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Note on the local spectral theory for Drazin invertible operators

Salvatore Trioloa

aDipartimento di Ingegneria, Università di Palermo Viale delle Scienze, I-90128 Palermo (Italy)

Abstract. In this paper we continue the analysis undertaken in [6] where we have investigated the
transmission of some local spectral properties from R to its Drazin inverse S, when this does exist. In this
paper we consider a similar problem for unbounded operators.

1. Introduction and results

In the sequel we shall give the relevant definitions concerning the local spectral theory forr an (T,D(T))
closed linear operator in H and we extend some of the results established in the bounded case to an
unbounded linear operator. First we begin with some preliminary notations and remarks.

Let (T,D(T)) be a (possibly unbounded) closed linear operator in H . Clearly we define D(T2) := {x ∈
D(T) : Tx ∈ D(T)} and, in general, for n ≥ 2 we put D(Tn) := {x ∈ D(Tn−1) : Tn−1x ∈ D(T)} and
Tn(x) = T(Tn−1x). It is worth mentioning that nothing guarantees, in general, that D(Tk) does not reduce to
the null subspace {0}, for some k ∈ N. For this reason powers of an unbounded operator could be of little
use in many occasions. Throughout this paper ifD is linear subspace ofH a function defined on an open
set Ω of C, f : Ω→ D is analytic if f : Ω→H is analytic and f n(x) ∈ D for every x ∈ Ω, and n ∈N.

Let (T,D(T)) be a closed linear operator inH . As usual, the spectrum of (T,D(T)) is defined as the set

σ(T) := {λ ∈ C : λI − T is not a bijection of D(T) ontoH}.

The set ρ(T) = C\σ(T) is called the resolvent set of (T,D(T)), while the map R(λ,T) : ρ(T) ∋ λ 7→ (λI−T)−1

is called the resolvent of (T,D(T)).
It is well known that, if T is a bounded everywhere defined operator, σ(T) is a compact subset of the

complex plane. The viceversa is not true: there exist closed unbounded operators whose spectrum is a
bounded subset of C. Thus, the spectral radius of an unbounded operator can be finite.

Definition 1.1. Let (T,D(T)) be a closed operator inH .

• A point λ ∈ C is said to be in the local resolvent set of x ∈ H , denoted by ρT(x), if there exist an open
neighborhoodU of λ in C and an analytic function f :U → D(T) which satisfies

(λI − T) f (λ) = x for all λ ∈ U. (1)
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• The local spectrum σT(x) of T at x ∈ H is the set defined by σT(x) := C\ρT(x) and obviously σT(x) ⊆ σ(T),
and σT(x) is a closed subset of C.

Definition 1.2. Let (T,D(T)) ,D := D(T), be a closed linear operator in H such that Tn(D) ⊆ D. The
hyperrange of T is the subspace

T∞(D) :=
⋂
n∈N

Tn(D) =: R∞(T)

.

Now, let us introduce two classical quantities associated with an operator. To every linear operator T
on a vector space D there correspond the two chains:

{0} = ker T0
⊆ ker T ⊆ ker T2

· · · .

and
D = T0(D) ⊇ T(D) ⊇ T2(D) · · · .

The ascent of T is the smallest positive integer p = p(T), whenever it exists, such that ker Tp = ker Tp+1.
If such p does not exist we let p = +∞. Analogously, the descent of T is defined to be the smallest integer
q = q(T), whenever it exists , such that Tq+1(D) = Tq(D). If such q does not exist we let q = +∞.

Let D be a dense subspace of a Hilbert space H . We denote by L(D) the set of all closable linear
operators fromD toD andL†(D) be the space consisting of all its elements which leave, together with their
adjoints, the domain D invariant. Then L(D) is a algebra with respect to the usual operations and L†(D)
is a subalgebra of L(D).

Let α(T) := dim ker T and β(T) := codim T(X). The class of all upper semi-Fredholm operators is defined
by

Φ+(X) := {T ∈ L(D) : α(T) < ∞ and T(X) is closed},

while the class all lower semi-Fredholm operators is defined by

Φ−(X) := {T ∈ L(D) : β(T) < ∞}.

If T ∈ Φ+(X) ∪Φ−(X) the index of T is defined by ind T = α(T) − β(T). It is well known that if β(T) < ∞ then
T(X) is closed. An operator, in general, is said to be bounded below if is injective and has closed range. The
approximate point spectrum is defined by

σap(T) := {λ ∈ C : λI − T is not bounded below},

while the surjectivity spectrum is defined as

σs(T) := {λ ∈ C : λI − T is not onto}.

If T∗ denotes the dual of T it is well known that σap(T) = σs(T∗) and σs(T) = σap(T∗). LetΦ(X) := Φ+(X)∩Φ−(X)
the class of all Fredholm operators . An operator T ∈ L(D) is said to be a Weyl operator if T ∈ Φ(X) and ind T = 0,
T ∈ L(D) is said to be upper semi-Weyl if T ∈ Φ+(X) and ind T ≤ 0, T ∈ L(D) is said to be lower semi-Weyl
if T ∈ Φ−(X) and ind T ≥ 0. Denote by σw(T), σuw(T) and σlw(T) the Weyl spectrum, the upper semi-Weyl
spectrum and the lower semi-Weyl spectrum , respectively. Evidently,

σuw(T) ⊆ σap(T) and σlw(T) ⊆ σs(T)

holds for every T ∈ L(D). There is a duality:

σuw(T) = σlw(T∗) and σlw(T) = σuw(T∗),

The ascent of T ∈ L(D) is the smallest positive integer p = p(T), whenever it exists, such that ker Tp =
ker Tp+1. If such p does not exist we let p = +∞. Analogously, the descent of T is defined to be the smallest
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integer q = q(T), whenever it exists , such that Tq+1(H) = Tq(H). If such q does not exist we set q = +∞.
Note that if p(T) and q(T) are both finite then p(T) = q(T).Moreover λ is a pole of the resolvent if and only if
0 < p(λI − T) = q(λI − T) < ∞. If α(λI − T) < ∞ and λ is a pole then λ is said to have finite rank. An operator
T ∈ L(D) is said to be Browder if T ∈ Φ(X) and p(T) = q(T) < ∞. T ∈ L(D) is said to be upper semi-Browder if
T ∈ Φ+(X) and p(λI−T) < ∞, while T ∈ L(D) is said to be lowerr semi-Browder if T ∈ Φ−(X) and q(λI−T) < ∞.

The Browder spectrum, the upper semi-Browder spectrum, the lower semi-Browder spectrum are denoted by
σb(T), σub(T) and σlb(T) , respectively. Note that if λ is a spectral point for which λI − T is Browder then λ
is an isolated point of σ(T).

Definition 1.3. The operator (T,D(T)) is said to have the single valued extension property atλo ∈ C (abbreviated
SVEP at λo), if for every open disc Dλo centered at λo the only analytic function f : Dλo → D(T) which
satisfies the equation

(λI − T) f (λ) = 0 (2)

is the function f ≡ 0.
An unbounded linear operator (T,D(T)) is said to have the SVEP if T has the SVEP at every point λ ∈ C.

Following [1] if (T,D(T)) be closed linear operator inH for every subsetΩ of C, the analytic spectral subspace
of T associated with Ω is the set

XT(Ω) := {x ∈ H : σT(x) ⊆ Ω}.

Remark 1.4. If T is globally defined (D(T) = H) and bounded then the SVEP may be easily characterized by
means of the subspace XT(∅) through the equivalence of the following statements[18]:

(i) T has the SVEP.
(ii) If σT(x) = ∅ then x = 0, i.e. XT(∅) = {0}.
(iii) XT(∅) is closed.

Given a (possibly unbounded) linear operator (T,D(T)) and a closed set F ⊆ C, let XT(F) consist of all
x ∈ H for which there exists an analytic function f : C \ F→ D(T) that satisfies

(λI − T) f (λ) = x for all λ ∈ C \ F. (3)

Clearly, the identity XT(F) = XT(F) holds for all closed sets F ⊆ Cwhenever T has SVEP.

The following proposition generalizes partially the result of remark (1.4).

Theorem 1.5. Every closed linear operator (T,D(T)) such that XT(∅) = {0} has the SVEP.

Definition 1.6. The quasi-nilpotent part of an operator T ∈ L(D) is the set

H0(T) := {x ∈ D : lim
n→∞
∥Tnx∥

1
n = 0},

while the analytic core of T is the set K(T) := XT(C \ {0}).

LetN∞(T) :=
⋃
∞

k=1 ker Tk. For every n ∈N, we have the increasing chain of range-type subspaces

XT(∅) ⊆ K(T) ⊆ R∞(T) ⊆ R(Tn) ⊆ R(T).

This result will be one of our principal tools.

Theorem 1.7. For every operator T ∈ L(D) and λ ∈ C, the following assertions are equivalent:
(i) T has SVEP at λ;
(ii) ker(λI − T) ∩ XT(∅) = {0};
(iii)N∞(λI − T) ∩ XT(∅) = {0}.
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The concept of Drazin invertibility has been introduced in a more abstract setting than operator theory
[15] in the case of the Banach algebra of bounded linear operators L(X).

In this work a similar definition is given but in a completely different context. R ∈ L(D) is said to
be Drazin invertible (with a finite index) if there exist two closed invariant subspaces Y and Z such that
D = Y ⊕ Z and, with respect to this decomposition,

R = R1 ⊕ R2, with R1 := R|Y nilpotent and R2 := R|Z invertible. (4)

Note that the Drazin inverse S of an operator, if it exists, may be represented, with respect to the decompo-
sitionD = Y ⊕ Z, as the directed sum

S := 0 ⊕ S2 with S2 := R2
−1. (5)

Indeed, if n is such that Rn
1 = 0 then it is easy to check that S satisfies the equalities (6).

RS = SR, SRS = S, RnSR = Rn. (6)

Trivially
σ(R) = σ(R1) ∪ σ(R2) = {0} ∪ σ(R2).

If 0 < σ(R) then σ(R) = σ(R2) and analogously σ(S) = σ(S2), while if 0 ∈ σ(R) then σ(R) \ {0} = σ(R2), since
0 < σ(R2). Analogous arguments shows that, σ(S)\{0} = σ(S2). Since S2 is the inverse of R2 we then conclude
that the nonzero part of the spectrum of S is given by the reciprocals of the nonzero points of the spectrum
of R, i.e.

σ(S) \ {0} = {
1
λ

: λ ∈ σ(R) \ {0}}. (7)

The spectral mapping theorem holds also for the approximate point spectrum, so, by using similar argu-
ments, we obtain a similar equality for the upper and Lower semi-Browder spectrum, Browder spectrum,
B-Weyl spectrum, approximate point spectra, i.e.

σ♯(S) \ {0} = {
1
λ

: λ ∈ σ♯(R) \ {0}}, (8)

where
σ♯(S) is σub(S), σlb(S), σbw(S), σa(S), σwa(S) or also σw(S)

In this paper we have continued a study the relationship between the local spectral properties of an
operator R and the local spectral properties of its Drazin inverse S, following the previous paper ([6])
relating to bounded operators.

2. Local spectral theory of Drazin inverse

The following results, in this section, are a simple consequence of the passage of SVEP and polaroid
property. Many local spectral properties are preserved by the Riesz functional calculus. An easy
consequence is that the local spectral properties considered are transmitted from T to T−1 in the case that T
is invertible. In [6] it is demonstrated how local spectral properties are transmitted to the inverse Drazin.
In this article we consider a similar problem for unbounded operators.

Theorem 2.1. Suppose that R ∈ L(D) is Drazin invertible with Drazin inverse S. If R is upper semi-Browder
operator then S is upper semi-Browder operator.

Proof. According the decomposition D = Y ⊕ Z, R1 := R|Y nilpotent and R2 := R|Z invertible, and the
Drazin inverse S := 0 ⊕ S2, with S2 := R−1

2 , then KerR = KerR1. By hypothesis ∞ > α(R) = α(R1), then for
every l ∈N, α(Rl) < ∞. Since R1 is nilpotent there exist l ∈N such that KerR1

l = Y therefore the dimension
of Y is finite. Thus Y = KerS is closed and has dimension finite and at the same time the range of S is the
closed subspace Z.Moreover, since the Drazin inverse S is also Drazin invertible, then p(S) = q(S) < ∞.
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Theorem 2.2. Suppose that R ∈ L(D) is Drazin invertible with Drazin inverse S. If R is lower-Browder operator
then S is lower Browder operator.

Proof. According the decompositionD = Y⊕Z, R1 := R|Y nilpotent and R2 := R|Z invertible, and the Drazin
inverse S := 0 ⊕ S2, with S2 := R−1

2 , then β(R) < ∞. For every l ∈N, β(Rl) < ∞ (see Lemma 2.2 [? ]). Since R1

is nilpotent there exist l ∈ N such that R1
l = 0. Clearly Rl = 0 ⊕ Rl

2. Therefore β(Rl) = β(R2
l) = codimZ < ∞.

Thus β(S) = codimZ and moreover since the Drazin inverse S is also Drazin invertible then p(S) = q(S) < ∞.
So the proof is complete S ∈ B−(X).

An easy consequence, of (2.1) and (2.8), is the following

Corollary 2.3. Suppose that R is Drazin invertible with Drazin inverse S. If R is Browder operator then S is Browder
operator.

Theorem 2.4. Suppose that R ∈ L(D) is Drazin invertible with Drazin inverse S. If R ∈ Φ±(X) then S is Weyl
operator.

Proof. Suppose that R ∈ Φ±(X) and R Drazin invertible with Drazin inverse S then by Theorem 3.4 of [2]
R ∈ Φ(X). Then there exist two closed invariant subspaces Y and Z of X such that X = Y ⊕ Z, R1 := R|Y is
nilpotent, R2 := R|Z is invertible and the Drazin inverse of R is given by S := 0⊕S2, with S2 := R−1

2 . Similarly
to the previous theorems it is easy to prove that α(S) = dimY < ∞ and β(S) = codimZ < ∞. Therefore
S ∈ Φ(X) and ind S = 0.

An easy consequence is the following:

Corollary 2.5. Suppose that R ∈ L(D) is Drazin invertible with Drazin inverse S.

• If R is Weyl operator then S is Weyl operator.

• If R is Fredholm operator then S is Fredholm operator.

An operator T ∈ L(X) is said to have the single valued extension property at λo ∈ C (abbreviated SVEP at
λo), if for every open disc Dλo centered at λo the only analytic function f : Dλo → X which satisfies the
equation

(λI − T) f (λ) = 0 (9)

is the function f ≡ 0. An operator T ∈ L(X) is said to have the SVEP if T has the SVEP at every point λ ∈ C.
In [6] we have shown that the SVEP is transmitted to the Drazin inverse. In this paper we prove that is

also transmitted locally. Clearly R and S have the SVEP in 0 indeed p(R) < ∞ and p(S) < ∞ (see [2]).

Theorem 2.6. Suppose that R ∈ L(X) is Drazin invertible with Drazin inverse S. If R has SVEP at λ0 , 0 then S
has SVEP at 1

λ0
.

Proof. (i) By Theorem 1.3 of [7] for every 0 , y + z = x ∈ Ker(λ0I − R), we have σR(x) = {λo}.
If x = y+ z ∈ Ker( 1

λ0
I−S) where S := 0⊕S2, with S2 := R−1

2 then z ∈ Ker( 1
λ0

I−S2).Moreover 1
λ0

z−S2z = 0,
hence, S2z = 1

λ0
z and evidently R2S2z = 1

λ0
R2z thus R2z = λ0z. Clearly z ∈ Ker(λ0I − R2), then since R has

SVEP at λ0 then R2 has SVEP at λ0 by [2, Theorem 2.9], and by Theorem 1.3 of [7] σR2 (z) = {λo}.Consequently
since S2 is the inverse of R2, from the spectral mapping theorem of the local spectrum (see [18] Theorem
3.3) applied to the function f (λ) := 1

λ , we have

σS(x) = σ0(y) ∪ σS2 (z) = σS2 (z) = {
1
λ

: λ ∈ σR2 (z)} =
1
λ0

for all x ∈ D.

Theorem 2.7. Suppose that R ∈ L(D) is Drazin invertible with Drazin inverse S. If R satisfies the Browder’s theorem
then S satisfies the the Browder’s theorem.
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Proof. If R satisfies the Browder’s theorem then σw(R) = σb(R).By (2.5) and (2.1),(2.8), 0 ∈ σw(R) if and only if
0 ∈ σw(S) and also 0 ∈ σb(R) if and only if 0 ∈ σb(S). Then, by hypothesis, if 0 ∈ σw(S) then 0 ∈ σw(R) = σb(R),
then 0 ∈ σb(S). Analogously if 0 ∈ σb(S) then 0 ∈ σb(S).

If 0 , λ ∈ σw(S) then 1
λ ∈ σw(R) = σb(R) by (7). Therefore λ ∈ σb(S).

Theorem 2.8. Suppose that R ∈ L(D) is Drazin invertible with Drazin inverse S. If R satisfies the Weyl’s theorem
then S satisfies the the Weyl’s theorem.

Proof. If R satisfies the the Weyl’s theorem then

σ(R) \ σw(R) = π00(R).Q.E.D. (10)
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