(C; 0).

(Hy) Forall (u,v) € ] the set
M = {C eC (]/ ]RT) : d(C(u/ U)/ 17(1/{, U)) < R/ (M, U) € ]} ’

is a closed convex subset that is not empty, with

R = 4Gl (¢, 09;0) + 1= (1Dl + Avd (20,03,
where ) ‘
@foy) S(@(@) ~ HO) V(y) S,((b) — H(0))*
S\ K JAB(S1)(1 = 91T (kd1 +1) &5\ ] ] AB(2)(1 = 82)'T(j8 + 1)’
and

_ AB(®) AB(S) & () (_ o )k S (_ 9 )j
A= lElls + IFls NGl =57 3=5 ;k!r(k81+y) -9 ;]’!F(j82+y) -9
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OA
f 1-|IF
[1Flleo
Proof.

< 1, then using Krasnoselskii’s fixed point theorem, the problem (14)-(15) has at least one solution.

Case Caputo (i) — gH differentiability: Let us consider two operators .73 and % defined on .# as follows
FiC(u,0) = N, 0) + LT AECDIE g (u, 0, C(u, )

and .
F5C(u,0) = LAY F (u,0,C(u,v), w(u, ),

where
w(u,v) = ABCDi’v“’V;(Pg (u,v,C(u,v)) + f (u,v,C(u,v), w(u,v)).

Thus, C(u, v) being fixed point of the operator .7 C(u,v) = F1C(u, v) + F2C(u, v) is a solution of problem
(14)-(15).

In the first step, we prove that .7 maps .# into .# ie. for any (,& € .#, we have to show that
T, v) + Hé&(u,v) € A :
d (AAL(w,0) + Fa&(u, v);n(w,v)) < d (PLI7PAECDE g (1,0, L, 0)) ;0)
+d (“PL 7 f (u,0,C(u,0), £, 0)) ;0),
where ¢ € C(J; R#) such that
&E(u,v) = ABCD;?D“ Vi g, v,C(u,v) + f(u,v,Cu,0),Eu,0)).
By (Hz), we get
d (ABLpt 7 ABCDM g (1,0, C(u,0));0) < d (g(u, v, L, 0));0) +d (91,0, (1, 0)); 0)
+d (g(0,v,2(0,)); 0) + d (9(0,0,£(0,0)); 0),
< 1IGlls (@ (22, 2);0) +d ((©);0) + d ((2); 0) + d ((0);0)),
< 4lGllwd (C(1,0); 0).
Thus
d (MBI TP ABCDRA g (u, v, (1, 0)) ;0) < 4lIGlleod (C(1, 9); 0). (25)
And
d(ABIS’”’y;(Pf (u,v,C(u,v), E(u,v)) '0)
X1 )= semoe 1) st
B(91)(1 — 81)FT(kd1) AB(92)(1 — 92)11T(j9,)

X f f ' (©)9 (DD1) = SN (G) = P> (f (1,0, 1), £(s, 1) 0) s,
0 Jo
where
d (f (u,v,C(s,1),&(s,1); 0) < D(u,v) + E(u, v)d(C(u, v); 0) + F(u, v)d(E(u, v); 0),
< [IDlleo + l|Ellood(C(1, v); 0)
+ |IFlleod (*5°D7*7" g (u, 0, C(1,0)) ; 0)

v)
+IFllod (f (1,0, (1, 0), E(u,0));0),
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Consequently,
(1= IFllo)d (f (u, 0, (s, B, £, 1)) ;0)
< IDlle + IElld(C(u, ©);0) + IFlleod (*2°D7*7 g (u, 0, L(1,0)) ; 0),

AB(91) AB(92) i O (_ 91 )
1- \91 1- \92 pr k'T(kSl + [.l) 1- \91

k
< IDlleo + IIElld(C(1, 9); 0) + [IFllsolIGllco

> () 9 Y R
x). TGS 7 1) (_1 —292) (cl2,0).

=0

Thus,

d(f (u,0,C(s, D), &G, 1));0) < (DIl + Asd (€, 0); 0)),

1= 1|Flleo
with
k (o]

_ AB(81) AB(%:) x» () - o ) ) - 9 )f
Al - ”E”OO * ”FHOOHGHDO 1- \91 1- \92 ; k'l"(kSl + y) 1- \91 ; ]'F(]92 + y) 1- \92 '

Which implies that

d(*PLd " f (1,0, C(w,0), &, 0)) ;0)

.y ( y ) 0@ -pO) ( y ) 959 (b) ~ §(0))1*
T\ k JABE)( - 91Tk +1) 4\ [ ) AB(S2)(1 - 92)7T(j92 + 1)
1 A
% 1 (1Pl + And (G, ;0)),
Q) A
< TR (IIDllss + Aud (C(,0); 0)).

Thus

4 (g f (w0, 0), E,0);0) < (IDlls + Aud (€, 0);0)). (26)

(C)
1= [IFlles

Therefore from (25) and (26), we get

R.

d(AAL(w,0) + F5E(u, 0); (1, 0)) < 4lIGlled (T, 0); 0) + (IIDllo + Asd (C(1,0);0)) :

1= 1|Flleo
Hence, 7.4 C /.

Now to prove that .7 is continuous, let us consider a sequence , such that {, — ,

d (AL, 0); Zil(w, ) < d (PLETPACDREY g (u, 0, G, 0)) AP Td TP ABC DR g (u, 0, C(u, ),
< 1Glleofd (G ©) -

Then, for ¢, — C, A C,(u, v) — FC(u,v). Hence, 77 is continuous.
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Now, we show that .7; (.#) resides in a relatively compact set. Taking (u1;v1); (u2; v2) € (0;a] X (0; b],
Uy < Up; v1 <vpand C € .#,we have

d (F1C(u1,01); T10(u2,v2)) < d(n(ur,01); (U2, 02))
+d (g (u1,01,C(u1, 1)) ; g (42, 02, C(uz, v2)))
+d (g (u1,0,C(u1,0)); g (42,0, C(uz,0)))
+d(g(0,v1,C(0,01)); 9 (0,v2,C(0,v2)))
+d(g(0,0,£(0,0));4(0,0,2(0,0))),
< d (n(ur,v1); (12, v2))
+ [|Glleod (C(u1, v1); C(ui2, v2))
+11Glleod ((111); P(142))
+IGlleod (1P (v1); P(02))
+ IGlleod (9(0); 9(0)) .

As u; — up, vl — v, the right-hand side of the above inequality tends to zero. Hence .7 (.#)
resides in a relatively compact.

Now, we show that .% is contraction. Letting C, & € .#, we have
d (L(u,0); Za&(u,0) = d (Lt f (u,0,U(u,0), w(u, 0) ;P LE £ (u,0, &, 0), 0(u,0)))
where w, 0 € C(J) such that

w(u,v) = 2B°DY g (u, 0, (1, 0)) + f (1,0, (1, 0), w(u,0)) .

and
o(u,0) = BCDY? g (u, 0, £(u, 0)) + f (1,0, &1, 0), 0(1,v)) .
Thus,
LY B @
d(ABIS* g qbf (,v,C(u,0), w(u,v)); *PI; ”’y’¢f (u,v,&(u,v),0(u, v))) < |Fl|| d(C(u,v); E(u,v)) .
OA . . .
For m < 1 then % is contraction. Hence according to Theorem 3.11, we can thus conclude that

the problem (14)-(15) has at least one solution in.Z.

Case Caputo (ii) — gH differentiability: we defined 91 and % on .# as follows
Fil(w,0) = n(u,0) © (1P LLTPAD g (u, 0, 0)

and
F5C(u,0) = (=1 PLA" £ (u,0, L(u,0), w(u,v)),

where
w(u,v) = B°DA g (u, 0, C(u, 0)) © (<1) f (1,0, (1, 0), (1, 0)) .

Ir} the same way as above, we shown that ((u, v) being fixed point of the operator T (u,v) = AC(u,v)+
Z>C(u,v) is a solution of problem (14)-(15).
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5. Application

As an application of our results, we consider the following fuzzy hyperbolic partial functional equations
with ¢(1) =27 and 9 = (%, %) of the form

ABCyS1521 ,0) — 1 , = ! ’
o [C(u 0) 1 cos(C(u U))] (5en+0+2) (1 +d(C(u,v),0) + d(ABCD]\?;}l,S;ZTC(u, 0), 0)) (27)
if (1, v) € [0;1] x [0;1]
C(u,0) = u,u € [0,1],5(0,0) = 0,0 € [0, 1]. (28)

Let’s set, for all (u,v) € [0;1] x [0; 1]

91,0, 0w, ) = 7 cos(C(u,)

and
1

(Seut+v+2) (1 +d(C(u,),0) +d (ABCDS;]LS;ZTC(MI o), 0))

It is clear that for each (, &, w, 0 € R¢ and (u,v) € [0;1] X [0; 1], we have

£ (#,0,Cu, 0), P Dy, 0)) =

A(fw,0,C ) £0,0,,0)) < 25 (0O + d(w; )

and

dg(0,0,0);9(0,0, ) < (G,

1
Hence condition (Hy) is satisfied with A = 6 = 517 and p = T In addition, a simple calculation can be used

to verify that condition (18) holds witha=b=1.
Consequently Theorem 4.2 implies that problem (27)-(28) has a unique solution defined on [0; 1] X [0; 1].

Remark 5.1. In the example given in this article, it can be noted that the solution to the problem given by the
generalized ABC method using fractional derivatives admits the following special case:

o Ifp(1) = tand y =1, we get solutions to the ABC concept fractional derivatives.

o Ifwe take P(7) = log(t) and y = 1, we get fractional order in the Caputo-Hadamard sense Solution under the
concept of derivative AB.

p
o If we consider ¢(t) = T—, where B > 0 is a real parameter, y = 1, we get the solution of the following

formula The concept of fractional derivative AB under the concept of fractional derivative AB in the sense of
Caputo-Katugampola and so on.

6. Conclusion

In this study, we introduced the new concepts of fractional AB calculus in fuzzy environments, including
the generalized Mittag-Leffler kernel function, which we use to study FFDE. Fuzzy fractional derivative
¢—ABC is an important concept in fuzzy fraction calculation. Recent research has shown that this derivative
can be used to solve FFDEs. Studies have been conducted using fixed point theory and methods such as
subsolution and supersolution methods. Therefore, it makes sense to study fuzzy problems under the new
concept of fractional derivative ABC, instead of using fractional derivative AB to study a large number
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of well-known fuzzy problems. The results obtained demonstrate that ABC fuzzy fractional derivatives
are a powerful tool for solving problems in various physical fields such as electromagnetism, acoustics,
and viscoelastic material mechanics. Research has also shown that this derivative can be used to develop
mathematical models of complex systems such as the human liver. In summary, ABC fuzzy fractional
derivatives are an important mathematical tool that can be used to solve problems in various fields of
physics and engineering.

Conflicts of Interest. The authors declare that there is no conflict of interest regarding the publication of this
paper.
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study.
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