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Abstract. In this work, we generalize the notions of T-sets to a larger framework, and we establish
the existence of a generalized solution for nonlinear elliptic equations, involving variable exponents and
measure data.

1. Introduction

The present work, is devoted to the study of a nonlinear elliptic problems with variable exponents and
measure data, motivated by theirs applications in the description of many phenomena in applied sciences
(physics in nonhomogeneous materials, electro-rheological fluids and image processing [7]).

Let Ω be a bounded open subset of RN(N ≥ 2) with Lipschitz boundary ∂Ω. We consider the following
elliptic problem{

−div (a(x,u,∇u)) = µ in D
′(Ω),

u = 0 on ∂Ω,
(1)

where µ ∈ M(Ω) is a bounded Radon measure. Here, we suppose that a : Ω × R × RN
→ RN, is a

Carathéodory function and satisfies, for a.e. x ∈ Ω, ∀s ∈ R and ∀ξ, ξ′ ∈ RN, the following assumptions

a(x, s, ξ).ξ ≥ c1|ξ|
p(x), (2)

|a(x, s, ξ)| ≤ c2

(
l(x) + |s|p(x)−1 + |ξ|p(x)−1

)
, l ∈ Lp′(x)(Ω), (3)

(a(x, s, ξ) − a(x, s, ξ′)) · (ξ − ξ′) > 0, ξ , ξ′, (4)

where c1, c2 are strictly positive real numbers, and p : Ω −→ (1,+∞) be a continuous function satisfying the
following condition

1 < p− = min
x∈Ω

p(x) < p+ = max
x∈Ω

p(x) < N. (5)
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To find a solution in the Sobolev space W1,q(·)
0 (Ω), then the function q(·) must satisfy the condition

1 ≤ q(x) < N(p(x)−1)
N−1 for all x ∈ Ω. This condition is discussed in [5] and implies that p− > 2 − 1

N . Therefore,
when p− ∈ (1, 2 − 1

N ) one cannot anticipate solutions to be part of W1,1(Ω). As a result, the notions of weak
derivatives and distributional solutions become problematic. This problem is studied in the literature using
the notion of entropy/renormalized solutions.

In the constants case (i.e p(x) = p > 2− 1
N , The authors in [6] proved the existence of solution u ∈W1,q

0 (Ω)

with 1 ≤ q < N(p−1)
N−1 . The general case where 1 < p < N was treated by Rakotoson in [20–22], the author have

shown the existence of generalized solutions to (1) by introducing the notion of L1,p
0 - sets.

Our aim in this paper is to extend the notion of L1,p
0 - sets and define a new class of solution in which

the problem (1) is well posed. The main difficulty in solving problem with measures lies in obtaining an a
priori estimate in Lebesgue space Ls(·)(Ω). However, we overcome this difficulty by using some properties
achieved by a new type of sets.

2. Variable Lebesgue and Sobolev Spaces

In this section we recall some facts about the generalized Lebesgue−Sobolev spaces Lp(·)(Ω) and W1,p(.·
0 (Ω).

For further details, we refer to the following references: [2, 3, 8, 9, 11, 12, 15–19, 23, 24], as well as the
references cited therein.

Consider a continuous function p : Ω → [1,∞), where Ω is an open subset of RN(N ≥ 2). The variable
exponent Lebesgue space Lp(·)(Ω) represent the space of measurable functions f (x) on Ω satisfying

ρp(·)( f ) =
∫
Ω

| f (x)|p(x)dx < +∞.

The norm on the space Lp(·)(Ω) is defined as follows

∥ f ∥p(·) := ∥ f ∥Lp(·)(Ω) = inf{λ > 0 | ρp(·)( f/λ) ≤ 1}.

We set

p− = min
x∈Ω

p(x), and p+ = max
x∈Ω

p(x). (6)

If p− > 1, then Lp(·)(Ω) forms a Banach space. Additionally, it’s reflexive, and its dual space is associated
with Lp′(·)(Ω) through 1

p(·) +
1

p′(·) = 1. For every u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), the Hölder inequality is defined
as

∥uv∥L1(Ω) ≤ 2∥u∥Lp(·)(Ω)∥v∥Lp′ (·)(Ω).

We also define the Banach space W1,p(·)
0 (Ω) as follows

W1,p(·)
0 (Ω) =

{
f ∈ Lp(·)(Ω) | |∇ f | ∈ Lp(·)(Ω) and f = 0 on ∂Ω

}
,

equipped with the norm ∥ f ∥W1,p(·)
0 (Ω) = ∥∇ f ∥p(·). When p ∈ C(Ω, [1,+∞)) and 1 < p− < p+ < ∞, the space

W1,p(·)
0 (Ω) is both separable and reflexive.

For any u ∈ W1,p(·)
0 (Ω) with p ∈ C(Ω, [1,+∞)), there exists a constant C > 0 such that the Poincaré

inequality holds (we refer to [13] for more details)

∥u∥Lp(·)(Ω) ≤ C∥∇u∥Lp(·)(Ω). (7)

The analysis of generalized Lebesgue and Sobolev spaces essentially relies on the fundamental role of
the modular ρp(·)(u) connected with the space Lp(·)(Ω). In this context we present the following result.
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Lemma 2.1. Let p : Ω→ [1,+∞[ be a continuous function and p+ < +∞, then the following properties hold:

min
(
ρp(·)(u)

1
p+ , ρp(·)(u)

1
p−

)
≤ ∥u∥Lp(·)(Ω) ≤ max

(
ρp(·)(u)

1
p+ , ρp(·)(u)

1
p−

)
,

min
(
∥u∥p

−

Lp(·)(Ω)
, ∥u∥p

+

Lp(·)(Ω)

)
≤ ρp(·)(u) ≤ max

(
∥u∥p

−

Lp(·)(Ω)
, ∥u∥p

+

Lp(·)(Ω)

)
,

and

∥u∥Lp(·)(Ω) ≤ ρp(·)(u) + 1. (8)

Definition 2.2. The variable exponent p : Ω → [1,+∞) is said to be satisfy the log-continuity condition, and we
denote by p ∈ Clo1(Ω) if there exists a positive constant C such that

∀x, y ∈ Ω, |x − y| ≤ 1/2; |p(x) − p(y)| <
C

− log(|x − y|)
. (9)

Lemma 2.3. ([20]) If p ∈ Clo1(Ω), then the set C∞(Ω) is dense in W1,p(·)
0 (Ω) and W1,p(·)

0 (Ω) =W1,p(·)(Ω) ∩W1,1
0 (Ω).

If q ∈ C(Ω) and for all x ∈ Ω, q(x) < p∗(x), then the embedding W1,p(·)
0 (Ω) ↪→ Lq(·)(Ω) is continuous and

compact (see [12]). Moreover, if p satisfies the log-Holder continuity assumption (9) and p+ < N, then the
Sobolev embedding holds also for the critical case q(·) = p∗(·) i.e. the embedding W1,p(·)

0 (Ω) ↪→ Lp∗(·)(Ω) is
continuous.

Remark 2.4. In the case where |Ω| < ∞ the inclusion between Lebesgue spaces generalizes naturally, i.e. if r1, r2 are
variable exponents such that r1(·) ≤ r2(·) almost everywhere inΩ, then the continuous embedding Lr2(·)(Ω) ↪→ Lr1(·)(Ω)
holds.

Lemma 2.5. [4] (Differentiation of a composition) Let u ∈W1,p(·)
0 (Ω) with p : Ω −→ (1,+∞) and p ∈ C(Ω). Assume

that f ∈ C1(R) be such that f (0) = 0 and
∣∣∣ f ′(s)

∣∣∣ ≤M, ∀s ∈ R for some constant M. Then we have

f ◦ u ∈W1,p(·)
0 (Ω),

∂
∂xi

( f ◦ u) =
(

f ′ ◦ u
) ∂u
∂xi

, i = 1, 2, . . . ,N. (10)

3. Definition and Properties of the Space L1,p(·)
0

(Ω)

Let Ω be a bounded open set of RN and p : Ω → [1,+∞[ be a continuous function. We introduce the
following set

Lipp(·)(R) =
{
Φ ∈W1,∞(R) such that Φ′ ∈ Lp(·)(R), Φ̇(0) = 0

}
.

For k > 0, we set Tk(σ) = [k − (k − |σ|)+] sign(σ), σ ∈ R. We define the space L1,p(·)
0 (Ω) as follow

L
1,p(·)
0 (Ω) =

u : Ω→ R

∣∣∣∣∣∣∣∣∣∣∣∣
measurable such that
∀ Φ ∈ Lipp(·)(R),Φ(u) ∈W1,p(·)

0 (Ω), and

sup
k>0

∫
Ω

|∇Tk(u)|p(x)

(1 + |Tk(u)|)1+δ
dx is finite for all δ > 0

 .
Remark 3.1. if p(x) = p for all x ∈ Ω, then the space L1,p(·)

0 (Ω) is called T− sets or L1,p
0 -sets (we refer to [20]).
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Proposition 3.2. Let v ∈ L1,p(·)
0 (Ω) and f : R → R be a C1 function. Then ∇v(x) exists almost everywhere in Ω.

Moreover, we have
i) ∇( f ◦ v) =

(
f ′ ◦ v

)
(x) · ∇v(x) for a.e. x ∈ Ω.

ii) For all k > 0, the function Tk(v), k > 0 satisfies

∇Tk(v) =
{

0 if |v| > k
∇v otherwise a.e. in Ω.

iii) For p− > 1, one has the inclusion W1,p(·)
0 (Ω) ⊂ L1,p(·)

0 (Ω).

Proof. i) Let v ∈ L1,p(·)
0 (Ω), we consider the C1-function Φ(v) = arctan v; Φ ∈ Lipp(·)(R), thus w = Φ(v) ∈

W1,p(·)
0 (Ω), we deduce from Deny-Lions’ theorem (see [10]) that ∇w exists a.e. in Ω. Moreover, if we denote

by (e1, e2, · · · , eN) the canonical basis of RN then the maps

t ∈ R −→ w(x + tei), are continous for a.e x ∈ Ω.

Now, we can write for all t ∈ R and for all i = 1, · · · ,N

v(x + tei) − v(x) = tan[w(x + tei)] − tan[w(x)] = (1 + tan2 Cx,t)[w(x + tei) − w(x)], a.e x ∈ Ω,

with Cx,t is a point between w(x + tei) and w(x). The continuity of w on the segment passing through x in
the direction ei shows that Cx,t → w(x), as t goes to zero, so that

∂v
∂xi

(x) = lim
t→0

v(x + tei) − v(x)
t

= (1 + tan2 w(x))
∂w
∂xi

(x). (11)

Hence, ∇v exists a.e. in Ω, this result combined with Lemma 2.5 gives i).
ii) For k > 0, it’s not difficult to check that Tk(v) = tan[TΦ(k)(w)] a.e in Ω. We apply the chain rule (10)

that gives

∂Tkv
∂xi

(x) = (1 + tan2(TΦ(k)w)
∂TΦ(k)w
∂xi

(x)

= (1 + tan2(TΦ(k)w)

 ∂w
∂xi

(x), i f |w(x)| < Φ(k),
0, otherwise,

= (1 + v2)

 1
1+v2

∂v
∂xi

(x), i f |v(x)| < k,
0, otherwise.

Thus, the statement ii) is proved.
iii) Let u ∈ W1,p(·)

0 (Ω), by the lemma 2.5 we have for all T ∈ Lipp(·)(R), T(u) ∈ W1,p(·)
0 (Ω) and for all k > 0,

δ > 0 we can write∫
Ω

|∇Tk(u)|p(x)

(1 + |Tk(u)|)1+δ
dx ≤

∫
Ω

|∇u|p(x)

(1 + |u|)1+δ
dx ≤ ρp(·) (∇u) < ∞,

this finished the proof of iii).

In the sequel, we will denote by C serval constants whose value may change from line to line and,
sometimes, on the same line. These values will only depend on the data, but the will never depend on the
indexes of the sequences we will often introduce.

Proposition 3.3. Let p(·), q(·) ∈ C(Ω), suppose that

2 −
1
N
< p− < N, 1 ≤ q(x) <

N
N − 1

(p(x) − 1), for all x ∈ Ω,

then we have L1,p(·)
0 (Ω) ⊂W1,q(·)

0 (Ω).
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Proof. Let v ∈ L1,p(·)
0 (Ω). By Proposition 3.2 and Beppo-Levi’s theorem, we have for all δ > 0

sup
k>0

∫
Ω

|Tk(v)|p(x)

(1 + |Tk(v)|)1+δ
dx = sup

k>0

∫
{|v|≤k}

|∇v|p(x)

(1 + |v|)1+δ
dx ≤

∫
Ω

|∇v|p(x)

(1 + |v|)1+δ
dx ≤ C. (12)

We divide the proof into two steps:
Step 1: let us consider the case

1 ≤ q+ <
N

(N − 1)
(p− − 1) < 1.

By Hölder’s inequality, the estimate (12) and the fact that |Tk(v)|p
−

≤ |Tk(v)|p(x) + 1, we obtain

∥∇Tk(v)∥q
+

Lq+ (Ω)

=

∫
Ω

|∇Tk(v)|q
+

(1 + |Tk(v)|)(1+δ) q+

p−

(1 + |Tk(v)|)(1+δ) q+

p− dx

≤

(∫
Ω

|∇Tk(v)|p
−

(1 + Tk(v))1+δ
dx

) q+

p−
(∫
Ω

(1 + Tk(v))(1+δ) q+

p−−q+ dx
) p−−q+

p−

≤ C + C
(∫
Ω

|Tk(v)|(1+δ) q+

p−−q+ dx
) p−−q+

p−

. (13)

Now, we chose δ > 0 such that

(1 + δ)
q+

p− − q+
= q+∗,

the previous equality is equivalent to

δ =
N(p− − q+)

N − q+
− 1 > 0⇔ q+ <

N
(N − 1)

(p− − 1).

From Sobolev’s inequality applied to Tk(v) ∈W1,p(·)
0 (Ω), the estimate (13) yield to

∥∇Tk(v)∥q
+

Lq+ (Ω)
≤ C + C∥∇Tk(v)∥

q+∗ (p−−q+)
p−

Lq+ (Ω)
, (14)

the choice of q+ implies q+∗

q+
p−−q+

p− < 1. Thus, there exists a constant C > 0 (independent of k ) such that

∥∇Tk(v)∥q
+

Lq+ (Ω)
≤ C, ∀ k > 0. (15)

Which implies

ρq(·) (∇Tk(v)) ≤ C, ∀k > 0. (16)

Step 2: Let us consider a continuous variable exponent q(·) on Ω satisfying

q(x) <
N

N − 1
(p(x) − 1), and q+ ≥

N
N − 1

(p− − 1), (17)

we slightly modify the previous proof in the first step. Since p(·), q(·) ∈ C(Ω) then there exists a constant
ρ > 0 such that

max
t∈B(x,ρ)∩Ω

q(t) < min
t∈B(x,ρ)∩Ω

N(p− − 1)
N − 1

,
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where B(x, ρ) is a cube with center x and diameter ρ. Remark thatΩ is compact and therefore, we can write
Ω = ∪k

j=1B j where B j, j = 1, ..., k is a cube with borders parallel to the coordinate axes. Moreover, there exists
a constant σ > 0 such that

ρ > |Ω j| > σ, Ω j = B j ∩Ω, for all j = 1, · · · , k. (18)

We denote byΩ j = B j ∩Ω, and q+j (respectively p−j ) the local maximum of q j(·) onΩ j (respectively the local

minimum of p j() on Ω j ), such that

q+j <
N

(
p−j − 1

)
N − 1

for all j = 1, · · · , k.

Using now the same arguments as before locally, we see that the inequality (14) holds on Ω j, so

∥∇Tk(v)∥
q+j

L
q+j (Ω j)

≤ C + C∥∇Tk(v)∥

q+∗j (p−j −q+j )

p−j

L
q+j (Ω j)

. (19)

Denote by T̃k(v) the average of Tk(v) over Ω j

T̃k(v) =
1
|Ω j|
∥Tk(v)∥L1(Ω j).

By Poincaré-Wirtinger inequality, we obtain

∥Tk(v) − T̃k(v)∥
L

q+
∗

j (Ω j)
≤ C∥∇Tk(v))∥

L
q+j (Ω j)

, ∀ j = 1, · · · , k. (20)

Using (15) and (20), we get

∥Tk(v)∥
L

q+
∗

j (Ω j)
≤ ∥Tk(v) − T̃k(v)∥

L
q+
∗

j (Ω j)
+ ∥T̃k(v)∥

L
q+
∗

j (Ω j)

≤ C∥∇Tk(v)∥
L

q+j (Ω j)
+ C, ∀ j = 1, · · · , k.

(21)

We deduce from (20) and (21)

∥∇Tk(v)∥
q+j

L
q+j (Ω j)

≤ C, ∀ j = 1, · · · , k. (22)

Knowing that q(x) ≤ q+j for all x ∈ Ω j, and all j = 1, · · · , k, so we conclude that∫
Ω j

|∇Tk(v)|q(x)dx ≤ C, ∀ j = 1, · · · , k,

that is,

ρq(·) (∇Tk(v)) ≤
k∑

j=1

∫
Ω j

|∇Tk(v)|q(x)dx ≤ C. (23)

By (8) , (16), (23) and Since Tk(v) converges to v almost everywhere, we get that v ∈W1,q(·)
0 (Ω).

Proposition 3.4. Let p(·) be a Log-Hölder continuous function defined on Ω satisfying 1 < p− < p+ < N and
|∇p| ∈ L∞(Ω). Then we have the inclusion L1,p(·)

0 (Ω) ⊂ Ls(·)(Ω), for any measurable function s : Ω→ (1,+∞) with

0 < s(x) <
N(p(x) − 1)

N − p(x)
and |∇s| ∈ L∞(Ω). (24)
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Proof. Let v ∈ L1,p(·)
0 (Ω) and s(·) as in (24), we define for x ∈ Ω

α(x) = 1 −
s(x)
p∗(x)

∈

]
1

p(x)
, 1

[
. (25)

For k > 0, we introduce the functionΨk defined by

Ψk(x, v) =
[
(1 + |Tk(v)|)1−α(x)

− 1
]

sign(v), x ∈ Ω.

Thus

∇Ψk(x, v) =∇(1 − α(x)) ln(1 + |Tk(v)|)(1 + |Tk(v)|)1−α(x)sign(v) + (1 − α(x))(1 + |Tk(v)|)−α(x)
∇Tk(v). (26)

Its not difficult to check that for all x ∈ Ω,Ψk(x, v) ∈W1,p(·)
0 (Ω). By the Sobolev embedding (since p ∈ Clo1(Ω))

and Poincaré’s inequality (7) we obtain

∥Ψk(x, v)∥Lp∗ (·)(Ω) ≤ C∥∇Ψk(x, v)∥Lp(·)(Ω), (27)

which yield

∥Ψk(x, v)∥Lp∗ (·)(Ω)

≤ C∥∇(1 − α(x)) ln(1 + |Tk(v)|)(1 + |Tk(v)|)1−α(x)sign(v)∥Lp(·)(Ω)

+ C∥(1 − α(x))(1 + |Tk(v)|)−α(x)
∇Tk(v)∥Lp(·)(Ω).

By lemma 2.1 and that |∇α| ∈ L∞(Ω) (because |∇p|, |∇s| ∈ L∞(Ω)), we can write

∥Ψk(x, v)∥Lp∗ (·)(Ω) ≤C
∫
Ω

(1 + |Tk(v)|)(1−α(x))p(x)(ln(1 + |Tk(v)|))p(x)dx + C
∫
Ω

|∇Tk(v)|p(x)

(1 + |Tk(v)|)α(x)p(x)
dx + C. (28)

Since v ∈ L1,p(·)
0 (Ω) and remark that

(1 + |Tk(v)|)−α(x)p(x)(ln(1 + |Tk(v)|))p(x) is bounded for all x ∈ Ω,

we conclude that∫
Ω

(1 + |Tk(v)|)p(x)(1 + |Tk(v)|)−α(x)p(x)(ln(1 + |Tk(v)|))p(x)dx ≤ C. (29)

In the other hand, using (25), we have

α(x)p(x) − 1 =
N − p(x)

N

(
N(p(x) − 1)

N − p(x)
− s(x)

)
> 0.

This implies that∫
Ω

|∇Tk(v)|p(x)

(1 + |Tk(v)|)α(x)p(x)
≤ C. (30)

Combining (28), (29) and (30), we obtain

∥Ψk(x, v)∥Lp∗ (·)(Ω) ≤ C. (31)

Remark that, for all k > 0 and x ∈ Ω, |Tk(v)|1−α(x)
≤ |Ψk(x, v)| + 1, by Lemma 2.1 yielding

ρp∗(·)(1−α(·)) (Tk(v)) ≤ Cρp∗(·) (Ψk(v)) + C

≤ C max
{
∥Ψk(v)∥p

∗
+

Lp∗ (·)(Ω)
, ∥Ψk(v)∥p

∗
−

Lp∗ (·)(Ω)

}
+ C. (32)
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Hence, it follows from (31), (32) and (25) that

ρs(·) (Tk(v)) ≤ C, (33)

where C > 0 is a constant independent of k, Finally we obtain by Fatou’s lemma

ρs(·)(v) ≤ C.

This finished the proof of Proposition 3.4.

4. Existence of Generalized Solutions

Definition 4.1. We will say that a function u is generalized solution to problems (1) if

u ∈ L1,p(·)
0 (Ω), a(x,u,∇u) ∈ (L1(Ω))N,

and for all φ ∈ D(Ω) one has∫
Ω

a(x,u,∇u)∇φdx =< u, φ >D′(Ω),D(Ω) .

The principal result of our paper is the following.

Theorem 4.2. Letµ ∈M(Ω), p : Ω→ (1,+∞) be a continuous function, let us assume that (5), (9) and |∇p| ∈ L∞(Ω)
hold true. Then, there exists at least one solution of (1) in the sens of definition 4.1.

Remark 4.3. In the case where 2 − 1
N < p− < N, we have u ∈ L1,p(·)

0 (Ω) ⊂ W1,q(·)
0 (Ω, where q(x) < N

N−1 (p(x) −
1), for all x ∈ Ω. Therfore, the Proposition 3.3 ensure that, the generalized solution of problem (1) is also
destributional solution.

Let µ ∈M(Ω), then there exists a sequence (µn) ⊂ D(Ω) such that µn −→ µ inD′(Ω) and satisfies ∥µn∥L1(Ω) ≤

∥µ∥M(Ω) for all n ≥ 1. We consider the following approximation problems:
un ∈W1,p(·)

0 (Ω)∫
Ω

a(x,un,∇un) · ∇φdx =
∫
Ω

µnφdx, ∀φ ∈ D(Ω).
(34)

The existence of a weak solution un ∈ W1,p(·)
0 (Ω) ∩ L∞(Ω) to problem (34) is guaranteed by [14](Proposition

6.1).

Lemma 4.4. Let (un) the sequence of solution of problem (34). Then for every n ≥ 1 we have

∀ϕ ∈ Lipp(·)(R), ∃C = C(T) such that ρp(·)

(
∇ϕ(un)

)
≤ C, (35)

∀δ > 0, ∃C = C(δ) such that
∫
Ω

|∇un|
p(x)

(1 + |un|)1+δ
≤ C. (36)

Proof. Let ϕ ∈ Lipp(·)(R), we choose Φ(un) =
∫ un

0 |ϕ
′(σ)|p(x)dσ as test function in (34), one has∫

Ω

a(x,un,∇un)|ϕ′(un)|p(x)
· ∇undx =

∫
Ω

µnΦ(un)dx. (37)

Remark that (since ϕ ∈ Lipp(·)(R))

|Φ(un)| ≤
∫ +∞

−∞

|ϕ′(un)|p(x)dx ≤ C,
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using the last estimate and (2), we obtain

ρp(·)

(
∇ϕ(un)

)
≤ C∥µ∥M(Ω), ∀n ≥ 1.

Let us introduce the functions ψδ : R→ R by

ψδ(t) = −
1
δ

(
(1 + |t|)−δ − 1

)
sign(t), ∀δ > 0.

Note that ψδ ∈W1,p(.)
0 (Ω) ( since ψδ(0) = 0, and

∣∣∣ψ′δ(·)∣∣∣ ≤ 1). We take ψδ(un) as a test function in (34) using (2)
and the fact that

∣∣∣ψδ(·)∣∣∣ ≤ 1
δ , we get∫

Ω

|∇un|
p(x)

(1 + |un|)1+δ
dx ≤ C

∫
Ω

|µn||ψδ(un)|dx

≤
C
δ
∥µ∥M(Ω).

Lemma 4.5. For all q ∈ [1, N
N−1 ), there exists a constant C > 0 such that for all n ∈N, and for all x ∈ Ω

ρq(p(·)−1) (∇un) ≤ C. (38)

Proof. For q ∈ [1, N
N−1 ), we have q(p(x) − 1)) < N(p(x)−1)

N−1 < p(x), then q < p′(x). By Hölder inequality with
indices

( p′(x)
q ,

p′(x)
p′(x)−q

)
and Lemma 2.1, we can write for all δ > 0,

ρq(p(·)−1) (∇un)

=

∫
Ω

|∇un|
q(p(x)−1)

(1 + |un|)
(1+δ)q
p′ (x)

(1 + |un|)
(1+δ)q
p′ (x) dx

≤ 2

∥∥∥∥∥∥ |∇un|
q(p(x)−1)

(1 + |un|)
(1+δ)q
p′ (x)

∥∥∥∥∥∥ p′ (x)
q

∥∥∥∥∥∥ (1 + |un|)
(1+δ)q
p′ (x)

∥∥∥∥∥∥ p′ (x)
p′ (x)−q

≤ C max


(∫
Ω

|∇un|
p(x)

(1 + |un|)
1+δ

dx
) q

p′+

,

(∫
Ω

|∇un|
p(x)

(1 + |un|)
1+δ

dx
) q

p′−


×max
{
ρ (1+δ)q

p′ (·)−q
(1 + |un|)

p′+−q
p′+ , ρ (1+δ)q

p′ (·)−q
(1 + |un|)

p′−−q
p′−

}
.

Now, since p(x) < N and 1 ≤ q < N
N−1 we choose

0 < δ <
p(x)(N − 1)
q(N − p(x))

( N
N − 1

− q
)
. (39)

By the inequality 39, we derive

0 < s(x) =
(1 + δ)q
p′(x) − q

<
N(p(x) − 1)

N − p(x)
.

Using Lemma 4.4, and the fact that

ρs(·) (un) ≤ C, (40)

where C is a constant independent on n. Thus, the proof of lemma 4.5 is achieved.
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Lemma 4.6. Let (un)n the sequence of solution of problem (34). Then

i) un → u a.e. in Ω, and u ∈ L1,p(.)
0 (Ω) ∩ Lp(·)−1(Ω), (41)

ii) ∇un → ∇u a.e. in Ω. (42)

Proof. i) Consider the function t 7−→ arctan t that belong to Lipp(·)(R), so from Lemma 4.4, the sequence

(vn)n = (arctan un)n remain in a bounded set of W1,p(·)
0 (Ω). Therefore, there exists a subsequence of (vn)n still

denoted by (vn)n, and a measurable function v such that

vn ⇀ v weakly in W1,p(·)
0 (Ω) and a.e. in Ω.

Taking u = tan v, since the function t 7−→ arctan t is invertible, thus un converge to u a.e in Ω. Moreover,
since p(x) − 1 < N(p(x)−1)

N−p(x) , by (40) and Fatou’s Lemma, we conclude that u ∈ Lp(x)−1(Ω).
ii) Let δ > 0, Egoroff’s theorem states that, there exists a set Ωδ with |Ω − Ωδ| ≤ δ such that un −→ u

uniformly in Ω. So let ε > 0 then there exists nε such that ∀n ≥ nε and ∀x ∈ Ωδ one has |un(x) − u(x)| ≤ ε.
Now let us choose Tε (un − Tk(u)) as a test function in (34) we obtain∫

Ω

a(x,un,∇un) · ∇Tε(un − Tk(u))dx =
∫
Ω

µnTε(un − Tk(u))dx ≤ ε∥µ∥M(Ω).

We denote by
Λ(un,Tk(u)) = (a(x,un,∇un) − a(x,un,∇Tk(u))) · ∇(un − Tk(u)) ≥ 0.

Hence∫
{|un−Tk(u)|≤ε}

Λ(un,Tk(u))dx ≤ Cε −
∫
Ω

a(x,un,∇Tk(u)) · ∇Tε(un − Tk(u))dx. (43)

Since Tε(un − Tk(u)) ⇀ Tε(u − Tk(u)) in Lp(·)(Ω) as n goes to infinity, we derive

lim
n→+∞

∫
Ω

a(x,un,∇Tk(u)) · ∇Tε(un − Tk(u))dx =
∫
Ω

a(x,u,∇Tk(u)) · ∇Tε(u − Tk(u))dx.

Taking the limsup in (43), one has using the fact that : ∇Tk(u) = ∇u if |u| ≤ k and that Λ(un,Tk(u)) ≥ 0

lim sup
n

∫
{Ωδ∩|u|≤k}

Λ(un,u)dx ≤ lim sup
n

∫
{|un−Tk(u)|≤ε}

Λ(un,Tk(u))dx

≤ Cε −
∫
Ω

a(x,u,∇Tk(u) · ∇Tε(u − Tk(u))dx. (44)

Since Tε(u − Tk(u)) rests in a bounded set of W1,p(·)
0 (Ω) as ε goes to zero, moreover, Tε(u − Tk(u)) −→ 0 a.e.

in Ω, we deduce that Tε(u − Tk(u)) ⇀ 0 weakly in W1,p(·)
0 (Ω) ). Then we have

lim
ε→0

∫
Ω

a(x,u,∇Tk(u) · ∇Tε(u − Tk(u))dx = 0.

Thus, letting ε −→ 0 in (44), we obtain

lim sup
n

∫
{Ωδ∩|u|≤k}

Λ(un,u)dx = 0. (45)

We derive that for a subsequence still indexed by n that ∇un converges to ∇u almost everywhere on
{Ωδ ∩ |u| ≤ k}.



M. A. Zouatini, H. Khelifi / Filomat 38:27 (2024), 9689–9700 9699

Now, let α ∈ (0, p− − 1), we define the sequence

T (n, δ) = ∥∇un − ∇u∥αLα(Ωδ∩{|u|≤k}),

we see that all sequences T (n, δ) converge to zero as n tends to infinity. We are going to prove this result
onΩ, so we show that limn ∥∇un −∇u∥αLα(Ω) = 0. After decomposing this last integral as before, we have for
δ > 0 :

∥∇un − ∇u∥αLα(Ω) ≤T (n, δ) + ∥∇un − ∇u∥αLα({|u|>k}) + ∥∇un − ∇u∥αLα(Ω−Ωδ)
. (46)

Using Hölder’s inequality, Lemma 4.5 (remark that |∇un|
p−−1
≤ |∇un|

p(x)−1 + 1) and that |Ω −Ωδ| ≤ δ we get

∥∇un − ∇u∥αLα(Ω−Ωδ)
≤ Cδ1− α

p−−1 . (47)

Furthermore, by Using Hölder’s inequality, Lemma 4.5 and the fact that u ∈ Lp(x)−1(Ω)

∥∇un − ∇u∥αLα({|u|>k}) ≤

(∫
{|u|>k}

k−(p−−1)
|u|(p

−
−1)dx

)1− α
p−−1

≤ Ck−(p−−1−α). (48)

Combining (46), (47) and (48) we get

∥∇un − ∇u∥αLα(Ω) ≤ I(n, δ) + Cδ1−(α/(p−−1)) + Ck−(p−−1−α).

The last inequality holds for all k > 0 and δ > 0, so we pass to the limite as δ −→ 0 and k −→ +∞, we get

lim
n→+∞

∥∇un − ∇u∥αLα(Ω) = 0.

Hence, we deduce up subsequence (still denoted ∇un) that ∇un converges to ∇u almost everywhere in Ω.
Now, we show that u ∈ L1,p(·)

0 (Ω), using (36) we have∫
Ω

|∇Tk(un)|p(x)

(1 + |Tk(un)|)1+δ
≤ C, ∀n ≥ 1.

By Fatou’s lemma combining with (4.6) and (42) we deduce that

sup
k>0

∫
Ω

|∇Tk(u)|p(x)

(1 + |Tk(u)|)1+δ
≤ C.

We pass to the limit as n −→ +∞ in (35) and by Fatou’s lemma we obtain

∀T ∈ Lipp(·)(R), T(u) ∈W1,p(·)
0 (Ω).

Thus, u ∈ L1,p(.)
0 (Ω).

4.1. Passage to the limit
Thanks to the result of Lemma (4.6), combining with (38), (40) and Vitali’s theorem we conculude that

a(x,un,∇un) −→ a(x,u,∇u) strongly in L1(Ω)N.

Now, let φ ∈ D(Ω)∫
Ω

a(x,u,∇u) · ∇φdx = lim
n→+∞

∫
Ω

a(x,u,∇u) · ∇φdx

= lim
n→+∞

< µn, φ >=< µ,φ >D′((Ω),D(Ω) .
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