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Abstract. In this article, we study a one-dimensional system of fully dynamic and electrostatic piezoelectric
beams with a magnetic effect in the presence of a viscoelastic damping term acting on the mechanical
equation. Under suitable assumptions on the kernel g, we prove the global existence and uniqueness of the
solution by using the Faedo-Galerkin approximations. And by constructing a suitable Lyapunov functional,

we establish a general energy decay result. Furthermore, our result does not depend on any relationship
between system parameters.

1. Introduction

The term (piezoelectricity) comes from the Greek root (piezen), which means to press or squeeze.
Therefore, piezoelectricity is the result of a coupling between the mechanical and electrical properties of
a material. Thus, the term (piezoelectricity) designates the property exhibited by certain bodies of being
electrically polarized, i.e., of generating an electric field or potential, under the action of a mechanical
constraint. This is called the (direct piezoelectric effect), because the inverse piezoelectric effect is also
observed. An electric voltage applied to a material having piezoelectric properties leads to a modification
of the dimensions of this material. Piezoelectric materials such as quartz, barium titanate, and Rochelle salt
have the necessary capacity to transform mechanical energy into electro-magnetic energy under mechanical
stress. In 1880, this phenomenon was discovered by the brothers Pierre and Jacques Curie. Furthermore, the
latter is known as the direct piezoelectric effect. The same materials can convert electro-magnetic energy
to mechanical energy, a phenomenon known as the (converse piezoelectric effect), which was discovered
in 1881 by Gabriel Lippmann [22]. Furthermore, as mechanical energy is converted into electric energy,
a small portion of it is converted into magnetic energy [14]. This last energy has a relatively small effect
on the general dynamics, and there exist models that neglect magnetic effects such as piezoelectric beams.
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Furthermore, this magnetic contribution may limit the system’s performance; for example, the magnetic
effect can cause oscillations in the output, which leads to system instability in closed loops [15, 24]. In
addition, quartz was first used to develop imaging techniques. Perhaps the best-known example of the
application of the piezoelectric effect is found in the watch industry. Indeed, piezoelectricity is used to
manufacture watches-the famous quartz watches—-and clocks. Thanks to the voltage provided by a battery,
the quartz crystal begins to vibrate, which allows time to be measured. In the modeling of piezoelectric
systems, three main effects and their interrelationships should be taken into account: mechanical, electrical,
and magnetic. Mechanical effects are generally modeled through Kirchhoff, Euler-Bernoulli, or Mindlin—
Timoshenko small displacement assumptions; see, for example, [23]. There are mainly three approaches for
including electrical and magnetic effects: electrostatic, quasi—static, and fully dynamic [21]. Electrostatic
and quasi-static approaches are widely employed; see, for example, [4, 8, 9]. These models totally ex-
clude magnetic effects and their coupling with electrical and mechanical effects. Although the mechanical
equations in an electrostatic approach are dynamic, the electrical effects are stationary. The quasi-static
approach still excludes magnetic effects, but electric charges have time dependence. The electromechanical
coupling is not dynamic. Morris et al. [14] using a variational approach to introduce the following coupled
model of piezoelectric beams with magnetic effects

PO — AV + YPprx = 0, in (0,L) X (0, 00), 1)
Upst — PPrx + Y PUx = 0, in (0,L) X (0,00),

where the positive parameters p, a, y, u, p and L represent, respectively, the mass density, elastic stiffness,
piezoelectric coefficient, magnetic permeability, water resistance coefficient of the beam, and length of the
beam. Furthermore, the relationship is considered

a=a; +y*B with a; > 0. 2)
The system (1) is subjected to the following initial and boundary conditions

4 (O/ t) = P (O/ t) = A0y (L/ t) - Vﬁpx (L/ t) = O/
ﬁpx (L, t) - V,Bvx (L, t) =-V (t) /hr (3)
(0,01, p,p1) (x,0) = (o, 01, po, 1) (%),
where V (t) is the voltage applied at the electrode, and # is the thickness of the beam. Ramos et al. [16]
studied the one—dimensional piezoelectric beams system with magnetic effects given by

PV — AV + VPprx =0, in (0,L) X (0,T),
ups — ﬁpxx + V,Bvxx =0, in (0/ L) X (0/ T) ’

with the following initial and boundary conditions

v(0,1) = avy (L, 1) = yppx (L, 1) + 51%’:) =0, 0<t<T,

p(0,1) = fpx (L, 1) = ypox (L) + &2 =0, 0<I<T,

(0,01, p, pr) (x,0) = (vo, V1, po, p1) (%), O<x<lL.
The authors established, using terms of feedback at the boundary, that the system is exponentially stable
regardless of any condition on the coefficients of the system, and exponential stability is equivalent to

exact observability at the boundary. Ramos et al. [17] considered the following piezoelectric beams with
magnetic effects

POy — QUxy + YPpPax +0v; =0, in (0,L) X (0,T), @)
Ups = Ppax + YPoxx = 0, in (0,L)x(0,T),

and the system (4) is subjected to the following initial and boundary conditions:

v(0,t) = avy (L, t) — yBpx (L, £) =0, 0<t<T,
p(0,t) =px (L, 1) —yux (L, 1) =0, 0<t<T, (5)
(v, v, p,pt) (x,0) = (vo, 01, p0,p1) (x), 0<x<L.
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They show that irrespective of the model’s physical parameters, the dissipation produced by damping 6v;
is strong enough to stabilize the system solution (4)—(5) exponentially. They also presented the results of
numerical simulations made using the explicit finite difference method. Freitas et al. in [7] studied the
following nonlinear piezoelectric beams system with magnetic effects and a delay term

PUy — QUxx + VPPax + f1 (0, p) + 0 = hy,
Upe — PPxx + VPV + o (U, p) + taps + topr (X, t —T) = ho,

where (x,t) € (0,L) X (0, T), the functions fi (v, p) and f, (v, p) are nonlinear source terms, h; and h, represent
external forces, whereas v; and p; denote damping in displacement and magnetic current, respectively. This
system is subjected to the following initial and boundary conditions

{ (v, v, p, pr) (x,0) = (vo, 01, po, 1) (%), x€(0,L),
v(0,t) =v (L, t) =p(0,t) =px (L, t) =0, t€(0,00).

The authors proved that the dynamical system associated with the solution of the system possesses global
and exponential attractors. Freitas et al. in [6] considered the following semi-linear, partially-damped, and
fully-dynamic piezoelectric beam model

PV — AUy + YPPxx + Ovr + f(v) =0, in (0,L) X R, ©)
pie = Ppax + yPoxe = 0, in (0,L) X R*,

and the system (6) is accompanied by the following boundary and initial conditions

{ (0,91, p,p1) (x,0) = (vo, 01, po, P1) (%), xe(0,L), )
v(0,t) =0y (L, t) =p(0,t) =px (L,t) =0, te€(0,00),

where 6v; (6 > 0) is the frictional dissipation and f(v) is the nonlinear structural forcing. The authors
presented the major results for the long-time dynamics of (6)—(7). The initial result concerns the existence
of smooth global attractors with finite fractal dimension. The second result is about the upper semi-
continuity of attractors with respect to the magnetic permeability parameter y — 0. Soufyane et al. [20]
studied the system (1) subjected to the nonlinear damping and nonlinear delay terms that work on the
mechanical equation. This work is a generalization of the recent result obtained by Ramos et al. [19]. The
authors established an energy decay rate using a perturbed energy method and some properties of convex
functions, as well as appropriate assumptions on the weight of the delay. Ramos et al., [18] considered
the one-dimensional piezoelectric beam model with second sound, that is, the model includes the thermal
effect given by Cattaneo’s law of heat conduction. The authors established the system’s well-posedness
using semigroup theory, and by exploiting the energy method with multiplier techniques, they showed
that the system is exponentially stable. In addition, this result is obtained without depending on any
relationship between the coefficients. Santos et al., [5] studied the system (1) by inserting the term past
history in the equation (1);. The authors, by using the semigroup theory of linear operators, obtained the
existence and uniqueness of a solution and, by constructing an appropriate Lyapunov function, established
that the energy associated with the system is exponentially stable. On the other hand, in [1] Afilal et al.
studied the following piezoelectric beams with magnetic effects and localized damping

{ PO — QUxx + VPpax + @ (x) vy = 0, in (0, L) X (0, 00), ®)
Ups — Ppxx + VPxx = 0, in (0, L) X (0, 00).

This system is accompanied by the following initial and boundary conditions:

(v,v,p,pt) (x,0) = (vo,v1,po,p1) (x), x€(0,L),
v(0,t) = avy (L, t) — yppx (L, 1) = 0, t€(0,00), )
p(0,t) = px (L, £) —yoe (L, t) =0, t € (0,00).
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The authors, by using a damping mechanism acting only on one component and on a small part of the
beam, established that the system (8)—(9) is exponentially stable. Other problems related to piezoelectric
systems can be found in the following references [2, 10-13, 21]. Motivated and inspired by the above works,
in this paper we consider the following system:

{ PO — QUxy + VPPxx + fot !](t —8)Uxy (5)ds =0, in (0,L) x (0, 00), (10)
upt = Pprx + YPoxxy = 0, in (0,L) X (0, 00).

This system is accompanied by the following initial and boundary conditions:

(v, v, p,pr) (x,0) = (vo,v1, po, p1) (%), x€(0,L), (11)
v(0,t) =0y (L,£) =p(0,t) =px (L,t) =0, te(0,00),

where v = v (x,t) is the longitudinal displacement of the center line and p = p (x, ) is the total load of the
electric displacement along the transverse direction at each point x. vy, v1, pg and p; are the initial data
that are assumed to belong to a suitable functional space. The coefficients p, @, y, u and § are constitutive
constants, which are positive. Throughout this article, we will suppose that (2) is satisfied and the relaxation
function g meets the following assumptions:

(H1) g: 1[0, 00) — [0, o) is a non—increasing differentiable function such that
g(0) >0, al—f g(s)ds=a;—go>0. (12)
0

(H2) There exists a non—-increasing differentiable function 9 : [0, c0) — (0, o0) satisfying
g't) <=9 () g(t), YVt e R,. (13)

Moreover, along this paper, we use the following notation:

L t
(govy)(t) = fo fo g (t =) (v (t) = 0y (5))* dsdx.

The outline of this paper is as follows: In Section 2, we state and prove the well-posedness of the problem
(10)—(11). In Section 3, we state and prove our stability result. Finally, in Section 4, the electrostatic/quasi-
static equations are investigated for general energy decay.

2. The Global Well-Posedness of the Problem

In this section, by using the classical Faedo—Galerkin approximations, we will prove the existence and
uniqueness of solutions for (10)-(11). To achieve this, we use the Sobolev space H' (0, L) and the standard
Lebesgue space L2 (0, L) , with their usual scalar products and norms. Let us define the space H as follows:

H =H"(0,L) x L2 (0,L) x H' (0,L) x L*> (0, L),

where

A'(0,L) = {ueH (0,L): u(0) =0},
and

F2(0,L) = {ueH?*(0,L): uy(L) = 0}.

Obtaining the well-posedness of (10)—(11) is provided by the following theorem.
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Theorem 2.1. Let (vo,v1),(po,p1) € H' (0,L) X L (0, L) be given. Assume that g satisfies hypothesis (H1). Then,
problem (10)—(11) has a unique global strong solution

v,p € C(Ry; A*(0,L) N A'(0,1)) n C' (Ry; A (0,L)) N C*(R,; L2 (0, L)) (14)
Proof. The proof is given by the Faedo—-Galerkin method.

Step 1. Approximate problem. Let {a) j}wl be an orthogonal basis in 2 (0, L)NH" (0, L) which is orthonormal

in L?(0, L), and also {a) j}]: constituted by the eigenfunctions of the operator —dy(.), to the eigenvalue {/\ j} ,
that is

—axxa)]' = /\]‘a)]‘ , 1< ] <n.
Now, for every integer n € IN, we define the finite—-dimensional subspace by
Vi i=span{wr, wy, ..., w,}, 12 1.

If the initial data (vo, v1, po, p1) € H, we are looking for functions h;?, L']? € C2([0, T]), such that the following
approximations are satisfied

o (r,0) = ) B D w; (), p(t) = ) L (D w; (), (15)
j=1 j=1

check the following approximate problem in V,

p (0, u) + a (W2, ) = B (Pl 1) = ([ g (¢ =)0 () s, 1) = 0, Vi €V,
w (P o)+ B (Pl o) = yB (0, 0) = 0, Yo €V, (16)
0" (.,0) = v, Uf (,0)= vy, p" (,0) = Por Py (,0)= e

and
vp =L (vo,a)]-)Lz on @ 752 00 strongly in H! (0,L),
vy = Z?zl (01,0)])L2(0,L) wj —> V1 strongly in 12(0,L), an
pi = Z]’Ll (po,a)])Lz(o n wj = Po strongly in H'(0,L),
pl= Y (pl,w] Lon @i S P strongly in L? (0,L).

This brings us to a system of linear ordinary differential equations (ODEs) with these two unknown
functions, h;’ and Lt The application of the basic ODE theory yields the existence of a unique C>-solution

(h;?, L?) on the maximal interval [0, t,) for all n > 1. Then, thanks to the next a priori estimates that follow, it

implies that, in fact, t, = T forany T > 0.
First a priori estimate. Let u = v} in (16)1, v = p} in (16);, and adding the obtained results, we get

L L ¢
%%f [p |vf|2 +u |p?|2 +ay 'Uﬁ)z +B |)/UZ —pZ|2]dx —f v’fxf g(t—s)vi(s)dsdx = 0. (18)
0 0 0
Then

L ¢ L ¢ ¢ L
—f vfxfg(t—s)vﬁ (s)dsdxzf vfxfg(t—s)(vz (f) — o} (s))dsdx—fg(s)dsf v Uhdx
0 0 0 0 0 0
1d o 1d [ Lop
=5 (000 —Eafog(s)dSL [y dx

1., .1 Lo
_E(g oz;x)+§g(t) i o[ dx, (19)
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substituting (19) in (18), we obtain

d1[ (*
IR

1,, .1 Lo
=5 ovx)—ig(t)j; oz dx < 0.

al—l:g@ﬁkhﬁf+ﬁbw2—ﬁf}w+«go%ﬂ

For any n > 1 and t > 0, integration over (0, t) yields
1[ (* t
2 [j; (P ‘vﬂz Ty |Pf|2 + [Oq - fo g(s) ds] |v§§|2 +B|yor - p;’|2) dx+(go y’;)]
1 (* t ) )
< 3, bt et Lo oo ) - e

Now, according (17) the following sequences (vg)neN , (vg‘)neN , (pg)neN , (p’f)neN converge, then we can find

a positive constant C independent of # such that
1 L a2 nl2 t 112 " 012 Y
2 [L (P‘Ut) + [J|Pt| + [al _fo _L](S)ds] |vx| +ﬁ|yvx —px| )dx+ (goz)x)]

L ¢
. fo [plv’f|2+y1pﬂ2+[m— fo g(s)ds] )|+ B (). - (v0),

< C

IN

2
] dx (20)

Thent, =T, forall T > 0.
Second a priori estimate. From (15), as h’;, L'; € C2([0,T]), and as

{wj}]: c H>(0,L)n H'(0,L) c H' (0,L) < C(0,L),
with (<) representing the continuous embedding. Then we have
o p' e C (0, TH(0,L) N H' (O, L)), 1)

and according to (21), we can get

L
fo (|va (O + |t ) t)|2)dx < oo, Vt€[0,T]. 22)

Step 3: The limit process.
By exploiting (20)—(21), we arrive at

(v")en is bounded in L (0, T; A2 (0,L) N ' (0,1)),
(Utn)nE]N* is bounded in L* (0, T; L2 (0, L)),
(p"),en- is bounded in L (0, T; 2 (0,L) N A (0, L)),
(p?), . is bounded in L (0, T; L2 (0, L))..

(23)

By applying the Aubin-Lions-Simon theorem (theorem II.5.16, [3]), because

The embedding of H' (0,L) in L* (0, L) is continuous,
The embedding of H? (0,L) N H! (0,L) in H' (0,L) is compact.
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Then, we can find that the embedding of Eu, c and [Eu,« in C(0, T; H' (0, L)) is compact, with

Eeo o = {v” /o" e L= (0, T; A2 (0,L) N A' (0, 1)), v} = ddlt e L* (0, T;L2(0, L))},
and

5 5 i dp"

Eow = {p"/ p' €L (0, ;2 (0,L) N H' (O,1)), pl' = Z e L*(0,T;L2 (0, L))}.

9481

We conclude from (23) that (0"),en and (p"),on- are bounded in Ew o, Ewe respectively. Then there

exist (vk)keN» and (pk)keN* two subsequences of (v"),,cn- and (p"),n- - respectively, such that

2% vand pr =g p strongly in C(0, T; H' (0, L)).

Now, we define the operator A = dy (.) as follows
A:H?(0,L) c H'(0,L) — L?(0,L) with Ad*=0vk, and Ap*=pt,,
since
Av*=v}, = y10* and Ap'=p, = yap",
such that y; and y; are both eigenvalues of the operator d. (.), we can now conclude from (24) that
{ Uiy = Y10° = y10 = & strongly in C(0, T; L? (0, L)),
Pk, =y =y yap = & strongly in C(0, T; L? (0, L)).
According to (24) and (25) and as the operator dy, (.) is closed, we directly get
v € H?(0,L) with & = vy, and p € H*(0,L) with & = py.
Then, we obtain
2 vand pr iy p strongly in C (O, T; H?(0,L) N A (0, L)) :
Now from (21) and (26), we conclude that
o,p€ c(o, T;H2(0,L) N H* (o,L)).
By using (21) and (24), and exploiting the theorem of dominated convergence, we arrive at
{ ok =2l = | = ol = 0
s =l = I =pdll,, =5 0
where W = C(0, T; H' (0, L)), then we conclude that
o230, and pf =3 p; strongly in X = C(0, T; A (0,L)), YT > 0.
Now, from (21) and (28), we conclude that

v,peC! (0, T; H' (0, L)).

(24)

(25)

(26)

(27)

(28)

(29)
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Finally, by exploiting (21) and (24) and using the theorem of dominated convergence, we get

{ ”vlt(t - v””y = ”%Uk - vff”y =0,
I = pelly = e = pedll, = 0,
where Y = C(0, T; L?(0,L)), then we deduce that

ok, iy vy and pl, iy pu strongly in C(0, T; L? (0, L)). (30)
Now from (21) and (30), we conclude that

v,peC? (0, T;L*(0,L)). (31)

Then by passing the limit in (16)—(17) and exploiting (27), (29) and (31), we deduce that, the problem (10)—
(11) has a strong solution that satisfies (14). For the uniqueness of the solution, we suppose that (v, p) and
(v1,p1) are two pairs of strong solutions to problem (10)—(11), then the pair (V,P) = (v — v1,p — p1) satisfies

PV = aVy + ypPu + [ gt =)V (5)ds = 0, in (0,1) X (0, 00),

M]Ptt - ﬁ]Pxx + V,Bvxx =0, in (Or L) X (Or OO) ’ (32)
(Wr Wt/ lP/ I[)t) (xr 0) = 0/ x € (0/ L) ’
V(0,t) = Vo (L,t) =P (0,t) = P, (L, ) = 0, t€(0,00).

Multiplying (32); by V; and (32), by IP;, then integration by parts over (0, L) and the boundary conditions,
and thanks to a method similar to that used in the first a priori estimate, we obtain

d1 g 2
Ei[p|wf||§+u|m°t||§+ ar - f g(s)ds]nvxné+/s||wx—1Px||2+(govx)
0

1,, 1
= 3(g" 0 V)= 39®) VA5 < 0.

Now, by integrating over (0, t), we get

t
2
PIVE + P2 + [oq - f g() ds] V413 + B[y Vi = P|[; + (g0 Vi) <0,
0

this implies that
(V,P) = (v—o1,p - p1) = (0,0).
Finally, we get

(@ p) = (01,p1).

As a result, problem (10)—(11) has a unique strong solution. The proof of the theorem is finished. [

3. General decay

In this section, we state and prove a general decay result for system (10)—(11) using the energy method.
We define the following energy functional:

E(t)::%fOL

The main result of this section is the following theorem.

¢
1
pvtz + (m - L g(s) ds) vﬁ + ‘uptz + B (yvy — ]ox)2 dx + 5 (govy). (33)
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Theorem 3.1. Assume that (H1) and (H2) hold. Then, the energy functional defined by (33) satisfies

E() < Aoe M1 h 59 yp > 0, (34)
where Ay and Ay are positive constants. To achieve our goal, we need the following lemmas.

Lemma 3.2. The energy functional defined by (33) satisfies

L
E()=2 (7 0v)— 2900 f dx < 2 (¢ 00,) < 0. (35)
2 27V | 2

Proof. Multiplying (10); by v; and (10); by p:, then integration by parts over (0,L) and the boundary
conditions, we obtain

2dtf [pvt + up? + a0 + B (yo, — px) dx f v”‘f g(t — s)vx (x,5) dsdx = 0. (36)

Meanwhile, estimate the last term of (36) as follows

f Uxtf g(t — s)vx (x,5) dsdx —f Utxf gt =) (vx () — v (s)) dsdx—f g(s)dsf Vi VX (37)

_ - _ - 2 R - 2
—2 T 2 (9000 2 g7 j{; g(s)ds fo vydx 2(9 ovx)+29(t) fo vydx.

Simple substitution of (37) into (36) gives (35). O
Lemma 3.3. Let (v, p) be the solution of system (10)-(11). Then the functional
L L
Fi(t) = pf vodx +yu | prodx,
0 0

satisfies, for all €1 > 0, the estimate

L 2,2 L L
F{(t)s—();—of vidx+(p+y4“ )f vgdx+elf p2dx + C1(g00y), (38)
0 0 0

&1

where

t t
ap = a1 — f g(s)ds >0, Cy = 1 ( f g(s)ds).
0 20(0 0

Proof. Taking the derivative of Fy, using (10) and integrating by parts over (0, L) and using the boundary
conditions in (11), we get

L L t L L
f)=-a f vdx + f Uxf g(t —s)vy (x,s) dsdx + pf vdx + )/yf progdx. (39)
0 0 0 0 0

Using Young’s and Cauchy-Schwarz inequalities, it gives

L t t L L t
f vxf g(t —s)vy (x,s) dsdx = f g(s)dsf vidx - f vxf g(t =) (vy (t) — vy (5)) dsdx
0 0 0 0 0 0
t L 1 t
< (61 + fo g(s)ds) f(; v2dx + I, ( f(; g(s)ds) gouy, (40)
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r e
yyf progdx < elf pidx + —— 1e; f 2dx. 41)
0 0

By substituting (40) and (41) into (39), we find

¢ L Y2\ L 1 t
Fi(t) < - (m —061 - f g(s)ds)f vldx + (p + )f vidx + €1 f pidx + — (f g(s)ds)g 0 0.

Letag=a; — fot g(s)ds > 0, and letting 0; = %, gives (38). [

Lemma 3.4. Let (v, p) be the solution of the system (10)—(11). Then the functional

L ¢
t) :—pfo vtﬁ gt —s) (v (t) —v(s))dsdx,

satisfies, for all €5 > 0, the estimate

F;(t)<—%f; dx+ezj(; 2dx+ezf (yovy — px) dx+C2(ez)(govx)—pg() g ovy), 42)

where

o —f g(s)ds, Ca(e2) = (— 75 (f g(s)ds) + — +1Jf g(s)ds.

Proof. By differentiating F», then using (10),, integrating by parts over (0,L) and using the boundary
conditions in (11), we find

¢ L L ¢
:—pfo g(s)dsjo‘ vfdx+a1‘f0 vxfo g(t = s) (vx (t) — vy (s)) dsdx
L t t
: f f gt 5)ox (5) ds f gt = 5) (0, (£) - 0x (5)) dsdx
0 Jo 0

L ¢ L ¢
+ yﬁfo (yovx — px)j(; g(t —s) (vy () — vy (5)) dsdx — pj(; Uy j(; g (t=s) (@) —v(s))dsdx. (43)

Using Young’s, Cauchy-Schwarz and Poincaré’s inequalities. So, for any ¢, > 0, we obtain

alf vxf (t = 8) (vy (t) — vy (8)) dsdx < _f de + — 2&2 (j(;t gt —s) (v (£) — vy (5)) ds
< Z—Z f vdx + ( f g(s)ds]g 0 Uy, (44)

L t t
_‘fo fog(t—s)vx(s)dsfog(t—s)(vx(t)—vx(s))dsdx
¢ L ¢ L/
- - fo g(s)ds fo o, fo 9t = 5) (00 () — 0y (5) dsdx + fo ( fo 9t —5) (0 (1)~ 0, 5)) ds
€ L 1 f 3 t
< Efo vidx+(£ (fo g(s)ds) +f0 g(s)ds]govx, (45)

2

2
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L t
) pg(0)
—pfo Utfo g(t—s)(v(t)—v(s))dsdxspézf dx— 462 g’ © V. (46)

Using similar calculations as in (44), we obtain

202
VB f (yox = p2) f g(t =) (0x (t) — v (s)) dsdx < &3 f (yox = pa)’ dx+(”3 f g(s)ds)goz}x. (47)

Inserting (44)—(47) into (43), we end up with

t L
Fé(t)g—(pf g(s)ds—péz)f vfdx+52f 2dx+£2f (yvy — pe)* dx
0 0
0(2 1 t 2 2
(] o

Using assumption (H1), for any t > ¢y > 0, we have

to t
co = f g(s)ds < f g(s)ds.
0 0

Consequently, by taking 6, = %0 we obtain (42). O

Lemma 3.5. Let (v, p) be the solution of the system (10)—(11). Then the functional

L L
Fa(t):=pf vt(Vv—P)dHWf p: (yo —p)dx,
0 0

satisfies, for all €3 > 0, the estimate

L L L
Fi(t) < —% f pi 2dx + C3f vfdx +Cy (Sg)f v,z(dx t+&3 f (yvy — Px)2 dx + Cs (e3)(govy), (49)
0 0

where

2 t
C3:yp+y3y+;u Cy(es) = —+—(fg ds) Cs(e3) = 3(](; g(s)ds)_

Proof. Taking the derivative of F3, using (10) and integration by parts over (0, L), we obtain
L L t
F.(t)=-m j; Uy (YUx — px) dx + j(; (yvy — px)f(; g(t — s)vx (x,5) dsdx

L
+)/pf 2dx — yu p 2dx +y /,zf viprdx — pf viprdx. (50)
0

Using Young's inequality, we get for €3 > 0

L o [t e (T ,
_alfo Uy (YU — py)dx < 2—€3f0 vdx + Ej(; (yvy — pyx)”dx, (51)

L t . L L t 2
f (rvx = p2) f gt = $)o (x,8) dsdx < 2 f (yox —po) dx + - f ( f g(t = s)ox (x,5) ds
0 0 2 Jy 2e3 Jo 0
€3 L 1 t 2 AL 1 t
< = f (yvy — px)2 dx + — ( f g(s)ds) f v,zcdx + — ( f g(s)ds) g oy, (52)
2 Jo €3 \Jo 0 €3 \Jo
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L e (t L
Viu f veprdx < T pidx +9u f vldx, (53)
0 0 0

L L 2 L
YU f 2 p f 2

- vpedx < — dx + — vidx. 54

pfo P 4 Jo Pi Y Jo ! G4

Inserting (51)—(54) into (50), we get (49). O
Lemma 3.6. Let (v, p) be the solution of system (10)—(11). Then the functional

L
Fa(t):=p f prpax,
0

satisfies,

F’(t)<—é L( —p)d +ﬁ L2d+ 2d 55
i) <=3 | Qoe=pofidxd 5= | oty | Ptx (55)

Proof. By differentiating F,, using (10), and integrating by parts over (0, L) and using the boundary condi-
tions in (11), we have

L L L
Fy(t) = —ﬁf (yvy — pe)* dx + v f Uy (Yox — py) dx + yf pldx. (56)
0 0 0
Using Young’s inequality, we obtain
L 2 L L
yﬁf Uy (Yox — pr)dx < ve f vldx + P f (yv, — py) d. (57)
0 2 2 Jo

Inserting (57) into (56), we get (55). O
Now, we are ready to prove a general decay result.

Proof. (Of Theorem 3.1) Let

4
L(t):= NE() + Z NiFi(t), Yt > 0, (58)

i=1
where N, Ny, N», N3 and Ny are positive real numbers to be chosen appropriately later. By simple routine

computations, applying Young’s, Poincaré’s, and Cauchy-Schwarz inequalities, it follows that L ~ E in the
sense that there exist two positive constants, c; and ¢y, such that

aE({) <L) <cE(@l), Yt=0. (59)
Now, taking the derivative of (58) and recalling (35), (38), (42), (49) and (55), we obtain

2,2 L
L'(h<- (p_CONZ _ (p YU )Nl - C3N3)f Utzdx
451 0

2

(nyg,—SlNl yN4)f pfdx
(

V'’ :
—N1 - ézNz - C4 (63) N3 - —N;;)f vidx
0

Ny — &Ny - €3N3)f (yox — PX) dx

+ (N1Cq + N2C; (e2) + N3Cs (3)) (9 0 vy)

+(g—wN)(g’ovx).
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By considering

1 .
E,'=I\—]i,l=1,2,3,

we arrive at

L L L L
L'(f) <-m f vtzdx -1 f vidx -1 f pfdx — 14 f (yovy — px)2 dx+15(g0vy)+1n6(9 0vy), (60)
0 0 0 0

where
C /212N 2

m = %Nz - (P + #)Nl - (VP +72u+ %)N?"

g ol t 2 2
= 7Nl - (7 + (fo g(s)ds) )N§ - ¥N4 -1,
173 = %Ng —‘,lN4 - 1,
Na = §N4 -2, ,

2N, L (ot 282N, t ) t
= (5% 33 (o) + 4 1)Na [ g+ (3 +2) ) a0
o= 3 -,

At this stage, we choose our different constants. First, choosing N, large enough such that

1’]4:§N4—2>0.

Then, we pick N3 large enough such that

173:)%N3—yN4—1>0.

Furthermore, we choose N large enough so that

a 0(2 t 2 Vzﬁ
172:_01\]1—(_1+(f g(s)ds) ]N%——N4—1>0.
2 2 "\, 2

After that, we choose N, large enough so that

2

2,2
pco VHNl) ( 5 p)
=N, - [p+ Ny = [yp +7%u+ =|Ns > 0.
=" (P 2 1= |yt YU i 3

Finally, we choose N very large enough so that

_N_po©)

N> > 0.
2 2¢ 2

e
Consequently, there exist some positive constants, k; and kp, such that

L'(t) <-kE®t) +k(govy), Vt=0. (61)
By multiplying (61) by 9 (f), we get

SMHL (1) <~k S (NE () + koS (1) (g0 vy), Vt>0. (62)
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Now, by using assumption (H2), we have the following estimate
L ot L
8(t)(gov) =9(h) f f g (t = 5) (0 (t) = v: (5))* dsdx < f f S (t—5)g(t—s) (0x (t) — vy (5))* dsdx
o Jo o Jo

< - j: f: g (t=5) (0 () — v (5))* dsdx = — (¢’ 0 vy) < —2E (£).

Thus, (62) becomes

Q)L (t) < =k S (t) E(t) — 2k E’ (1), VYVt >0,
which can be rewritten as

SHLE) +2kE®) =¥ (HL() < -k S(HE(), Vt=0,
next, from the fact that 9’ (t) < 0, we find

(S ()L () +2kE (1) < —kiS(HE(t), Vt=0.
Through (59), we easily arrive at

L) =)L) +2kE(®) - E(1). (63)
Consequently, we have

L)< -9 L), Yt=0, (64)
for some positive constant A;. By integrating (64) over (0, ), we get

L) < LO)e M 3OE yp >0 (65)

Consequently, (34) is established by combining (65) and (63). The proof is complete. [

4. General decay result for the electrostatic/quasi-static equations

Because Maxwell’s equations neglect the magnetic effects, the electrostatic equations are given as follows

v(0,t) = ve (L, 1) =0, t€(0,00), (66)

{ POt — A Uxx + fot !J(t —5)Ux (5)ds =0, in (0,L) X (0,),
(©, 1) (x,0) = (v, 01) (%), xe(0,L).

The energy of (66) has been defined by

S(t)::%foL

and it satisfies

t
pu; + (a1 - f g(s) ds) vi] dx + %(g 00y, (67)
0

L
&)= 1(g’ 0Ty) — 1g(if)f vdx < 1(g’ 0vy) <0, VE>0. (68)
2 2 0 2
Theorem 4.1. Assume that (H1) and (H2) hold. Then, the energy functional defined by (67) satisfies

E(H) < Yoo 1 h 0% yi >0 (69)

where Yo and Y1 are positive constants. To achieve our goal, we need the following lemmas.
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Lemma 4.2. Let v be the solution of system (66). Then the functional
L
Fi(t)=p f vyudx,
0

satisfies,

L L
Fi) < —% f(; vdx + pjo‘ v¥dx + Cy (g0 vy), (70)

where

¢ ¢
ap = a1 — f g(s)ds >0, Cy = 1 (f g(s)ds).
0 2“0 0

Proof. Taking the derivative of ¥7, using (66) and integrating by parts over (0,L) and using the boundary
conditions in (66),, we get

L L ¢ L
Fi ) =-m f v2dx + f Uxf g(t — s)vy (x,s) dsdx + pf Utzdx. (71)
0 0 0 0

Using Young’s and Cauchy-Schwarz inequalities, it gives

fvxfg(t—s)vx(x s)dsdx—fg(s)dsf de fvxfg(t—s (vy (t) — vy (8)) dsdx
(61+ f g(s)ds) fo 2dx+4?1( f g(s )ds)govx (72)

By substituting (72) into (71), we get

¢ L
Fit) < - (a1 - 01— f g(s)ds)f vﬁdx + pf dx + — (f g(s)ds)g 0 Uy
0 0

Letag=a; — fot g(s)ds > 0, and letting 0; = %, gives (70). O

Lemma 4.3. Let v be the solution of the system (66). Then the functional

L t
7a)i=-p [ o [ gt-960-oE)dsd,
0 0

satisfies, for all €5 > 0, the estimate

where

L
(t)<—ﬁfO dx+ezj(; v2dx + Cy (€2) (g0 vy) — —=— g() °0y), (73)
2

2
o 2 1 ¢ ‘
o = fo g6)ds, Cs <52>—(—+2€ ( f (s)ds) +1] fo g(s)ds.

Proof. By differentiating #», then using (66), integrating by parts over (0, L) and using the boundary condi-
tions, we get

¢ L L ¢
ﬂ(t):—p](;g(s)ds](; vtzdx+az1](; vxfog(t—s)(vx(t)—vx(s))dsdx (74)

L ot ¢ L ¢
_jo‘ fo g(t — s)vx (s) dsf0 g(t —s) (vy (£) — vy (5)) dsdx — pﬁ vt‘fo g (t=s) (@) —v(s)) dsdx.
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Using Young’s, Cauchy-Schwarz and Poincaré’s inequalities. So, for any €, > 0, we obtain

L t
" fo % fo 9t =) (0 (1) = 0, (5) dsdlx 75)

2

L 2 ALy ot
g [T a4 _ _
< > f(; vedx + % j(; ( j(; g(t —s) (vy (t) — vy (5)) ds| dx

e (* 2 a% '
< > fo vidx + (E fo g(s)ds)g 0 Uy,

L t t
- fo fo g(t = 5)v (s) ds fo g(t = 5) (v (£) — vy (5)) dsdx (76)

2

L L
== fo t g(s)ds fo o j; t g(t = s) (vx (t) — vx (5)) dsdx + fo ( fo t g(t = 5) 0y (£) — vy (5)) ds | dx
L 1 t 3 ¢
< %fo UidX+(2—Ez ([) g(s)ds) +f0 g(s)ds]govx,

L t L 0
_p](; vtﬁ g (t—s) () —v(s))dsdx < pézj; vfdx - pféz)g’ 0 U,. (77)

Inserting (75)—(77) into (74), we end up with

t L L a2 1 t 2 t
Fr(t) < — (pf g(s)ds — péz)f vdx + ezf o2y + || == + — (f g(s)ds) +1 f g(s)ds | g o vy
0 0 0 2e2 - 2e2\Jo 0

pg(0) ,
15, g o Uy.

Using assumption (H1), for any ¢ > t, > 0, we have

to t
co = f g(s)ds < f g(s)ds.
0 0

Consequently, by taking 0, = %0 we obtain (73).

Now, for N sufficiently large, we build the functional of Lyapunovf as follows:
—_ —_ 2 —_
L(t):= NEW®) + Z NiFi(t), ¥t >0, (78)
i=1

where N, Nj, and N, are positive real numbers to be chosen appropriately later. By using the same

calculations used in the proof of theorem 3.1. It is clear that L ~ &.
Now, taking the derivative of (78) and recalling (68), (70), and (73), we obtain

L L
L (t) <- (%NZ - PNl)f dex - (%Nl - 82N2)f Uidx + (N1C1 + N>,Cp (62)) (g o Ux)
0 0
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By taking ¢; = ﬁi, we arrive at
2

L L
L' () < -G f vidx — (o f v¥dx + (3 (g o vy) + Ca(g 0 0vy),
0 0

where

Co —~ -
G = %Nz — pNi,

G = %N\l -1,
azAz N 2 N N
05 = ( 1;\1 + % (fot g(s)ds) + 1)]\]2 fot g(s)ds + 2%10 fot g(s)ds,

ﬁ pg(0) X7
5 No.

G =

At this stage, we choose our different constants. First, choosing Ny large enough such that
Cz = %Nl -1>0.

Then, we pick N, large enough such that

PCo

G = Tﬁz—pf\f\l > 0.

Finally, we choose N very large enough so that

Consequently, there exist some positive constantsjc\l and /k\z, such that

T <-k&EW+k(govy), V0. (79)
By multiplying (79) by 9 (t), we get

SMHT () < kS () EM) +kad (D) (govy), Vt>0. (80)

Now, by using assumption (H2), we have the following estimate
Lt Lt
S(t)(govy)=3(t) f f gt —s) (e (t) — vy (s))2 dsdx < f f S(t—=5)g(t—s)(vx(t) —vx (s))2 dsdx
0o Jo 0o Jo

< - fOL fot g (t—5) (0 () — v () dsdx = — (¢’ 0 vy) < -2 (t).
Thus, (80) becomes
SMOL (1) < kS (B ED -2kE (1), Vt=0,
which can be rewritten as
(SOIM+2kEM) -9 OLE <-kdHOEW, Vi=0,
next, from the fact that 9’ (t) < 0, we find

(SO +2EM) < -kSMHEW, Vi=0.
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Throughf ~ &, we easily arrive at

L =(SOLE) +2EM) - &) (81)

Consequently, we have

L) <-Y18() L(t), Vt>0, (82)

for some positive constant Y. By integrating (82) over (0, t), we get

() < Z(0)e "1 h 208 yp >0 (83)

Consequently, (69) is established by combining (83) and (81). The proof is complete. [
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