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Abstract. The objective of this study is to introduce novel fractional Milne-type inequalities for s-preinvex
first derivatives. These findings are derived from a fresh fractional identity and offer enhancements to
existing outcomes. The study concludes by applying these findings to special means.

1. Introduction

Convexity theory is a powerful tool to deal with a variety of problems in mathematics as well as other
sciences.This concept has a closed relationship in the development of the theory of inequalities which are

important tool to predict upper and lower bounds in various applied sciences e.g in probability theory,
functional inequalities and information theory.

We recall that a function Y : I — R is said to be convex on the interval I, if
Y (pu+(1-¢)) < oY ) +(1-¢) Y (0)

holds for all ¢ € [0,1] and u, v € I (see [41]).

The fundamental inequality for convex functions is known as Hermite-Hadamard inequality (see [20,
24]), which can be stated as follows: For any convex function Y on the interval [¢, Il with & < J, we have

J

T(52) < o f Y (1) du < TETD

1)
£

Since this discovery, several papers dealing with convex inequalities have been published, see [17, 18,
22,26,28,29,32,35, 36,40, 43, 47, 53, 54, 56].
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Many researchers have devoted a lot of effort to generalizing classical convexity, the most significant
generalization is that introduced by Hanson [23], called invex set and functions. Pini [42], Noor [38, 39],
Weir et al. [52], and Yang et al. [55] have studied the basic properties of preinvex functions and their roles
in optimization, variational inequalities and equilibrium problems.

Fractional calculus is a branch of mathematical analysis that grows out of the classical definitions of
integral and derivative operators of noninteger order and provides an excellent tool for the description of
the memory and hereditary properties of various materials and processes. It has been successfully used in
various fields of science and engineering see [19, 30]. The most used operator is that of Riemann-Liouville
defined as follow:

(u) Ta )fu— )d¢ u>E&

and
R

18 (u) = %a) f (6-u)"x(¢)dp, I>u,

u

where a > 0, Y € L'[£, 3], T(a) = [ e*¢*'d¢p is the gamma function and 12, Y(u) = I3 Y(u) = Y(u) (see
0

[30]).

Fractional convex inequalities have gained significant attention as a burgeoning area of research. The lit-
erature showcases a multitude of generalizations, enhancements, extensions, and novel integral inequalities.
For a more comprehensive understanding, the interested reader is directed to references [5-7, 13, 33, 34, 44—
46, 48, 49, 51] and the related citations therein.

In recent years, several papers have investigated Milne quadrature (see [1-4, 8-10, 14, 15, 21, 25, 27, 37,
50, 57]). The conventional formulation of this quadrature rule is as follows [3]:

NJ
Y (u)du = 1 (27 (&) - v (5

&

)+27(9)).

In [16], Djenaoui and Meftah established some Milne-type inequalities for s-convex, bounded, and
Lipschitzian functions as follow:

Theorem 1.1 ([16]). Let Y : [&, 3] — R be a differentiable function on [, 3] such that Y’ € L'[&, 3] with
0 <& < 3. If[Y| is s-convex in the second sense for some fixed s € (0, 1], then we have

J
slth(u)du

Y/(§+ )' 4o dsth )Y' (5)')

Ler@-r(52)+2v(®)-

4 3(s+1)(s+2) 3(s+1)(5+2)

S_r
< 9( 45+5 IT/ (‘S)l + _ 25410 S+1)(s+2)

Theorem 1.2 ([16]). Under the assumptions of Theorem 1.1, if [Y'|" is s-convex in the second sense for some fixed
s € (0, 1] where q > 1 with ’1—1 + 1 =1, then we have

g
fY (u) du
) +('”“s+:'“‘“”'q)q]'

er©-r(5

1 ’ q
go& (e 1\p | [ CEF+
S = 1 ( 3p+l1 )V [(

4(p+1)?

)+2T(5)

Yv g+J
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Theorem 1.3 ([16]). Under the assumptions of Theorem 1.1, if [Y'|" is s-convex in the second sense for some fixed
s € (0, 1] where q > 1, then we have

J
Her© - (52)+2v () - S%_éfY(u)du

3
g-¢ (5\177 ' &+9 s (43|
<%£() "((3<sfi;(§+z> @ + s () + (s [ (2] + s e )

Theorem 1.4 ([16]). Under the assumptions of Theorem 1.1, if there exist constants —co < m < M < +oo such that
m <Y (x) <M forall x € [, 3], then we have

J
L2r©) -7 (42) + 27 (9)) - ﬁfy(u)du < H80m),
3

Theorem 1.5 ([16]). Under the assumptions of Theorem 1.1, if Y’ is L-Lipschitzian function on [&, 3], then we have
N}
Y@ -1(5)+2r () - 5 f Y (u)du| < 759,
3

Recently, Budak et al. [11], investigated some fractional Milne-type integral inequalities for functions
whose first derivatives are convex as follow:

Theorem 1.6 ([11]). Under the assumptions of Theorem 1.1, if |[Y’|" is convex on [&, 3], then we have

1T @ - Y(42) + 27 (9) - 23t (15 552) 4 2. YD)

(3-¢)"
<55 (51) (7 @1+ ' @)

Theorem 1.7 ([11]). Under the assumptions of Theorem 1.1, if |Y'|" is convex, where q > 1 with ’1—] + % =1, then we
have the following inequality:

3 (20 @ -7 (52) + 27 (9)) - 2D (13 Y(42) + 12 0(SD))

F-9)"
9 1
g-& P 3 @+ (@) g ' (@©+3)v ()|’ g
<= f(v“+%) (( . )+( - ))
4 1
3 P
g p ’ v
<ty f (v + 3| (1 @1+ [ @)

<

Theorem 1.8 ([11]). Under the assumptions of Theorem 1.1, if |Y’|7 is convex, where q > 1, then we have the
following inequality:

L@ -1 (42) + 27 () - Z5Re (13 (£+3)+I§‘+Y(¥))|

(3-8)°
J-& 4 Vi 7a+8 q 243048 Y
<5 (i) (s e @ + ity o @)

2430+8 v q 2170+8
+ (a8t Y () + s

v @f)).
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Theorem 1.9 ([11]). Under the assumptions of Theorem 1.1, if there exist constants —oo < m < M < +oo such that
m <Y’ (x) <M forall x € [£, 3], then we have

L@ - (52) + 27 (9)) - 2D (15 (5T) + 121D

<TF (&) M- m).

a+1

Theorem 1.10 ([11]). Under the assumptions of Theorem 1.1, if Y’ is L-Lipschitzian function on [&, 3], then we
have

4 a—1 0 y 9 <
27 () - Y (52) + 27 (9)) - T (15 v(5T) + 12, 1(ED))|

The aim of this study is to establish some new Milne-type integral inequalities for functions whose
first derivatives are s-preinvex in the second sense via Riemann-Liouville fractional integral operators.
Additionally, when classical convexity is taken into consideration, representing a specific scenario, the
outcomes obtained from this analysis signify advancements or enhancements over previously established
results, especially for 0 < a < 1.

The paper is organized as follows: Section 2 is dedicated to recalling several fundamental definitions
related to fractional calculus. In Section 3, we show a new identity as a partial result. Based on this equality,
we derive some new fractional and classical Milne-type inequalities for various classes of functions. Certain
specific cases are discussed. In Section 4, some applications to special means for different positive real
numbers involving arithmetic, logarithmic, p-logarithmic and harmonic means are given.

The originality of the results established in our research has links with the results proven in previous
works concerning the three-point Newton-Cotes inequalities. Our results open the horizons and stimulate
other research in different fields of applied sciences, in particular the field of integral inequalities.

2. Preliminaries
In this section, we revisit a number of definitions essential for our study:.

Definition 2.1 ([30]). The beta function is defined for any x, y such that Re(x), Re(y) > 0 by

1
B = [0 (1-6) o
0

Similarly, the incomplete beta function is given for 0 <a <1 by

Bu(x,y) = f o (1-9) " dg.
0

Definition 2.2 ([30]). The hypergeometric function is defined as follows

1
2F1(2,b,6:2) = mf o (1-0) " (1-20) " do,
0

where Re(c) > Re(b) > 0, |z| < 1 and B(.,.) is the beta function.

Definition 2.3 ([31]). A nonnegative function Y : K C [0, 00) — R is said to be s-preinvex in the second sense with
respect to O for some fixed s € (0,1], if

Y (u+ 90 (v,1) < (1= )Y(u) +§*Y(0)
holds for all u,v € Kand ¢ € [0,1].
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3. Main results
Throughout, we assume that 6 (J,&) > 0,a > 0and s € (0,1].

Lemma 3.1. Forany differentiable function Y : [£, & + 0 (J,&)] € R — R of integrable first derivative Y’ on [&, T],
we have

(27 (&) - Y (2909) 1 2x (£ 4 6(3, ) - I (1)

1 1
zw[f((l —¢) = 4)Y (E+ F20(3,8)do - f =37 (e+(1-3)0@,0)do |, @)
0 0
where
I(y) = Zte) (zngm)-na +lga YE+0(3, «S)))- (3)
Proof. Let
A=A - A, @)
where
1
f o) — )Y (£ + 5203, 6)d¢
0
and
1
A = f(qb“ - (E+(1-2)03,9)de.
0

Integrating by parts A;, we get

1
A= =g (1-9) = )7 (E+ 50 0)| - s [ (1-0) ¥ (e 0@ 0)ds
0
1

=55 © ~ w5 Y (72) - wdm f (1-0) " v(e+520(5,0)do

0
2£+0(3,8)
2

2£+0(8,) 2041 a-1
() - g Y (Y0) 2 f (= &7 ¥ () d

28+0(3,&) 20+1T(q+1)
wn Y (O - sda Y (52) - Goo s TE). 5)

Likewise, we get

Ary=—gd5(¢" - 4)r(e+(1- )e(sg)) Y (e+(1-£)0(3,9)dp

9(5 €)
0
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=39(é,5)Y(25+92(3/g)) 39(35)Y(5+6(8 5))"‘ G(SE)f(Pa 1Y 5+(1_ —)6(8 é)) (P

£+0(3,8)

28+60(3,8 aHly a-1
=50 Y ()~ ssp YE+0(3,0) + it f E+0(3,9)-uw)"" Y(wdu
28+ O(S,é)
_ 28+6(3,8) 24T (a+]) o
=sn Y () - sagn Y€+ 0(3,8) + ﬁl(zm(g )y YE+0(3,E). ©6)

3(S &)

Substituting (5) and (6) into (4), then multiplying the resulting equality by , we get the required

result. [
Theorem 3.2. Under the assumptions of Lemma 3.1, if Y| is s-preinvex, then we have

(27 @ -7 (2422) + 27 (£ + 0.(3,8)) - (V)|

9(3 &) +3(a+s+1)-3(s+1) 2a+1B1 (Oé +1s+ 1)) (lY-; (5)| +
3 7

< 4 ( 25%3(s+1)(a+s+1) Y

)

where By (.,.) is the incomplete beta function.

Proof. Applying the absolute value to both sides of (2), then using the s-preinvexity of [Y’|, we get

E (ma - (20D 127 (£ +0/(3,8) - T (Y)

T (e+(1-5)0(5,9)|do

1
P&+ ¢9(s,g))|d¢+f|¢a_%|
0

uf S e @1 (52 [ @)
+ j(g—w)((l—( ) e o1+ (-3 [ ol
w58 [4- - 2 0 (2 o
o=t w09 ol

-e22 o [ -4 —#w+j<%—w><1—<1—%>rd¢]
+[r @) I(%—(l 0))(5) d¢+j ]]

’Y‘l

0
9(8 E) [ 253 (a+s+1)—-3(s+1) 1
. ( >3+ D) (a+s+1) —-2% B (a+1s+ 1)) (W, I+

)
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where we have used the fact that

1 q> dcp =J )S d¢p
0

%
|

= f (1-1)7-2%7t%(1 - T)S)dT

1
-(2)" )— 2418, (a+1,5+1)

(,\)
’v?
+ oo
-
=
—_
;_\
—~~
NI

1

_1 [ (305 - qots) gy = darrD)

_2s‘f(3T T )dT— 3+ D) (atst) "
0

The proof is completed. [
Corollary 3.3. In Theorem 3.2, taking s = 1, we obtain
’% 2T(5) T 2480 9’) +2Y(E+0(T, é’))) I(T)‘
s“T(%)(nr' @+ (@)).

Corollary 3.4. In Theorem 3.2, taking a = 1, we obtain

E+6(3,8)
LY@ -1 (E99) 127 (£ +0(3,9) - 5ig | Y@wdu
<55 (i) (7 @1+ @)
Corollary 3.5. In Theorem 3.2, taking o = s = 1, we obtain
E+0(3.€)
%(2?(5)—?(%“‘@)&?(&9(5,5)))— e Y (u) du
£

<A (v @1+

T (9))).

Corollary 3.6. In Theorem 3.2, choosing 0 (3, &) = 3 — &, we obtain

L2 (©) - Y (23) +2v(3)) - I(T)|

< T8 (Bt _gesip, (g4 1,5+ 1)) (1T (E)] +

/
25%3(s+1)(a+s+1) T

)

where

f(r)_%(zg ),T(£)+IE‘ )Y(S))

9733
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Remark 3.7. Fors =1, Corollary 3.6 is the same as the second inequality of Theorem 2.2 from [12].

Corollary 3.8. In Corollary 3.6, taking o = 1, we obtain

3
Her@-r(52)+2r (@) - ﬁfY(u)du

&

<5 (F=EE) @+ ).

25-1(s+1)(s+2)

Remark 3.9. The outcome derived in Corollary 3.8 refines the second inequality of Corollary 2.3 in reference [16],
as depicted by the curves in Figure 1, where the red curve represents the coefficient of % (|Y’ )+ Y (S)|) from

Corollary 3.8, and the blue curve represents the coefficient of the same term established in [16], given repectively by
25*1(25+1)+3 d 2275(545)+(4s5+5)(s+1)
27N (s+1)(s+2) (s+1)2(s+2)

parameter s

Figure 1: s € (0,1]

Remark 3.10. By setting a = s = 1, Corollary 3.6 will be reduced to Corollary 2.4. from [16] and Remark 1 from
[11].

us+1
s+1

Example 3.11. Let us consider the function Y : [0,1] — IR defined by Y(u) =
Y’ (u) = u® which is s-convex on [0, 1] for s € (0, 1].
By the definition of the Riemann-Liouville integrals, we have

and 6(3,&) = I - &, so that

" B 1 1 s+a+1

I(%)’T(O) T s+ D(s+a+DI(a) (E) (10)
and

. 1

Ty YO = erpr@ bt @+ (11)

where B (.,.) is the incomplete beta function. From (10) and (11), we obtain

2071y
s+ 1 \2sta+l (s + ¢ + 1)

f(T): +B%(0¢,s+2) .
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Thus, the left side (LHS) of Corollary 3.6 is reduced to

LHS =

2l (LB (s 42).

3(s+1)2s+1 s+1  \ 2statl(s+a+1)

The right hand side (RHS) of Corollary 3.6 is reduced to

RHS = 1 (Gt 3D _ patip, (g 41,5+ 1)).

25%3(s+1)(a+s+1)

The outcomes from Example 3.11 are illustrated in Figure 2.

I RHS : I RHS
I LHS N L HS

0.8

0.5
0.5

Parameter s
arameter s 0 parameter o
P m 0 parameter o

(a) View.1 (b) View.2

Figure 2: a € (0,20] and s € (0,1]

Theorem 3.12. Under the assumptions of Lemma 3.1, if |[X’|7 is convex, where q > 1 with % + % =1, then we have

|§(2Y(5)—Y(25+

5 (( )@@\ (rEr+EH =) @)\
<850 (py (op 4 1) ([ ERRERTOL ' (GOl

92(8,5)) +2Y(E+ 9(5,5))) - I(Y)|

2(s+1) 2(s+1)

where 2F1 (., ., ;) is the hypergeometric function.

Proof. Applying the absolute value to both sides of (2), Holder’s inequality and s-preinvexity of [Y'|7, we
get

L (27 @ -7 (2422) + 27 (£ + 0.(3,8)) - T (V)|

1 b1 g
[ty Vao| | [Ir (e o) a0
0 0
1 i g
) q
o[ o [w(&(l—zﬂ)ew,a)lw
1 b (1 !

v @) )do

<9 (oY ao| || [[((1-12) ror+ ()



B. Meftah et al. / Filomat 38:27 (2024), 9727-9742 9736

1
1 q
S
+ f )@ +(1-%) Y’(S)|q)dq§
0
g, (@i @\ (@ -)r@)
988 (4, (<p, L, L +1;3)) (( )2(s+1)+l I) ( +(2(s+1))l I) )

where we have used
1

1
[ ao =2 [0 2f
0

The proof is completed. [
Corollary 3.13. In Theorem 3.12, taking s = 1, we obtain

|17 @ - (2929) £ 27 (£ + 0(5, ) - T (V)

1 1 1
0(3,8) 11 aWe (3 @I+ @\, (1 @r+3 @)\
<=3 (2F1(_Pr515+1'1))p(( = + 1 .

Corollary 3.14. In Theorem 3.12, taking a = 1, we obtain

£+0(3,8)
Ter@ -v(EED) +2v (£ +0(3,9) - 525 f Y (1) du
g
03,6 (w1 \F [( @)@+ @)\ o (rrs@ - D[\
= 12 3(p+1) 2(s+1) 2(s+1) :
Corollary 3.15. In Theorem 3.12, taking a = s = 1, we obtain
£+0(3,8)
LY@ -1 (E99) 127 (£ +0(3,9) - 5 | Ywdu
g

1 1 gy L
<089 (w1 ) @I+ (©)|" \ 4 @1 +3[y )" \7
= 12 3(p+1) 4 4 .

Remark 3.16. Corollary 3.15 will be reduced to Corollary 1 from [11], and second inequality of Corollary 2.8 from
[16], if we choose O (3, &) =

Corollary 3.17. In Theorem 3.12, using the discrete power mean inequality i.e. E*+ 3% < 214 (& + T) for £,5 > 0
and 0 < A <1, we get

|§ (27 -7 (E92D) 27 (£ + 6(3, €) —I(Y)|

<09 (r, (3,212 (&) (T )

Corollary 3.18. In Corollary 3.17, taking s = 1, we obtain
(27 @ -7 (2522) + 27 (£ + 0.(3,8)) - (V)|

1
)),% (IT’(E)I"+IY’(5)|4 )ﬂ
— 1.

20(9,8) 11 .
ST (ZFl (_p/ a’a + 1/

W10
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Corollary 3.19. In Corollary 3.17, taking o = 1, we obtain
£+0(3,9)
f Y (1) du
&

L0 @) - (E529) 127 (& +0(3, ) -

0(3,8)

1 1
<089 (w14 (2 )% @+ @)\
- 6 3(p+1) s+1 2 .

Corollary 3.20. In Corollary 3.17, taking & = s = 1, we obtain

£+0(3,8)
1er@ - (EED) +2v (£ +0(3,9) - 525 f Y () du

1 1
<089 (waa ) (IO
= 6 \3(p+1) 2 :

Theorem 3.21. Under the assumptions of Lemma 3.1, if [X'|" is convex where q > 1, then we have

|1 (2@ - (229) £ 27 (£ + 0(3, ) - T (7))

00 () (3 — 2By (ot L+ )10 O + el (S)V)‘]’

4 3(a+1) 25+13(s+1) 253(s+1)(a+s+1)

' <8>|q)3],

I/\

da+(s+1) 94 8(2:+1-1) 1
+ ( e | L I + (2s+13(s+1) -2 Bi(a+1,5+1)

where B, (.,.) is the incomplete beta function.

Proof. Applying the absolute value to both sides of (2), power mean inequality and s-preinvexity of
we get

120 -1 (E922) + 27 (¢ +0(3,£) - T (1)

Uk- ¢I1jewv@ﬂ
o] v v

1 1

J [f $= (=0 ) (=) e () @‘"q)‘”)]

(e o o) ¢]q

1
q

v ©)f')dg

{]ewwm—@%vm@wﬁ—ﬁ

_ 0,9 ( 4a+1
4 3(a+1)

o[-0 25 o [0

0 0

9737

e,
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1
1 q

O [(1-07)(1-%) a0

0

1
| @ f “)(2) do +
0

1
_ 09,9 (41 \177 [((8(271-1) 1 dat(s+1) q\1
=909 (e ) |((Sm — 2 By @ s+ D)X OF + il [ (9)]

T <5>|q)3],

da+(s+1) q 8(2+1-1) 1
+ (253(s+1)(0(+s+1) (@ + (25+13(s+1) -2 B: (@+1,s+1)

where we have used (7) and (8). The proof is finished. [J

Corollary 3.22. In Theorem 3.21, taking s = 1, we obtain

L@ - (229) Lo (s + 9(5,5))) -

(4a+1)0(3,E) (6a2+15a+3)|Y'(§)|”7+(2a2+3a+1)|Y’(S)|q (211 +3a+1)[T (&) +(6a +15a+3)|Y’(S)|q
S5 8a2+18a+4 8aZ2+18a+4 .

Corollary 3.23. In Theorem 3.21, taking a = 1, we obtain

E+0(3.€)
26+6(3,
Ter@ - (EED) +2v (£ +0(3,9) - 525 f Y (u) du
¢
<503, (215 (1-5)+165+8)[ Y’ ()21~ (s+5)|[ X" (I)|’ T (2 S(s+5)[Y (&) +(2! 5 (1-s) +165+8) | Y (9)|" @
== 5(s+1)(5+2) + S(s+1)(5+2)

Corollary 3.24. In Theorem 3.21, taking a = s = 1, we obtain

£+0(8,¢)

v @ -r(EED) 127 (£ +0(9,9) - 535 f Y (u) du

&

1 1
<509 (A @@\ (@A @)
- 24 5 + 5 ’

Remark 3.25. Corollary 3.24 will be reduced to Corollary 2.11. from [16] and that of Remark 2 from [11], if we
choose 6(9,&) =9 -

Corollary 3.26. In Theorem 3.21, using the discrete power mean inequality, we get

£ (27 @) - 7 (ZG2D) 1 27 (£ + 0.3, 8)) - 7 (V)| < Do

1
(a+1)(25*3(a+s+1)-3(s+1)) 1 T (e @r+ @) i
X ( TeMaraay - 2 Bila+1s+1) 2 .

Corollary 3.27. In Corollary 3.26, taking s = 1, we obtain

Ler@-r (%)wmw(s £))-1(0)

< (a+)0(5,9) IY’(E)Iq+IY'(3)Iq g
= 6(a+1) :
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Corollary 3.28. In Corollary 3.26, taking o = 1, we obtain

&£+0(9,8)

Ler@ - (EED) +2v (£ +0(3,9) - 525 f Y (1) du
13

<503,9) (216+8(25+1)) i @)1+ ()| i
< 12 5(s+1)(s+2) 2 :

Corollary 3.29. In Corollary 3.26, taking o = s = 1, we obtain
E+0(3,)
v @ -r(EED) 127 (E+0(3,8) - o35 f Y (i) du

1
503,89 (@I @[\
- 12 2 .

Theorem 3.30. Under the assumptions of Lemma 3.1, if Y is r-L-Holderian function on [&, & + 0 (3, &)] (ie. there
exist L > 0and 0 < r < 1 such that |Y’ (x) = Y’ (y)| <

L7 @ - (22) £ 2 (£ + 0(3, ) - T (V)

©E™ 4
<O [(5d5-Br+1,a+1)).

Proof. From Lemma 3.1, we have

%(zwr(g) -7 (2909) Loy (54 0(3,8)) - I (V)

— 08 f _4 Yf(5+ gy, £)d f - (E+(1- )9(5,5))d¢]
0 0
1 1
=294 f o) - )7 (£ +520(3,9)dé - f 9) —3)Y (e+ 503, 5))d¢]
10 O
_ 008 f o) - ) (v (e+520(3,9) -1 (£ + 520(3,9))do. (12)
0

Applying the absolute value in both sides of (12), and by using the fact that Y” is »-L-Holderian

(27 @ - 7 (2422) + 27 (£ + 0.(3,8)) - (V)|
1
>f (4
3
0
1
<(935))r+1Lf %_ rd(Z)
0

L[ f )aw]

,\

<2

) (e +520(3,9) -7 (¢ + 5203, 9)| do
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_ 0@ 4
=34 L(m —B(r+1,a+1)).

The proof is over. [
Corollary 3.31. In Theorem 3.30, taking r = 1, we get

(202+6a+1)(6(3,6))2

12(a+1)(a+2) L.

| (27 @ -7 (B9 1 27 (£ +0(3,8)) - T (V)| <
Moreover, if we choose 0 (3, &) = 3 — &, we get

(202 +6a+1)(I-¢)

|§ (2r© - () +27 () - f(Y)' < e L

where ?(Y) is defined as in (9)
Corollary 3.32. In Theorem 3.30, taking o = 1, we have

E+6(3,8)
& r+1
v @ -1 (EL2) 127+ 6(3,9) - 5ds Y (u) du| < UECELT T
&
Moreover, if we choose 0 (3,&) = 3 — &, we get
3
_& r+1
HEr©-Y(52) +20(®) - ok [ < G
&
Corollary 3.33. In Theorem 3.30, taking o = r = 1, we get
E+0(3.€)
2
(20 @) -7 (2E) + 27 (£ 4 0(9,9) - 5t f Y () du| < S
&

Moreover, if we choose 0 (3, &) = 3 — &, we get Corollary 4 from [11].

4. Applications

Let &, 3 be two arbitrary real numbers. Then, we have:
Arithmetic mean: A (&, J) = %
Logarithmic mean: L (&, J) = ¢ e g>0and &2 T

InJ-Iné&

1
p-Logarithmic mean: L, (£, J) = (%)p, £,9>0,&# Jand p e R\{-1,0}.
Harmonic mean: H (&, J) = gf—g, E,93>0.

Proposition 4.1. Let 0 < & < 3. Then, we have
MH (&, &+ A D) - ATN(EE+AE D) - BL7H(E E+ A, D))
<SA(E, 9 HT(2,97).
Proof. Applying Corollary 3.5 with 6 (3, &) = A (&, 3), to the function Y(u) = 1. [

u

Proposition 4.2. Let 0 <& < J,q,p > 1and s € (0.1]. Then, we have

4A (75, 3) - A (£, 9) - 3L1:7 (& S)’
q

1 1 s sy L
< (553) () ()

Proof. Using Corollary 3.19 with 0 (3, &) = 3 — &, to the function Y(u) = Wi O
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5. Conclusion

In this study, we have explored fractional Milne-type integral inequalities for functions with s-preinvex

first derivatives. We began by demonstrating a novel integral identity and subsequently established a series
of fresh Milne-type inequalities that incorporate the Riemann-Liouville integral operator. Furthermore, we
addressed specific scenarios and offered practical applications of our findings. We trust that the concepts
presented in this paper will inspire researchers engaged in inequality studies to extend our findings to
various forms of classical and generalized convexity, as well as to broaden this research into different
realms of calculus.
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