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Abstract. We propose a blending type generalized Bernstein-Beta operators associated with Bézier bases
Gri(A; y) and a shape parameter A. First, we study the convergence results for the proposed operators and
then establish their rate of convergence with the help of the modulus of continuity and Peetre’s K-functional.
Next, we present quantitative Voronovskaja-type results to study their approximation speed. In addition,
we estimate the error for absolutely continuous mappings possessing derivatives of bounded variation.

1. Introduction

The key to the popularity of the theory of Approximation is undoubtedly the famous Weierstrass ap-
proximation theorem [21] and then the constructive proof given by the Russian mathematician S. Bernstein
[7]. He constructed the following sequence of positive linear operators

k

Pk(u;y)=Z(’l‘)yl(1—y)"" (i) k21, (1)

1=0

where y € [0,1] and u is a continuous function on [0, 1]. These sequences of polynomials are known as
Bernstein polynomials. These polynomials became more popular after the Bohman-Korovkin theorem,
which states that if a positive linear operator defined in [0,1] preserves constant, linear, and quadratic
polynomials, then it will preserve all the continuous functions on [0,1]. After that, many modifications and
generalizations were made for the Bernstein operators, and it became the most extensively studied linear
positive operators. Some of the works can be seen in ([11, 14, 19]) and the references cited therein.

In 2010, Ye et al. [22] defined a new Bézier bases pi;(A;y), I = 0,1, ...,k with the shape parameter
A e[-1,1] by

Pro(A;y) = pro(y) — s (y),
i y) = pra(y) + A (k,:zzfilpkﬂ,l(y) - %Pkﬂ,m(y)), 1<I<k-1), )
k(s y) = pex(y) — 2ipesic(y),
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where pii(y) = (y'(L -y

Referring to equation (2), it’s essential to highlight that incorporating the shape parameter A provides
us with increased modeling flexibility for the positive linear operators. Due to the above property, Cai et
al.[10], explored a modification of the Bernstein polynomials as follows

- 1
Pia(:y) = ) pra(; y)u (E) ©)

1=0

where fii(A; y) defined in (2). In particular, when A = 0 the operators (3) boils down to the Bernstein
polynomials (1). Further, some analysis of important approximation properties of (3) has been conducted
and results regarding their rate of convergence has been established. Also, to ensure that some continuous
functions and different values of A lead to a better convergence speed compared to the classical Bernstein
polynomials.

Further, Cai [9] introduced generalized A-Bernstein operators by developing Kantorovich-type A-
Bernstein operators and their Bézier variant, and analyzed these operators in terms of several approx-
imation properties. Later, Acu et al. [2] introduced A-Bernstein-Kantorovich operators and discussed
various approximation properties and asymptotic type results. In this context, we highlight the works of
authors who introduced modifications to the A-Bernstein operators and established their convergence in
the following papers, see [4, 5, 8, 18, 20].

It is worth noting that, many Beta-type generalizations like the Stancu-Beta operator, Beta operator of
the first kind, g-Stancu-Beta operator, (p,q)-Bernstein-Beta operator, etc. were contributed to this field of
Approximation theory, see [3, 6, 16, 17].

In recent years, the Beta-type generalization of many operators has became quite a popular area of re-
search. Motivated by the above-mentioned works, we introduce a Beta-type generalization of the operators
(3) as follows

ov HvrpW)-1(1 — p)k=Dv+p(y)-1
By = ZPH(A y) f B(lv + p(]; ! —hv+ p(y)) u(t)at, (4)

where the maps u# and p are continuous on [0,1], A € [-1,1], ¥ € [0, 1] and fii(A; y) is given in (2). Also,
v > 0 and f(g, r) is the beta function defined by

1
B(gq, 1) = f tl 1 - tytdt, gq,r>0.
0

One can easily observe that the operators ‘E,f’x(u; y) are linear and positive.

Remark 1.1. Some Special cases:

1. When p(y) = v = 1, we obtain the A-Bernstein-Durrmeyer operators

n 1
Do) =0+ Y pahin) [ puatiucons
k=0 0

In addition, if A = 0, then we get the classical Bernstein-Durrmeyer operators

n 1
D) =+ 1Y puat) [ praoucoy.
k=0 0

2. When p(y) = 1, the above defined operators get reduced to the operators defined in [1].
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During this discussion, our primary concern is to analyze some of the essential approximation properties
of the operators (4). Also, we examine their speed of convergence by establishing the Voronovskaja-type
results. At last, we propose a direct estimation result for absolutely continuous maps on [0, 1], whose
derivatives are equivalent to some function of bounded variation.

Throughout the paper, we consider the real valued functions ej(y) = y/ and e;,(t) = (t — y)/,Vy € [0,1]
and j € N U {0}. Also, by €[0,1], we denote the vector space of all bounded continuous maps on [0, 1]
associated with the sup norm: ||| = sup{lu(y)| : y € [0, 1]}.

2. Preliminary Results

This section discusses some basic results that will be used to establish the main theorems.

Lemma 2.1. [10] The operators (3) satisfy the following relations

Py a(eo; y) =1,

oy 1-2y+ yk+1 -(1- y)k+1

Pyaler;y) =y + A { D) ,
cyo2, Y-y 2y — 4y + 2y M (1 -y -1
Pralesiy) =y e { K- (k- 1) ’
k+1

3y’ (1-y)  2° =3y° + —61° + 6 3y> -3
Piatesiv) =y’ + S+ S y”[ S T

_9]/2 + 9]/k+1 . _4]/ + 4]/k+1 . (1 _ ]/k+1 _ (1 _ y)k+1)(k + 3)
Kk — 1) Bk —1) Bk2 - 1) '

k+1

Lemma 2.2. For the newly defined operators (4), we calculate the usual moments as

B (eo;y) =1,

1-2 k+1 _ 1— k+1
k/\(elfy) [{kvy +p(y)} + /\v{ y+ yk — 1-v) }],

1
{kv +2p(y)Hkv +2p(y) + 1

+%{kv(2y — 42 + 2y +v (yk” +(1 -yt - )

+20()+ D1 =2y + 1 = (1= ).

1
kv +2p(y)

B y) = )[{k2v2y2 +kv?y(1 - y) + kyv(2p(y) + 1) + p(y)(p(y) + 1)}

Proof. From the operators (4), we have the following relations

‘ﬁ,’z; (e0; y) =Pra(e0; y), ()
k 1

~ ) (1 — £)k=Dyv+p(y)-1
B y) =Y plhiy) a-p

o Blv+p(y), (k=D + p(y))

=i~ (P P+ 1, = v+ p(1)
PR+ p(y), =Dy + p(y)

_ [ e
=Y (5 5)
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kv _ p(y)
—]sz(y)l)k,/\(el; Y+ m

th+P(y)+1(1 _ t)(k Dv+p(y)-1
i) = ZP“(A V)f B+ o), G~ v+ p)

ﬁ(lv +p(y) +2,(k=Dv+ p(y))
ﬁ(lv +p(y), (k=Dv+ p(y))

v+ p(y) v+p(y) +1
(kv + 2p(y)) (kv +2p(y) + 1)

Py a(eo; v),

2

_FVIPialea y) + kv2p(y) + DPialer; y) + p)(L + p()Praleos v)

(kv +2p(y)) (kv + 2p(y) + 1)

To conclude our desired assertions, we use the Lemma 2.1 in (5), (6) and (7).

Lemma 2.3. The operators (4) have the following central moments

‘B]F::/l\/ (eO,y; ]/) :1/

1 1=2 k+l _ (1 = y)k+1
/\(ely']/) kV+2p(y) [P(]/)(l_zy)"‘/h/{ y+yk_1( y) }:|=0(p
=pv, kv =y gy = P) + 2170 (n) + 1P p() = 2yp*(y) — yp(y) + () + p(y)
‘Bk’/\(eZ,y/ ]/) -

(kv +2p(y) (kv + 2p(y) + 1)

Av {Zkvy(l — D+ (1= b)) + vy + (1 -y - 1)}

(k= D)(kv +2p(y))(kv + 2p(y) + 1)

Av {(Zp(y) +1)(1 =4y + 4y% = 2452 + 2y(1 — )+ + 1 — (1 - y)k”)}

(k= Dkv + 2p(y)) (kv + 2p(y) + 1)
= By ()-

Remark 2.4. The calculated central moments in Lemma 2.3 satisfy the following limiting conditions

_ 1-2
i KB ) =22,

4
. g v 1
im KB (e ) =y(1 - y) (1 + 1_/).

Lemma 2.5. The inequality |I§Z’X(u; I < |ull holds for any u € €[0,1].

9746

Proof. In view of the operator (4), Lemma 2.2, and the norm defined for €[0, 1], we immediately conclude

the result. [J

Theorem 2.6. For any u € €[0,1] and A € [-1,1],
. MoV _ —
Tim B (1) - u
Proof. From Lemma 2.2, one can easily derive that
Tim (1957 (e) = ejll = 0, forj=0,1,2.

Hence the result follows from the Korovkin’s Theorem [15]. O
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3. Local and Global Approximation Results
For 6 > 0 and u € €[0, 1], the first order modulus of continuity can be defined by

OQ(u;0) = sup sup |u(y +h) —u(y)l,
0<h<s yel0,]

The second order modulus of continuity is defined by

Qy(u;0) = sup sup |u(y +2h) — 2u(y + h) + u(y)|.
0<h<5 ye[0,1]

The Peetre’s K-functional of a function u € €[0, 1] is defined by
K(u,0) := ve(iz?[g,u{”u —oll + ollo” I},
where
€2[0,1] := {v € €[0,1] : ¢, v’ € €[0,1]}.
The relationship between K(u, 6) and Q5 (u, 0) is described in [12] as
K(u, 8) < CQu(u, Vo).
Here 0 is a positive real number and the constant C > 0 doesn’t depend on u or 6.

Theorem 3.1. Let u € €[0, 1] and y € [0,1]. Then for any k € IN, the operators (4) satisfy
B2 ) - uwl <20 (1, B0,
where B (y) is defined in (9).

Proof. We note the following relation associated with the modulus of continuity.

(t :Szy)Z + 1) .

|u(t) = u(y)l < Q(u, 5)(
Now, apply the operators %EK on (11) both sides to obtain

B2 6:) — ) < R Qut) — ) ) < 0w, ) (1+ B3 - 97 < ).

Next, we select d = [}/ (y), to obtain our desired result. [

Theorem 3.2. For y € [0,1] and u € €0, 1], we have the following relation
L y) - u) <o )l @l + 2B e (v, JBw),

where aZ’X(y) is defined in (8). Also, €'[0, 1] denotes all such u € €[0,1] such that v’ € €[0, 1].

9747

(10)

(11)
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Proof. Taylor series expansion ensures us that
t
)= uw) =w -+ [ 6 -
v
for any y,t € [0,1]. This yields
_ _ _ t
PO(t) — uy);y) = W GBLLE— y)iv) + B ( f (' @)~ ' ()dz ). (12)
y
Next, for y € [0,1], u € €[0,1] and 6 > 0, we know the following relation holds:
It~ yl
[u(t) — u(y)l < Q(u, 6) 5 +1].

Hence as u’ € [0, 1], the above relation yields

(t—y)?
5

t
f ('(2) — 1 ()= smucé)(
y

+lE= yl) :
So, by (12), we must have

|§Pr1’( . <P ’ (1T 1 QP ¢ 2. QP t .

kA u, ]/) - u(y)| —|ak,A(]/)||“ (]/)| + (1/[ 7 ) quk,/\(( - ]/) /]/) + G/Bk,/\( - ]// y) .

Next, we apply the Cauchy-Schwarz inequality to obtain

oV , vV , 1 oV oV

1B 5 ) = u()l <l (Wl ()] + Q' ) {5 P ((t =y y) + 1} VB = 9% y).
Lastly, we select 6 = /ﬁ}f’;(y), to prove our claim. [

Theorem 3.3. Let u € €[0,1] and v € €?[0,1]. Then 3 a constant C > 0 obeying the following relation for each
ke N

B059) =) = a3 )] < €0 (1, B ).
Proof. By Taylor’s expansion, for v € €2[0, 1], we must have

t
o(t) = o(y) + V() - 1) + f (t - 20" (). 13)
y

Next, we apply the operators %i; on (13), to obtain

_ _ t
‘BZ’X(U; y) =ov(y) + U’(y)am(y) + “BZ’; (f (t = 2)0" (2)dz; y) .
v

By taking modulus on both sides, we have

~I€,,X(v’. y) —oy) - a,f:;(y)v’(y)' S%I’:,j\/((t — ) ||U2 |

< Il (14)
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Now, it is easy to observe that, for u € €[0, 1],

PO y) - uly) - a,ij(y)v'(y)| < [P -v;y) - (-0)(y)| + '%Z,’X(v; ) —o(y) - o' (y)|.  (15)

So, using (14) and Lemma 2.5 in (15), we can deduce
80705 = uy) = o) )] < 1w = ol + Bl

Now, taking infimum over all v € €2[0, 1] on the right side of above inequality, yields
87705 ) - u(y) - i) ) < K (1,001 w),

Finally, we use the relation (10) to get our desired assertion. [J

Next, we present a local approximation result for the Lipschitz type class of functions. In this context
we have the following definition.
The Lipschitz class of functions with two parameters y; > 0 and y, > 0 is defined as

Lz‘pﬁ"“(n):z{uecs[o,l]:|u<t>—u(y)|§M il yte[o,u},

G+ 2y +
where n € (0, 1] and M > 0 depends on u only. (M will not be the same for forthcoming results.)
Theorem 3.4. Foranyne€ (0,1]and u € Lip;\'/}’yz(n), we must have
PV n/2
0 09) ~ o) = M(yf/—jyy)y]
where ﬁ,’i’;(y) is given in (9) and M > 0 depends on u.
Proof. It is easily seen that for n =1,

_ _ —0 t—
B ;) — )] < B2 (u(®) - u()l y) < M{‘B,f/’A (% y]}
1 2

Using the fact that 1 < L and Cauchy-Schwarz inequality, the above inequality yields
5 Vi +ry T Ay y quatly qHaty’y

B0 (s y) — u(y)] < B - )

M
VViy2+ 2y
M

S—
VY1iy2 + 2y

Hence the required inequality is true for 1 = 1. Next, we consider the case when n € (0, 1).
Using the fact that ‘B]’:’X(u(y); y) = u(y), we have

v 1/2
B W)
Ny +ry)

(B -y < M[

B0 (w5 ) = u(w)] <P (ut) - u(w); v)

_ : Bi(: 1 tl"+f’(y)—1(1 _ t)(k—l)v+p(y)—1 t » y
_gpk,l( /_1/)~fO B(lv + p(y), (k—Dv + p(y))'u( ) — u(y)ldt. (16)
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Settingp = £ and q= 35 and then applying the Holder inequality to (16), we obtain
k 1 vrp(y)=1(1 _ #\(k=Dv+p(y)—1 /2
=11 — f) Py 5
RURCE 1(A; lu(t) — u(y)l*/"dt

Z A f T re)1(q — pylkvep)-L ) @-n)/2
X 5 (A t
L Pri(A y) o Bv+py), k=Dv+p(y)

k

/2
1 ylvrp()-1(1 — pyk=Dv+p(y)-1 F_ oyl 1
<M Zﬁk,z A1) t 1-1t I 2yl it
e o BUv+py), (k=Nv+py)) (t+y1y> +72y)

M . ,
SW [$Z,A((t -5 ]/)]'7

n/2
SM[ B J |
Y1y* + )2y

This completes the proof. O

We recall the 1st and 2nd-order Ditzian-Totik uniform modulus of smoothness

Q¢ (u, 6) == sup sup  {lu(y +hé(y)) — u(y)l}
0<h<6 y,y+hi(y)elo,1]

and

Q5(u,8):=sup  sup {lu(y +h&(y)) — 2u(y) + u(y — &)1},

0<h<o y,y+h&(y)€[0,1]

respectively, where &(y) = [y(1 — y)]"/? and 6 > 0.
Let the corresponding K-functional be

Koe(u,8) = inf {|ju— |+ 0|E%0”|| : v € €%[0,1]},
20,0 = _inf il —oll + 31" [0, 11}
where
W2(E) = {v € €[0,1] : o' € AC*[0, 1], |E%"|| < oo}, (17)

where by AC [0, 1], we denote the set of all locally absolute continuous maps on [0, 1]. Also, it is evident
from [12] that

M5 (u, Vo) < Koe(u, 8) < MQS(u, Vo), (18)

where M > 0 is a constant.
Now we are in the state to establish a global approximation result for the operators (4).

Theorem 3.5. Suppose that &% (& # 0) is concave on [0,1]. Then for any u € €[0,1] and y € [0,1], A M > 0, such
that
PV pY
T, (Y) a, ()
L+ Qe u, =2—|, 19
26 | " e 49

) ) . 212
where T,f,’}\(y) = {ﬁ,f,’A(y) + (a;f:/\(y)) } :

B0 ) - u(y)l < MO |u,
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Proof. For u € €[0, 1], we define an auxiliary operator
PO y) = B y) + uly) — u(y + a3 (v). (20)
Clearly, the above defined auxiliary operator preserves linear as well as constant functions.

Letz = 9y + (1 - 9)t, 9 € [0,1]. As &% is concave on [0, 1], we must have &2(z) > 9&2(y) + (1 — 9)&2(t) and
hence we have

t-z__ Sy-tl _lt-y
£E) 38+ 1-980 ~ 2@

Also, using Lemma 2.5, for the operators (20), we obtain

B y) —ul < 1B =] + 1B @ y) = o)l + lu(y) - o(y)l
< 4||M =0l + 1B (05 y) = o). (21)

By applying Taylor’s formula, we get the following relation:

— t yrag, (1) )
IB;1@; ) = o)l <Py ( f It -zl (2)ldz; y) + ly +af’y(y) - 2llo” (2)ldz
Yy
— a7 v W) |y + al” (y) -z
< 2.7 PV |t Zld ; )+ Y f g k,A
<|IE% II‘BM( | am ) e) | —g "

— 2
<E2EV IR — v)% ) + E2WIE Nl W)
4 % 2
<22 [0 + (afy o) |
Using the above inequality, (21) yields

B0 (1) — u(y)| < 4l — ol + Efz(y)llézv”ll[ﬁ,’?j(y) + (a,i’;;(y))Z].

Now, by taking the infimum over all v € W?(&) and then using (18), we get there exists C > 0, such that

2
\/ﬁ W) + (a3 w)

2¢(y)

By (5 y) = u(y)l < MQ; | u,

But, by the definition of first order Ditzian-Totik uniform modulus of smoothness, we must have

W)
u[y &(y) k?) ]—u(y)

a ), (v)
SQ& [u, Ty)] .

B0 (w3 y) = u(@)] IBLY (5 y) — u@)] + (Y + @ (@) - u()

lu(y + o (y)) —u(y)l =

Finally, we obtain
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pv PV y
<M |1, \/ﬁ i)+ (a3 ) é{ ’ “Z,’A(l/)],

2&(y) &(y)

which is the required result. [J

4. Voronovskaja-type Asymptotic Results

This section presents Voronovskaja-type asymptotic results to study the speed of convergence of the
operators (4).

Theorem 4.1. Assume that an integrable function u on [0, 1] with u’ and u” exists at some point y € [0,1]. Then
we have the following relation

~ 1-2
Jim k{845 y) = u()} = Mu’(y) +y(l-y) (1 + %) u’(y)-

v

Proof. By the well-known Taylor’s expansion,

’ 1 n”
w(t) = u(y) +w (Y)(t = y) + 50" Y)(E =y + O y)E =y, (22)
where O(t, y) € €[0, 1] and satisfies ym O, y)=0.
-y
For k € N, we apply the operators sl?fx on (22) to obtain
TPV ’ Y 1 ” TPV MpPV
B y) = u(y) +w (= y);9) + 50" P (E = 9% y) + B O y)(E - y)%y),

and of course applying limit k — oo on both sides, we get

) i k P - 1% )

2 k— oo
+ lim k PO, Y-y y).

lim KR, 1) = u(y)) =u'(y) lim kB2 (= )3 ) +

Next, using Remark 2.4, we can easily obtain

1-2
Q22000 )+ ya - (14 L))

+ lim kB O y)(E = y)%5 ). (23)

lim KB (1, ) — u(y)) =

Hence, from the Cauchy-Schwarz inequality, we get

Tim kF73(©(, )t - 175 9) < FLHO, ) 1) P - 1) ) (24)
Also, Theorem 2.6 ensures that
lim B77(©°(t,); ) = ©(y, ) = 0. (25)

Lastly, in view of the fact that %5’;((1& — y)%y) is of order k2 and then applying (24) and (25) in (23), we
conclude the proposed result. [J
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Next, we proceed for a quantitative Voronovskaja type estimation for the newly defined operators. For

this context, we have the following notations:
For u € €[0,1] and 6 > 0, the Ditzian-Totik uniform modulus of smoothness can also be defined as

@+%wu 4%l%ﬂyyi%@ m1§

and the corresponding Peetre’s K-functional is given by

Qs(u,06) := sup {

0<h<o

Ke(u,0) = inf {lju—oll+6ll&'|| : v € €'[0,1]},
veW2(&)

where &(y) = {y(1 — y)}'/? and W?(&) is given in (17).
Also, it is clear from [12] that 3 a constant M > 0, with the property that K¢ (1, 0) < MQe(u, 6).

Now, we are at the stage of establishing a quantitative Voronovskaja type result.
Theorem 4.2. Foru € €?[0,1], y € [0, 1] and sufficiently large k, there exists M > 0 satisfying the following relation

B v IBP,V(]/)
g‘I;][(:/\(u/‘ y)u(y) — u(y) — O‘Z,A(]/)“’(y) _ k,}; u”(y)

where ai’)v\(y) and ﬁf’;(y) are given in (8) and (9) respectively.
Proof. For u € €2[0,1] and y € [0, 1]. Taylor’s series ensures us the following
¢
)= 1) = ¢~ ') = [ (6= 2@
y

This leads to the following relation

) =) - G- ') - - = [ -2 @ -l
Y

Now, applying the operators (4) on both sides, we obtain

//(y)

T 05 y) = u(y) = B — v (y) — LR a—wmﬂ

pv(

It is easy to notice from [13, p.337] that the following inequality is true for any v € W?(&)

f It — zllu” (z) — u”’ (y)ldz ,y) (26)

<2l —oli(t = y)* + 201 NET Wt~ yP. (27)

f [t —zllu”(z) — u”’ (y)ldz
y

Also, using the facts that ‘I?Z’X((t - y)%y) is of order k! and ;ﬁf’f\((t - y)%;y) is of order k2, for sufficiently
large k, we can get a constant M > 0, such that

B = yPy) < 2kéz(y) and B~ k) < ﬁg(y) )
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In view of (27), (28) and the well-known Cauchy-Schwarz inequality, (26) yields
B (y)

T pu(y) - u(y) - ' () -~ )

<2 = olIB (- v)%y) + 2l )IE (y)'iﬁ,f;;ut -y
Z 2 ol + 2 1E ) B~ 92 ) B = 1))

< L&) (I~ oll+ K Plgo'l).

Lastly, taking infimum over all v € ‘W 2(&), we get the desired assertion. [J
In light of the above theorem, one can draw the following conclusion.

Corollary 4.3. For u € €?[0,1]

pv
kA u”’

lim k PO yuy) - u(y) - o' (y) - —=u’(y)| =

We complete this section by showing a Griiss-Voronovskaja type result for a particular class of the newly
defined sequence of operators.

Theorem 4.4. For u,v € €2[0,1] and y € [0,1],
lim k{ (B0 wv; y) = B () B0 @; ) = 3y(1 = ' ()0’ (y).
Proof. For u,v € €2[0, 1], we notice the following relation

Ben ()
2

B w0y y) = B 1 R (0 y) =B (w03 y) = uy)o(y) — (wo) (g (y) - (uv)"(y)

—v(y)[%;(u;y) u(y) — ' (y)ag, (y) = u” (y) 2 l

WPV Spv v pv(y)
- B y) {‘B,’;’A ©;y) = o(y) = ' W)y, () = 0" (y) l

ﬁ (y) "
+ Y (y) + 20/ ()0 (y) = 0 () B (w5 )]

+ am(y)[u(y)v (y)-v (y)‘Bk,A(v; y)l.
Multiplying both sides by k and then taking limit k — oo, we have

lim KB} a0, ) = B 06 ) B 0 9)

PV v :8 (y)
= lim k {iB,fjA(uv; Y) = u(y)o(y) - wo) ()ayy (v) — o) (y) }
Br. (y)

- u(y) I}l_)rrolok [‘1‘;5”;(1{; y) —u(y) - u’(y)alfj(y) u’

B s )k | BEY B
_klir?ospffﬁ(”;y)k[”l‘fﬂv;y)—v(y)—v'<y)a W) =) l
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0.V
kA

y) —~0
[y (y) =" () B} (1 )]
+ hm[kam(y)l[u(y)v (y)—v (J/)%k/\(v' vl

+ hm kﬁ (y)]u (7' (y) + 11m

Lastly, using Theorem 2.6, Corollary 4.3 and Remark 2.4, we get the desired assertion. [J

5. A direct Estimation

The final step of our discussion is to calculate the error while approximating the functions from a special
class, namely BV’[0, 1], which consists of all continuous maps with derivatives of bounded variation. One
can easily represent any function u € BV’[0, 1] by

Y
u = [ otoar-+u0)

where v € BV[0, 1] i.e., the mapping v is of bounded variation on [0, 1].

. ~ " W+p(y)-1 (1 —p\k=Dv+p(y)-1 . .
By setting 7<kp ; (v, t) = Zf:o Pri(A; y)m as the kernel, we can easily rewrite our operator (4)

as

—_ 1 ~
T (w5y) = fo Ry, Dty (29)

Lemma 5.1. For y € (0,1] and large positive integer k, we obtain the following inequalities

1. If0 <x <y, then

v v ﬁk/\(y)

2. Ify <z <1, then

" Briv)
1-4 (2 )—f K (y, byt < ("_AW

Proof. Using (29) and (9) we observe that, for 0 <x <y,

X _t 2
CZ'K(y,x)=f W"V(y,t)dt<f (y—) K (y, tydt
: 0o \y—x

CPCE-vEY) AW
N R

For the second part, the proof is simailar. [

Theorem 5.2. Let u € BV’(0,1) and y € (0,1). If k € IN is sufficiently large, then the following inequality is
estimated:

P y) - u(y)' (' (y+) + ' (y=)}a (y)+1\/ A (y+) = ' (y-))

+y‘1ﬁ‘”(y)2 . >+—zy 2 ()
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a-y

N <y>Zzy*'<y> )

By ¥¢(u), we denote the total variation of the function u on [c,d) C [0,1] and the function uy, is defined as
w(t)—u'(y-), 0<t<y,

u’y(t) =) —u'(y+), y<t<l,
0, t=y.

Proof. We know that the operator (4) preserves the constant functions and hence
PO y) - u(y) = f (ult) - u) K 3,
f K V(y, t) (f u (z)dz) dt. (30)
Also, for u € BV’(0, 1), we can write

w'(z) =5{u'(y+) + u'(y-)} + uy(2) +5 1 (' (y+) —u'(y—)sgn(z — y) + [1'(z) - %{u'(y+) +u'(y-)16;,  (31)

where 6; is the Kronecker delta function and defined as

and sgn(x) is the signum function defined by

sgn(x) = "‘ﬂ' x#0
T =0, x=o.

It is easily observed that

1, ot
fo (L [u (z) - {u (y+) + /' (y— )}] 6Zdz) 7(pv(y, tydt = (32)

Now, using relation (29), we have

1, pt _
f (f 1{u’(y+) + u’(y—)}dz) 7(’”(y, tydt = {u'(y+) +u' (y-)NBY =y y). (33)
0 Yy 2 ’

Also, by some manipulations and the Cauchy-Schwarz inequality, we get

1 t
| ( | 5t - s - y)dz) KLy,
Y

IA

1
(o (y4) — 1 (y-)) f = iy,

' (y+) - ' (y- )}‘BPX(It yl:y)

IA
Nl»—\I\JIH N =

(o () = g [BL e - )] (34)
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Now, using (31)-(34) in (30), we have

PO (w3 y) — u(y) < {u (y+) +u'(y- )}‘B’Jj(t—y,y)+ L (y) - w () [P (- v y)]

1/ ot
+f (f u’y(z)dz) va(y, Hdt
0 y

=30 )+ Nl W) + 5 B ) - )

Y t 1 t
’ PV ’ 0,V
+ fo ( fy uy(z)dz)‘K (y, Hdt + fy ( fy uy(z)dz)(K (y, H)dt.

This yields
|‘B“(u y)—u(y)' =’ (y+) + ' (y-)}af (y)+—\/ﬁ T (y+) ' (Y- + L+ I, (35)
where It = | [ ([ ,z)z) KL (v, ], and I = | ([ (z)dz)?(pv(y,t)dt‘

To establish our claim, we need to estimate the integrals I; and I,. It is noticed that for f < y, we have
WP V(y, tydt = d, 0 A(y, t), where d; denotes the differential operator with respect to ¢.

Now, applying integration by parts, we get

Y t t Y Y
(Lywﬂmﬁw>Hu:wmﬁw%ﬂ—ﬁgm%mwt

\f‘q;%nuUMJ quA%nw<mw+jﬂm "y, Dl B,

L =

Substituting x = y — 7%’

yt
L < fo ICe (Y, Dl (Bl + f Cor (. Dl (D).
Y=

s\<

Now, by noting the facts that u}(y) = 0 and |CZ’;(y, Hl <1, it follows

I

Y Y
oo = [ g0 - woi < [ st

y\[ Y=

BN

<L, ). (36)
\/'

S P
Also, by using Lemma 5.1 and the substitution t = y — £, we have
v = (1)
7 e oo <gon [ S
0

% Iuy(t) —uy(y)l
<f ]

w%mﬂfzp%m
VK A1
w Y [

=1
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[ VK]
<y B LT 40
Combining (36) and (37), we get
[ VK]

L<y '8 W) Zzy L) + sz 2 ()

9758

(37)

(38)

Again, we note the fact that for t > y, the relation 7(p V(y, Hdt = di(1 C]’:’;(y, 1)) holds and hence by applying

the by parts rule of integration on I, we yield

1/ rt

L= fy (j; u’y(z)dz) di(1- CZ/"A’(]// 1)
t 1 1

- [(f '(Z)dz) (1‘C§,’X(y,t>)] - f w1 - 2y, )t
y Y

= f (1- CfA(y,t))u (t)dt

< fy 11— Oy, Bl (e + f 1= Yy, Dl Bt

Substituting w = y + d ‘fy ), in the above inequality

a- 1/)

Y+ 1
L< f 11— Ty, Dl (et + f 11— %y, )l (0.
Y JJr

(- y) , we have

1 o |uy( iy
fy o 11— Ty, Dl ()t < () f v —

, 1 IM () = uy (vl
= ?A(y)f - ];.y dt
/ y+(l%/g) (t_y)

By using Lemma 5.1 and the substitution ¢ = y +

1 -y
<y -1 ) f T )iz
y Bty P y

s [ etz
“-p g [T s
VK 41 =
<a-p hm Y, [T e

=1

NG
<U-p W Y. T ).

=1

p v

Using the fact |1 - (y, )] <1, we can deduce

-y a- 1/)

Y+ +
f 11— Ty, Dl (bt = f 11— Ty, Dl (1) — 1 (It
y Yy
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(1-y)

I (1-y) w5F
< T (! )dt < T, *@).
L y My N y

This leaves us with the following inequality

(L-y) vty
\/]; y

Finally, substituting (38) and (39) in (35), we get the desired estimation. [

\/Iz] a-y
L=y B Y T @)+ (1. (39)
=1

6. Concluding Remarks

As a consequence, in this paper, a Beta-type generalization of a modified Bernstein operators has
been introduced which have a better modeling flexibility than the Bernstein-Durrmryer operators. We
established the important convergence properties of newly defined operators, such as degree of local and
global approximation, quantitative Voronovskaja type and Gruss-Voronovskaja type results. Finally, we
estimate the error for absolutely continuous functions with derivatives of bounded variation.
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