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Abstract. The goal of this research is to set the theoretical frame for developing a new type of hybrid
accelerated gradient optimization methods. Based on the S-iteration concept, an accelerated three-term
hybrid method and its modification are developed. We prove that the presented iterative processes are well
defined. Convergence properties of generated schemes are analysed. Observed characteristics regarding
the strong convergence of the presented method and its modification are confirmed.

1. Introduction and preliminaries

Quasi-Newton methods started a positive move in upgrading the calculative sides of Newton’s method.
These type of methods inspired many authors to generate interesting method classes for solving uncon-
strained nonlinear optimization problems [3, 7, 8, 11, 17, 18, 31]. Instead of directly computing the Hessian
and its inverse of the objective function, in the mentioned quasi-Newton type of methods adequate approx-
imations of these elements are used. With that, the satisfying convergence rate is conserved. Regarding
the research presented in this paper, the class of the accelerated gradient descent methods, shortly AGD
methods, is specially important. The AGD methods use the acceleration parameter in each iteration, often
denoted as γk, k ∈ N is the number of iterations, to multiply with the iterative vector direction, i.e. the
gradient 1k. Authors in [30] first segregated this class of optimization methods. This separation enabled
clearer and easier investigation of this particular sort of iterations.

The general form of the AGD method is

xk+1 = xk − γ
−1
k 1ktk, (1)

where xk+1 is the next iterative point, xk the current one, 1k presents the gradient of the objective function
and tk is the iterative step length value. Parameter γk stays for the acceleration parameter of the posed
optimization scheme. This crucial factor of the AGD method is basically obtained based on the features of
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the Quasi-Newton equation, but herein we omit this detailed procedure which can be found for example
in [30]. In the AGD schemes, as we previously said, instead of function’s Hessian ▽2 f (ξ) its approximation
is used. Very often, this approximation is given by some adequate scalar matrix and can be written as:

▽
2 f (ξ) ≈ γk+1I, (2)

where γk+1 = γ(xk, xk+1) is the scalar which usually depends on the current and the previous iterative points
and that has to be derived. Very often this important element of the AGD scheme is obtained using the first
or second order Taylor expansion of the objective function, [4, 19–21, 23, 24, 30]. We list below only several
accelerated parameter expressions including numbers of the relavant references:

θAGD
k = −

tk1
T
k 1k

tk yT
k 1k
, ([4])

γADD
k+1 = 2

f (xk+1)− f (xk)−αk1
T
k (αkdk−γ−1

k 1k)
(αkdk−γ−1

k 1k)T(αkdk−γ−1
k 1k)

, ([24])

γADSS
k+1 = 2

f (xk+1)− f (xk)+(αkγk
−1+βk)∥1k∥

2

(αkγk
−1+βk)2

∥1k∥
2

, ([20])

γHADSS
k+1 = 2

f (xk+1)− f (xk)+α(tkγ−1
k +pk)∥1k∥

2

α2(tkγ−1
k +pk)2

∥1k∥
2

, ([21])

γSM
k+1 = 2γk

γk[ f (xk+1)− f (xk)]+tk∥1k∥
2

t2
k∥1k∥

2 , ([30])

γHSM
k+1 = 2γk

γk[ f (xk+1)− f (xk)]+(αk+1)tk∥1k∥
2

(αk+1)2t2
k∥1k∥

2 , ([23]).

The importance of accelerated factor of a certain AGD method is specially emphasised in [24]. In this
paper, the authors generated the non-accelerated version of the AGD method they have presented. They
did the comparative analysis and numerically confirmed significantly better performance profiles in favour
of the accelerated version.

Another two, equally important, elements of the AGD schemes are 1. iterative search direction vector
and 2. the value of the iterative step length. In the AGD schemes we chose the search vector to be the
negative gradient direction i.e. −1k. Step-size parameter is obtained mostly by applying some of the
inexact line search procedures [5, 9, 13, 16, 26, 27, 29, 33–35] since these techniques are satisfyingly efficient
and significantly less expensive, when the computational time is considered, then the exact line search
procedure. In this paper we use Armijo’s line search algorithm, so called Backtracking.

This paper is organized as such: in Section 2 the three-term s− iterative process is used for determination
of a new hybrid optimization model. In Section 3 the modification of the defined hybrid model is presented.
Finely, the convergence properties of derived hybrid accelerated schemes are examined.

2. Hybrid correction of SM method based on s− iteration

The iterative processes of Picard, Mann and Ishikawa, which are, for real sequences {αk}, {βk} ∈ (0, 1),
respectively listed below

u1 = u ∈ C,
uk+1 = Tuk, k ∈N, ([25])

v1 = v ∈ C,
vk+1 = (1 − αk)vk + αkTvk, k ∈N, , ([14])

z1 = z ∈ C,
zk+1 = (1 − αk)zk + αkTyk,
yk = (1 − βk)zk + βkTzk, k ∈N, ([10])
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motivated many authors in their researches [2, 6, 12]. The author in [12] presented a three-term iteration
which overcomes those three. This process is defined as


x1 = x ∈ R,
xk+1 = Tyk,
yk = (1 − αk)xk + αkTxk, k ∈N

 (3)

or, if written in aggregated form, hybrid Kahn’s iterative scheme is

xk+1 = T[(1 − αk)xk + αkTxk], k ∈N. (4)

In both of the last two relations (3) and (4), the operator T : C→ C is a mapping defined on nonempty
convex subset C of a normed space E, while iterative outcomes xk and yk are the sequences derived by the
relations (3). The sequence of positive numbers {αk} ∈ (0, 1) is denoted as correction parameter. Numerical test
results detected significantly better efficiency metrics than the metrics achieved by forerunners: Picard’s,
Mann’s and Ishikawa’s processes.

Iteration (3), i.e. (4), inspired some authors in developing new optimization hybrid models [21–23].
Taking concrete AGD method as operator T in (3) contributed with several efficient hybrid minimization
methods. In this paper we present the development of one such model based on S− iteration described in
[1].

The S-iteration is defined on convex subset C of a linear space X. Taking a mapping T : C → C,
S-iteration is generated as a three term process in the following way

x1 = x ∈ C,
xn+1 = (1 − αn)Txn + αnTyn,
yn = (1 − βn)xn + βnTxn n ∈N.

(5)

In (5), {αn} and {βn} are the sequences of real numbers satisfying

{αn}, {βn} ⊂ (0, 1)∑
∞

n=1 αnβn(1 − βn) = ∞. (6)

Specially, by taking αn + βn = 1,we reduce conditions (6) to conditions (7)

{αn} ⊂ (0, 1)∑
∞

n=1 α
2
n(1 − αn) = ∞, (7)

and define a simpler S-iteration version involving only one sequence αn of real numbers:

x1 = x ∈ R,
xn+1 = (1 − αn)Txn + αnTyn,
yn = αnxn + (1 − αn)Txn n ∈N.

(8)

Similar to [23], we form the hybrid accelerated model by applying the AGD iteration from [30], so called
SM method, as operator T, i.e.

Tyk = yk − γ
−1
k tk1k.

This way, (8) becomes

x1 = x ∈ R,
xn+1 = (1 − αn)Txn + αnTyn = (1 − αn)(xn − γ−1

n tn1n) + αn(yn − γ−1
n tn1n),

yn = αnxn + (1 − αn)(xn − γ−1
n tn1n), n ∈N.

(9)
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Proposition 2.1. The three-term iterative process (9) is equivalent to the accelerated gradient descent scheme

xn+1 = xn − (1 + αn − α
2
n)γ−1

n tn1n. (10)

Remark 2.1. We named the process (10) SHSM method.

Before we prove the Proposition 2.1. we first derive the SHSM iterative value of the accelerated
parameter. To achieve this goal we will apply a common approach used in [30]. Taking the second order
Taylor expansion of the objective function on which the rule (10) is applied on, we get

f (xk+1) ≈ f (xk) −
(
1 + αk − α

2
k

)
tk1

T
k γ
−1
k 1k +

1
2

(
1 + αk − α

2
k

)2
t2
k(γ−1

k 1k)T
∇

2 f (ξ)γ−1
k 1k, (11)

Variable ξ is described as:

ξ ∈ [xk, xk+1], ξ = xk + β(xk+1 − xk) = xk − β
(
1 + αk − α

2
k

)
tkγ
−1
k 1k, 0 ≤ β ≤ 1.

After applying the diagonal scalar matrix approximation of the function’s Hessian ▽2 f (ξ) ≈ γk+1I, relation
(11) becomes

f (xk+1) ≈ f (xk) −
(
1 + αk − α

2
k

)
tkγ
−1
k ∥gk∥

2 +
1
2

(
1 + αk − α

2
k

)2
t2
kγ
−2
k γk+1∥gk∥

2. (12)

From (12) we easily determine the accelerated parameter of the SHSM process

γSHSM
k+1 = 2γk

γk
(

f (xk+1) − f (xk)
)
+
(
1 + αk − α2

k

)
tk∥1k∥

2(
1 + αk − α2

k

)2
t2
k∥1k∥

2
. (13)

The positiveness is the necessary condition that the accelerated parameter γSHSM
k+1 has to satisfy. Otherwise,

the Second-Order Necessary and Sufficient Conditions would not be fulfilled. In case γSHSM
k+1 < 0 we simply

put γSHSM
k+1 = 1. This way the next iterative point is calculated by

xk+2 = xk+1 −
(
1 + αk+1 − α

2
k+1

)
tk+11k+1.

Since {αn} ⊂ (0, 1) we have 1 + αk+1 − α2
k+1 > 0 and 0 < tk+1 < 1, so the previous scheme presents a classical

gradient descent iteration.
We now expose the proof of the Proposition 2.1.

Proof. [Proposition 2.1.] After substituting yn into the expression that defines xn+1, i.e. third equation of (9)
into the second one, we get

xn+1 = (1 − αn)(xn − γ
−1
n tn1n) + αn[αnxn + (1 − αn)(xn − γ

−1
n tn1n) − γ−1

n tn1n]

= (1 − αn)(xn − γ
−1
n tn1n) + α2

nxn + αn(1 − αn)(xn − γ
−1
n tn1n) − αnγ

−1
n tn1n

= xn − γ
−1
n tn1n + α

2
nγ
−1
n tn1n − αnγ

−1
n tn1n

= xn − (1 + αn − α
2
n)γ−1

n tn1n.

Knowing {αn} ⊂ (0, 1),we easily conclude that

1 + αn − α
2
n > 1. (14)

Estimation (14) in conjunction with the fact that γ−1
k > 0 is the k-th iterative acceleration parameter proves

that the iteration (10) is an accelerated gradient descent scheme.
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2.1. Optimal initial step size parameter of the SHSM process
We chose to derive the iterative step length value tn in SHSM method (10) based on the inexact Back-

tracking procedure:

Algorithm 2.1. The backtracking with starrting value t = 1
Require: Objective function f (x), the direction dk of the search at the point xk and numbers 0 < σ < 0.5 and β ∈ (0, 1).

1: t = 1.
2: While f (xk + tdk) > f (xk) + σt1T

k dk, take t := tβ.
3: Return tk = t.

However, we improve the Backtracking initial value t = 1 in a similar way as described in [19]. This
initial correction of the step length parameter is described in the following lemma.

Proposition 2.2. Optimal initial step length value of the Backtracking line search algorithm applied in the iteration
(10) is

t =
1

1 + αk − α2
k

. (15)

Proof. Suppose γk+1 = γk+2 and under this assumption consider the merit function

Φk+1(t) = f (xk+1) −
(
1 + αk+1 − α

2
k+1

)
tγ−1

k+1∥gk+1∥
2 +

1
2

(
1 + αk+1 − α

2
k+1

)2
t2γ−2

k+1γk+1∥gk+1∥
2.

Obviously, this quadratic function is convex when γk+1 > 0 and the value of its gradient ∇(Φk+1(t)) ={
Φk+1(t)′t

}
is

(Φk+1)′t = −
(
1 + αk+1 − α

2
k+1

)
γ−1

k+1∥gk+1∥
2 +
(
1 + αk+1 − α

2
k+1

)2
tγ−2

k+1γk+1∥gk+1∥
2

=
(
1 + αk+1 − α

2
k+1

)
γ−1

k+1∥gk+1∥
2
((

1 + αk+1 − α
2
k+1

)
t − 1
)
.

Supposing γk+1 > 0, the function Φk+1(t) decreases, i.e.
{
Φk+1(t)′t

}
< 0,when(

1 + αk+1 − α
2
k+1

)
t − 1 < 0,

which leads to the final conclusion {
Φk+1(t)′t

}
< 0⇔ t <

1
1 + αk+1 − α2

k+1

and
∇(Φk+1(t)) = {0} ⇔ t =

1
1 + αk+1 − α2

k+1

.

According to the Proposition 2.2. we modify the first step in Algorithm (2.1) with t = 1
1+αk+1−α2

k+1
.

Algorithm 2.2. The backtracking with starrting value t = 1
1+αk+1−α2

k+1

Require: Objective function f (x), the direction dk of the search at the point xk and numbers 0 < σ < 0.5 and β ∈ (0, 1).
1: t = 1

1+αk+1−α2
k+1

.

2: While f (xk + tdk) > f (xk) + σt1T
k dk, take t := tβ.

3: Return tk = t.

2.2. The algorithm of the SHSM process defined by (10)
After analysis we have provided previously, we are now able to present the algorithm of the SHSM

optimization process.
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Algorithm 2.3. The SHSM algorithm defined by (10) and (13).
Require: Function f (x), {αn} ⊂ (0, 1) defined by (7), initial point x0 ∈ dom( f ).

1: Set k = 0 and calculate f (x0), 10 = ∇ f (x0), set γ0 = 1.
2: Check the test criteria; if stopping criteria are fulfilled then stop the algorithm; otherwise, go to the next step.
3: Applying Algorithm 2.2: Compute the value of step size tk ∈ (0, 1] taking dk = −γ−1

k 1k.
4: Determine xk+1 = xn − (1 + αn − α2

n)γ−1
n tn1n, f (xk+1) and 1k+1 = ∇ f (xk+1).

5: Compute γshsm
k+1 , approximation of the Hessian of function f at the point xk+1 using (13).

6: If γshsm
k+1 < 0 take γshsm

k+1 = 1.
7: k := k + 1, go to the step 2.
8: Return xk+1 and f (xk+1).

3. Modified s-hybrid correction of the SM process

Before we evaluate the modified SHSM iterative form based on SM operator, we first prove that the
n−th degree of operator T ≡ SM has the following expression

Tnxn = xn − nγ−1
n tn1n. (16)

Proposition 3.1. n−th degree of the SM− operator is expressed by (16).

Proof. Using the principle of mathematical induction, we know that for

k = 1 : T1xn = xn − 1 · γ−1
n tn1n.

Assuming that the statement holds for k = n, i.e.

Tnxn = xn − n · γ−1
n tn1n,

we are proving that it is valid for k = n + 1, as well:

T(n+1)xn = T(Tnxn) = T(xn − n · γ−1
n tn1n)

= xn − nγ−1
n tn1n − γ

−1
n tn1n

= xn − (n + 1)γ−1
n tn1n,

which proves (16).

Now we define the modified SHSM iteration process {xn} as following:
for x = x1 ∈ Rn

xn+1 = S(xn, αn,Tn), n ∈N, {αn} ∈ (0, 1). (17)

In three-term notation, this modified hybrid process can be displayed as:

x1 = x ∈ C,
xn+1 = (1 − αn)Tnxn + αnTnyn,
yn = αnxn + (1 − αn)Tnxn n ∈N.

(18)

Similar to Proposition 2.1. we defined the aggregated form of the modified SHSM method.

Proposition 3.2. Three-term iterative process (18) is equivalent to accelerated gradient descent scheme

xn+1 = xn − (1 + αn − α
2
n)nγ−1

n tn1n. (19)
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Proof. As exposed in the proof of Proposition 2.1. we substitute yn into the expression that defines xn+1, i.e.
third equation of (18) into the second one, and there we have

xn+1 = (1 − αn)(xn − nγ−1
n tn1n) + αn(yn − nγ−1

n tn1n)

= (1 − αn)(xn − nγ−1
n tn1n) + αn[αnxn + (1 − αn)(xn − nγ−1

n tn1n) − nγ−1
n tn1n]

= (1 − αn)(xn − nγ−1
n tn1n) + αn[αnxn + xn − nγ−1

n tn1n − αnxn + nαnγ
−1
n tn1n − nγ−1

n tn1n]

= xn − nγ−1
n tn1n − αnxn + nαnγ

−1
n tn1n + αnxn − nαnγ

−1
n tn1n + nα2

nγ
−1
n tn1n − nαnγ

−1
n tn1n

= xn − (1 + αn − α
2
n)nγ−1

n tn1n.

The sequence {αn} ⊂ (0, 1), which implies that 1 + αn − α2
n > 1. With that, the variable γ−1

k > 0 stays for
the iterative acceleration parameter of the iteration (19). All stated confirms that the (19) is an accelerated
gradient descent process.

Remark 3.1. We named the process (19) modified SHSM method.

Proposition 3.3. 1. Accelerated parameter of the modified SHSM iteration is given by the following expression

γmodSHSM
k+1 = 2γk

γk
(

f (xk+1) − f (xk)
)
+
(
1 + αk − α2

k

)
ntk∥1k∥

2(
1 + αk − α2

k

)2
n2t2

k∥1k∥
2

; (20)

2. Optimal initial Backtracking step length value of the modified SHSM process is given by

t =
1

n
(
1 + αk − α2

k

) . (21)

Proof. Statement 1. can be proved analogously as in Proposition 2.2. The procedure that confirms statement
2. is similar to the relevant analysis of deriving the accelerated parameter exposed in Section 2.

For the end of this section we display the algorithm of the modified SHSM method.

Algorithm 3.1. The backtracking with starrting value t = 1
n(1+αk−α2

k)
Require: Objective function f (x), the direction dk of the search at the point xk and numbers 0 < σ < 0.5 and β ∈ (0, 1).

1: t = 1
n(1+αk−α2

k)
.

2: While f (xk + tdk) > f (xk) + σt1T
k dk, take t := tβ.

3: Return tk = t.

Algorithm 3.2. The modified SHSM algorithm defined by (19) and (20).
Require: Function f (x), {αn} ⊂ (0, 1) defined by (7), initial point x0 ∈ dom( f ).

1: Set k = 0 and calculate f (x0), 10 = ∇ f (x0), set γ0 = 1.
2: Check the test criteria; if stopping criteria are fulfilled then stop the algorithm; otherwise, go to the next step.
3: Applying Algorithm 3.1: Compute the value of step size tk ∈ (0, 1] taking dk = −γ−1

k 1k.
4: Determine xk+1 = xn − (1 + αn − α2

n)nγ−1
n tn1n, f (xk+1) and 1k+1 = ∇ f (xk+1).

5: Compute γk+1, approximation of the Hessian of function f at the point xk+1 using (20).
6: If γshsm

k+1 < 0 take γshsm
k+1 = 1.

7: k := k + 1, go to the step 2.
8: Return xk+1 and f (xk+1).
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4. Convergence properties of the SHSM processes

In [28] authors introduced the class of nearly Lipschitzian mappings as a generalization of Lipschitzian
mappings and later studied this class in [1]. Further we list some relevant definitions from [1] needed for
forthcoming statements regarding the SHSM process.

Definition 4.1. If the C is a nonempty subset of a Banach space and {an} is a sequence in [0,∞) such that an → 0,
than a mapping T : C → C is said to be nearly Lipschitzian, with respact to {an}, if for each n ∈ N, there exists a
constant kn ≥ 0 such that for all x, y ∈ C

∥Tnx − Tny∥ ≤ kn(∥x − y∥ + an). (22)

If we denote by η(Tn) the infimum of constants kn for which (22) holds, then for a nearly Lipschitzian mapping T with
the sequence {(an, )η(Tn)} we said to be

1. nearly nonexpansive if η(Tn) = 1 for n ∈N;
2. nearly asymptotically nonexpansive if η(Tn) ≥ 1 for n ∈N and limn→∞ η(Tn) = 1;
3. nearly uniformly k−Lipschitzian if η(Tn) ≤ k for n ∈N;
4. nearly uniform k−contraction if η(Tn) ≤ k < 1 for n ∈N.

Remark 4.1. Number η(Tn) is called nearly Lipschitzian constat.

Definition 4.2. Mapping T : C → C, where C is a nonempty subset of a Banach space X, is said to be asymptotic
k−contraction mapping with sequence {an} if

∥Tnx − Tny∥ ≤ (k + an)∥x − y∥ + an.

In [1] authors concluded that if a mapping is a contraction then it is an asymptotic k−contraction. With
that, asymptotic k−contraction implies uniformly k−contraction.

Next theorem confirms that iterative process (19) converges strongly. The motivation for this result
arose from Theorem (3.7) in [1]. and from [15].

Theorem 4.1. Assume that {xn} is a sequence generated by (19) and x∗ is a unique minimizer of the modified SHMS
process. Then the next statements are valid:

(a) ∥xn+1 − x∗∥ ≤ k∥xn − x∗∥ + k(k + 1)an, for all n ∈N, where {an} is a sequence such that
∑
∞

n=1 an < ∞

(b) sequence {xn} converges strongly to x∗.

Proof. According to results from [1], since the modified SHSM process is a contraction it is a nearly
k−contraction as well. So the following estimations hold for p ∈ F(T) = {x | Tx = x} , ∅

∥xn+1 − p∥ ≤ (1 − αn)∥Tnxn − p∥ + αn∥Tnyn − p∥
≤ (1 − αn)k(∥xn − p∥ + an) + αnk(∥yn − p∥ + an)
= k[(1 − αn)∥xn − p∥ + αn∥yn − p∥ + an]
≤ k[(1 − αn)∥xn − p∥ + αn∥[αn∥xn − p∥ + k(1 − αn)(∥xn − p∥ + an)] + an]
= k[(1 − αn)∥xn − p∥ + α2

n∥xn − p∥ + k(1 − αn)αn∥xn − p∥ + (1 − αn)αnkan + αnan]
= k[1 − αn + α

2
n + kαn − kα2

n]∥xn − p∥ + k[αnank − α2
nank + αnan]

= k[(1 − αn)(1 + αnk) + α2
n]∥xn − p∥ + k[αnank − α2

nank + αnan]
≤ k[(1 − αn)(1 + αn) + α2

n]∥xn − p∥ + k[αnank + αnan]
≤ k∥xn − p∥ + k(k + 1)αnan → k∥xn − p∥ (4.2)

when n→∞.
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According to Lemma 1 in [32]

lim
n→∞
∥xn − p∥ ≡ A > 0.

Therefore, from (23) we have that
A ≤ kA

when n→∞,which is a contradiction. So, the sequence {xn} converges strongly to p ≡ x∗.

By its construction, the SHSM process is gradient direction descending. Further more, Backtracking line
search procedure and its exit condition provides that in each iteration f (xk+1) ≤ f (xk), so there is k ⊂ (0, 1)
such that f (xk+1) = k f (xk),

Proposition 4.1. For real number k ⊂ (0, 1), fixed point p and the process (10) the next estimation is valid

∥xn+1 − p∥ ≤ k[1 − αn(1 − αn)(1 − k)]∥xn − p∥. (23)

Proof. Starting with the general form (8) of SHSM process, we have the following inequalities

∥xn+1 − p∥ = ∥(1 − αn)k(xn − p) + αnk(yn − p)∥
≤ (1 − αn)k∥xn − p∥ + αnk∥yn − p∥
= k[(1 − αn)k∥xn − p∥ + αn∥yn − p∥]
= k[(1 − αn)∥xn − p∥ + αn∥αn(xn − p) + k(1 − αn)(xn − p)∥]
≤ k[(1 − αn)∥xn − p∥ + α2

n∥xn − p∥ + k(1 − αn)αn∥xn − p∥]
= k[1 − αn + α

2
n + kαn − kα2

n]∥xn − p∥
= k[1 − αn(1 − αn)(1 − k)]∥xn − p∥,

which proves (23).

5. Conclusion

New iterative optimization rules arrived from the S−iteration three-term process. Applying the ade-
quately computed accelerated parameter and the optimal step length value, calculated by the Backtracking
algorithm, we defined hybrid AGD schemes and proved their strong convergence features. The presented
models can be applied on different optimization methods for further examinations, comparisons and im-
provements. Additionally, this research can be further studied regarding its application on the sets of
uniformly convex functions and strictly quadratic functions. Numerical examinations of the proposed
methods would be possible, in case they are convergent on these sets. Then, they would be comparable to
the class of Khan’s hybrid methods whose convergence properties are already confirmed on these sets of
functions.
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[21] M.J. Petrović, Hybridization Rule Applied on Accelerated Double Step Size Optimization Scheme, Filomat, 33(3) (2019) 655–665
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[24] M.J. Petrović, P.S. Stanimirović, Accelerated Double Direction method for solving unconstrained optimization problems, Mathematical

Problems in Engineering, Article ID 965104, 8 pages (2014)
[25] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl.

6(1890) 145-210
[26] F.A. Potra, Y. Shi, Efficient line search algorithm for unconstrained optimization, J. Optim. Theory Appl. 85 (1995) 677-704
[27] M.J.D. Powell, Some global convergence properties of a variable-metric algorithm for minimization without exact line search, AIAM-AMS

Proc., Philadelphia 9 (1976) 53-72
[28] D. R. Sahu, Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math. Univ. Carolin. 46 (2005)

653-666.
[29] Z.

J. Shi, Convergence of line search methods for unconstrained optimization, Appl. Math. Comput. 157 (2004) 393-405
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