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Abstract. Given four n X n complex matrices A, B, X, Y, finding possible bounds for the singular values of
the new matrix AX + YB has been of interest.

In this paper, we discuss this interest and prove some new bounds that sharpen recently found bounds
in the literature.

Applications of the obtained results include bounds for unitarily invariant bounds and bounds for the
real part of certain matrix forms.

1. Introduction

For the rest of this paper, upper case letters will denote elements of the algebra IM,, of all #n X n complex
matrices, with identity I. The conjugate transpose of A € IM,, is denoted by A*. If A* = A, we say that A
is Hermitian, and if (Ax,x) > 0 for all x € C", we say that A is positive semidefinite. In the latter case, we
write A > O, where O is the zero element in M,,. The absolute value of A € M, is denoted by |A| and is
defined as the unique positive semidefinite root of A*A. The singular values of A are the eigenvalues of |A].
These singular values are usually enumerated in non-increasing order, counting multiplicities. Thus, we
write s1(A) > $(A) > -+ = 5,(A).

A matrix norm ||| on M, is said to be unitarily invariant if it satisfies [UAV] = ||All, for all A € IM,, and
all unitary matrices U,V € M,,. It is known that unitarily invariant norms are increasing functions of the
singular values. That is, if sj(A) < s;(B) for all j = 1,2,...,n, for certain A, B € M,, then ||A]| < ||B]| for all
unitarily invariant norms.

The usual operator (or the spectral) norm and the Schatten p—norms are among the most useful examples
of unitarily invariant norms on IM,,. These are defined, respectively, for A € M,, by

n 14
Il = s1(4) and |1, = | Y si(AY'| , p=1.
j=1
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Two other equivalent definitions for ||A|| are [|Al| = sup ||Ax|| and ||A]| = sup ‘(Ax, y)) Related to the

latter form, the numerical radius of a matrix A is define”é”?y w(A) = sup |<A|J|cx,”;g|y.”="lzhe numerical radius is a

norm, but it is not a matrix norm (that is, it is not sub—multiplicative)!xrlzlr is it unitarily invariant. However,
it is equivalent to the usual operator norm, where we have the relation [15, Theorem 1.3-1]

1
S 1Al < (A) < [IA]l.

To see related results to the above inequality, including its refinements and generalizations, we refer the
interested reader to [1, 18, 22, 25, 27].
We have the following lemma among the most basic bounds for the singular values.
Lemma 1.1. [11]. Let A,B € M,,. Then
25i(AB") < sj(A"A + B'B) (1)
forj=1,2,..,n.
In [20], it is shown that if A, B € IM,, are such that A, B > O, then

A+ Bl <1A®B +[|A"B'> @ A'*B'?, )
. . L. . A O .

where the notation @ refers to the direct sum of A and B, which is defined by o0 BIE M,,. In particular,
considering the spectral norm and the Schatten p-norms, respectively, (2) implies

1A + Bll < max{l|All, IB]l} + |A"*B"? 3)
and

1/p
1A+ Bll, < (141, + IBI,) ™ + 277 |28 (4)

for p > 1. Inequality (3) has been a celebrated refinement of a well-known result [13, Lemma 3.3].
Latter, even (3) has been refined in [20], where it was shown that if A, B > O, then

1A+ Bl < 2 (||A|| + 1Bl + (Al = [BI)? + 4 ||A1/2Bl/2))2). )

In [2], a new generalization of (2), (3) and (4) has been given, where the authors showed that if
A,B,X € M,, are such that A, B > O, then

IAX + XB|| < %IIIKIII + %IIILIII + M, (6)
where

K=A®XBX"

L=Be X'AX

and

M = AV?2XBY? @ AV2XB/2.
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Upon restricting the norm to the spectral norm or the p—norm, the inequality (6) reads as follows

IAX + XB|| < % max {||A]], I XBX|l} + % max {||BI|, IX"AX]|} + |AY2xB?, 7)
and forp > 1,

IAX + XB]|, < % {(||A||§ + ||XBX*||§)” g (B, + ||X*AX||§Z)” ’ } + 21/ ||A1/2X31/2||p . 8)

In the same reference, it is shown that, for the same matrices,

IAX + XB|| < 31 (Wil + W2l + W), )
where

Wi = A+ A2 X P A2, W, = B+ B2 |X[* BV, W5 = AY?>XB'/?

and

Wy = (Wil = [IWl)2 + 16 W52,

In that reference, the authors showed that (9) is a generalization of (5).
In this paper, we intend to show new generalizations of (2), (3), and (4) from another point of view.
Moreover, we give generalizations of (6), (7), (8) and (9).
We give some recent progress in the same direction as the current work. In [4], it is shown that if
A,B,X €M, aresuch that A,B> O, thenforj=1,2,..,n,
s{(AX+ XB) <sj(CeD) (10)
where

1,1
C= A+ AV XAV + [B2XAL2]

and

1.1
D=-B+ EB”2 X B2 +|A12XB?|.

In the same reference, a variant of (10) was shown as follows, for j =1,2,...,n,
S]'(AX - XB) < Sj(Wl e W,), (11)
where
1 1172 2 4102 1 1172 12 n1/2
Wi=-A+-A"|X|"A""and W, = =B+ =B/ |X|" B"~.
2 2 2 2
Further generalizations of (10) and (11) were given in [5] in the form
Sj(AX +YB) < S]‘(Pl ® Py) (12)

forj=1,2,..,n, where

Py = %A + %A”z XAV + %BWX*AU2 + %BWY*AW
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and

P, = %B + %31/2 Y B2 + %A”ZXBW + %A”ZYBUZ .

Additionally, it is shown that for j = 1,2, ..., n,
si(AX-YB) <s{(Z& Q) (13)
where

1. 1 1 1
Z=71+Zs|, Z1 = EA + EAl/2 IX*2AY?, Z, = EBWY*A”Z - zBl/ZX’*Al/Z,

1.1 1 1
Q=Q1+1Ql Q=3B+ 531/2 Y B'? and Q, = EA”ZYB”2 - EAWXB”Z.

Clearly, (12) implies, for any unitarily invariant norm |-,
2JAX + YB| < |P1 & Pal. (14)

In the same reference [5], the following generalization of (9) was given

1
JAX + YBI| < Z(IRill + IRall + Ro), (15)

where
Ry = A+ AV X2 AY?, R, = B+ BY2|Y? B2, Ry = AYV2XBY? + AV2YB'/?

and

Re = (Rill - [IRalD? + 4 [Rol

We refer interested readers to [6-9, 16, 17, 23, 24, 26, 29] for more information on inequalities related
to singular values and unitarily invariant norms. As mentioned earlier, this paper aims to present new
generalizations of some earlier known results. Additionally, generalizations (10) (11), (12), (13), (14) and
(15) will be given. Some applications that involve unitarily invariant norms, usual operator norm, the
numerical radius, and block matrices will be given, too.
2. The first singular value bounds with its variants and applications
We begin this section by presenting the following generalization of (10) and (12).

Theorem 2.1. Let A, B, X,Y € M, be such that A,B > O, and let r,s € [0,1]. Then, for j =1,2,...,n

25{(AX + YB) <s/(E&F), (16)

where

E=Ei+|E|, F=F +|Fl,
1 t t

Ey = [tP AT + WA’ IX*PA", E, = EBSY"AH + ?Bl‘sX*A’,
1

Fy = [tP B> + WBS IYP B, F, = Ej,

and t is any nonzero complex number with conjugate t.
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. tAT 1YB? ._|1AaXx O
Proof. For the given parameters, let K = [ o t o ] and L* = [ ;Bl‘s o ].Then

2 p2-2r t Al-ryRs
KL*=AX+YB, K*K:[ It A A YB ],

LBy Al #BS Y B

and
LAT|XPA LAXB
L'L=| H t
tBl-sx* A" |t|2 B2-2s
t
Applying (1) yields

25/(AX + YB)

|t|2 A2-2r ZAl—rYBs LZAV |X*|2 AT %ArXBl—s
< s; . _ t ]
] i %BSY Al #BS |Y* B® ] [ %Bl‘SX*A’ |t|? B>~% D
AP+ LATIXP AT ATTYBE 4 [ATXBY
T U YAl BIX AT LB YR B + i B an
L ¢ t [t]
- S]_ E F

_ ([E O],[0 E
- %\l o R Er O

< ) [ Eq @) |E2| O
= 5 | O F1 * O |P2|
= 5,((E1 +|Eal) @ (F1 + |F2l))

as required. [

Remark 2.2.
(i) Theorem 2.1 is a generalization of (12). This can be seen by letting t = 1and r = s = 1 in (16).
(ii) LettingY = X, t = land r = s = 1 in (16) shows how Theorem 2.1 is a generalization of (10).

Theorem 2.1 immediately implies the following bound. For the rest of this paper, the notation ||| will
refer to any unitarily invariant norm on M,,.

Corollary 2.3. Let A,B, X, Y € M,, be such that A,B > O, and let r,s € [0,1]. Then

2JAX + YBl < |[E® Fl|, (18)
where E and F are the same as those in Theorem 2.1.
Remark 2.4. Letting t = 1andr,s = § in (18), we get (14).

In the next result, we generalize (9) and (15).

Theorem 2.5. Let A,B,X,Y € M, be such that A,B > O and let r,s € [0,1]. Then

1 1
IAX + YBI < 7 (Eall+ IF) + 7 QI = )2 + 4 E2IP, (19)

where E1, E,, F, F1 and F, are as in Theorem 2.1.
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Proof. Restricting (17) to the spectral norm implies 2 ||JAX + YB|| < ||H||, where

|t|2 A2 #Ar |X>e|2 AT %Al—rYBs + %ArXBl_S
LBYAYT + IB1XAT LB |YP B+ |t B

IR

H =

By simple calculations, we have

1 1
IFH < 2 QUEsl + IFaD + 5 QI = D2 + 411217,

which completes the proof.
O

Remark 2.6.
(i) Lettingt =1,r=s = % in (19), we obtain (15).
(ii) Lettingt=1,r=s= 1 and Y = X in (19), (9) follows.
On the other hand, a generalization of (6) may be stated as follows.

Theorem 2.7. Let A,B,X,Y € M, be such that A,B > O and let r,s € [0,1]. Then

+

2JAX + YB] <

1
|t|2 AZ—Z}' ® WYBZSY*

1
|t|2 BZ—ZS ® WX*AZT’X

‘ (20)

+

t t Fo t
(ZAHYBS + ZA’XBH) ® (;BbY*AH + :Bl‘SX*Ar)
t t

for all nonzero complex numbers t.

Proof. It follows from (17) that

oaxsvel < || AT+ AT EAT ATYE 4 AXB!
b %BSY*Al—r + %Bl—SX*Ar #BS |Y|2 B + |t|2 B2-2s
|iL|2 A2-2r O #Ar |X*|2 A 0
_ O  GBIYB + "o e
© LATTYB + LATXBIS
éBsy*Al—r + iBl—sX*Ar O
t i
A>T O LxATX 0
< 0] #YBZSY* + o .
+ O %Al—rYBs + %ArXBl_S
%BSY*Al—r + %Bl—sxyrAr 0 )

which is equivalent to (20). O
Remark 2.8.
(i) LettingY =X, t=1,andr =5 = % in (20), we get, as a special case, (6).

(ii) LettingY = X, t = Land r = s = } in (20) and specifying the inequality to the spectral norm and the Schatten
p—norms, respectively, we obtain (7) and (8).

The following particular case of (20) is a generalization of (2).
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Corollary 2.9. Let A,B, X, Y € M, be such that A,B > O and let v,s € [0,1]. Then

It Be izA

It A e iB
It

2JA + B] < i + + (21)

2£A1/2B1/2 ®2£B1/2A1/2
t t

for all nonzero complex numbers t.
Proof. This follows from (20) by letting X =Y =L andr=s=1. O

Remark 2.10. Specifying (21) to the spectral norm and the Schatten p— norms, we get the following inequalities,
which are generalizations of (3) and (4), respectively.

1 1
21A+BIl < max{it?[IAll, e Bl + max{|t|[BIl, Al +2 |a2BY2
and
1 1/p 1 1/p
2]|A +BJ|, < (|t|2 IAIL + m ||B||,’Z) + (|t|2 1Bl + m IBIfy | +2M4P [lat2Bl2)

The next theorem is a generalization of (11) and (13).
Theorem 2.11. Let A, B, X,Y € M, be such that A,B > O and let r,s € [0,1]. Then for j =1,2,...,n,
25{(AX — YB) < 5/(G® H) (22)

where

1 t t
Gi =t A + WA’ XA, Gy = ?BSY*AH - iBl‘sX*A’, G=Gi+Gal,

1 t t
Hy, = tPB¥> + WBS [YP B, Hy = ZAHYBS - ZA’XBH, H = H; + |Hy|,

and t is any nonzero complex number.
Remark 2.12.
(i) Lettingt =1andr = s =  in (22), we have (13).

(ii) LettingY = X, t = land r = s = 1 in (22) implies (11).

3. The second singular value bound with its variants and applications

This section presents another upper bound for s;(AX + YB), which is easier than that in Theorem 2.1. Its
consequences will be discussed, too.

Theorem 3.1. Let A, X,Y,B € M,, be such that A,B > O. Then for any 0 < r,s < 1, and any nonzero complex
number t,

1
2
1(1 ,
5;(AX + YB) < s (warx + 1128219,
t

1
WYB%Y* + |t|2A2(1—r)

where j=1,2,...,n.
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Proof. Let x, y € C" be two unit vectors. Then, for K, L as in Theorem 2.1,
|((AX +YB)x, y)|
= |(KL*x, y)|

= |(L*x, K*y>|
<|IL*

= J(LLx,x) KKy, y)

LXAYX + [tPB21-9) O LYBBY* + [t A20-D O
= [¢] X, X [# v, y)
@) O O @)

That is,

[((AX + YB) x, )|

o ([[@EXATX+ B0 0]\ [ YBEY 4 |iPAX) O
< 0 ol 0 0 vy

Now, by taking supremum over y € C" with ||y|| =1, we infer that

I(AX + YB) x|

\/H| YBZY* + [t A20-1)

iZYBZSY* + |2 A20-n
f

LXAYX + |t?B21-9 O
[t X, X
o) o)

[tlzX*Az’X+ |t?B2(1-5) o]x”
ol

Thus, using the min-max principle

sj (AX + YB)

= max mm [[(AX + YB) x||
dim M=j xeM
[Ixll=1

1=

1
1 . _all? .
— YB®Y" + [tPA2)|| max min
It dim M=j xeM
[IxllI=1

IN

O

LXAYX + [tPB21-9) O
[t X

1
2

1
1 XAZX + [tPB2-9) O] ||?
= _2YB25Y* + [t2AZ1)) max min [lfl2 g x

It| dim M=j lalcxe”z\fl @)
1 fafl1
= WYBZSY* +[(PAN 52 ((WX*AZ’X + ¢ S>) ® o)

as required. [

Let Ty = U|T1| and T, = V|T;| be the polar decompositions of T; and T», respectively. Substituting
= |Ty|?, X = [T4|* U, B = |T,|?, and Y = V|T,|?, in Theorem 3.1, we obtain the following corollary, whose
application can be seen in Section 5 below.
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Corollary 3.2. Let Ty, T, € M,,. Then for any 0 <r,s < 1 and any nonzero complex number t,

1

S
v

4. Singular value bounds for a certain block partition

1+r

1+s 2 1— 2 1—
+IHT +IH T

T

T

. 1
Sj(T1+T2>S|W

where j=1,2,...,n.

We recall that a matrix T € M, has a Cartesian decomposition in the form RT +i3T, where RT and JT
are the real and imaginary parts of T, defined by

2 2
When RT > O, we say that T is an accretive matrix. If both RT, 3T > O, T is said to be accretive-dissipative.
Let T € IM,,. Then the Cartesian decomposition of T can be written as

T = [Tn T12] _ [All A12] +i [Bll Bz

- By By

T21 T22 A21 Azz ]’ AlZ = A21’B12 = B21’ (23)

where Tij, Aij, Bij € M. This decomposition has been given in [14].
Before proceeding to the next result, we state the following lemma from [19, Lemma 1].

Lemma 4.1. Let A,B,C € M,, be such that A,B > O. Then
[A C

c B] >0¢& ((Cx, y>|2 < (Ax,x){(By,y),¥x,y € C".

Theorem 4.2. Let T be partitioned as in (23). If T is an accretive-dissipative matrix, then
1
5j (T12) < [|A22 + Bzz||%5]? (A1 + B11)
forj=1,2,...,n.

Proof. Let x, y € C" be unit vectors. Since T is accretive-dissipative, it follows that

Au An| [Bu B
, > 0.
[A21 Azz] [le Bzz]

Applying Lemma 4.1, we have

[(Arx, )| < \/<Anx,x> (Any,y)y and [(Bix, )| < \/<B11x,x> (B2y, y)-
Consequently, applying the Cauchy-Schwarz inequality,

|(T12x, y)| = |<(A12 +iB)x, y>|
- |<A12x, y) +1(B1x, y>|
< [Awx, )| + [(Biox, )]

< \/<Anx, x)(Axny, y) + \/<an,x> (Bny, v)
< V(Anx, x) + (Bix, x) \/<A22y/ y) +(Bay, y)

= V{(A11 + B11) x, %) 4/{(A22 + B2) y, ¥)-
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That is,

|(T12x, y)| < V{(A11 + Bi1) x, %) 4[{(Ax2 + B2) y, ¥)-

Now, taking the supremum over y € C" with ” y” =1, we conclude that

1 1
IT12x]] < [lA22 + Baoll2]|(A11 + Bq1) x||2.

So, applying the min-max principle and proceeding as in the proof of Theorem 3.1, we get the desired result.
O

Theorem 4.3. Let T be partitioned as in (23). Then forany j =1,2,...,n,

2
S;‘(|T12| n

T21

2) <2||Anlf + |312|2“%S]-% (|A12|2 + |Blz|2)-

Proof. Let x, y € C" be two unit vectors. Then

‘<(|T12|2 |1l y>‘ = [(1412 + BuoP + 1412 - iB1oP) x, )

= 2|((141aP + Biof) x, )

=2[(lAnlx, y) + (B, y)|

<2(|(14sa, y)| + (1Bl v))
2( (14l ) (W, y) + (B <) (Baly, v))
<2 \J(lAnfr, x) + (1BuaPr,x) [{14Py, v) + (1BiaPy, v)

<2J{(1AP + Bl x) {(1412P +1Bial) . v).

IA

That is,

({7222 + [T ) )| < 2 {(402P + 1B ) {1402 + 1B,

Now, by taking supremum over y € C" with ||y|| =1, we deduce that

2)x

< 2 Anal + Braf| (1 Aral? + BraP) x %)

H(sz n

T21

1
< 241 + Biaf|* | (141 + 1B )|

So, applying the min-max principle and proceeding as in the proof of Theorem 3.1, we get the desired result
|

5. Bounds for the real part

In this section, we follow the ideas of the previous section to obtain some bounds for the norms of the
real parts of certain products. This entails some numerical radii bounds, as we shall see.

As a first result, we have the following consequence of Corollary 3.2. This bound for the numerical
radius was given as one of the sharpest simple bounds in the literature in [21].
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Corollary 5.1. Let T € M,,. Then
W) < ST+ [Tl
Proof. In Corollary 3.2,1etT1 =T, =T,s =r=0,t =1and j = 1. Then

2|(RD)|| < T+ Tl

Replacing T, in the above inequality, by €T, and using the fact w(T) = sup ”9% (ewT)H (see [28]) imply the
0eR
desired inequality. O

Next, we state the upper bound for the norm of the real part of the product AX when A > O. Applications
of this result will follow.

Proposition 5.2. Let A, X € M,, be such that A > O. Then for any 0 < r,s < 1 and any nonzero real number t,

Rl 3y s S en) atod )
Proof. Let

K:[tA(;_r %X(;As], L*=[;?:1r)§ 8].
Then

2% 4

= IKL|

N ([AxAT paxxeAr
= tZAZ—(Hs) Al—sx*As

R (AXAY) L(BATXX A + PAZ ()
e teny )

7

where we have used the fact that |[KL*|| < m‘R(L*K) m since KL* is Hermitian to obtain the first inequality in
the above argument (see [10, Proposition IX. 1.2]). This completes the proof. [J

Corollary 5.3. Let A, X € M, such that A > O. Then for any 0 < r,s < 1 and any nonzero real number t,

IR (AX)

< i(H%(A’XAH)

+ [ (arxar)

)

v \/(H‘K(AfXAl-’)” - | (asxa)) + i(

2

1
+lpAz0e9 + Zaxx Al ) .

lZA’XX*AS + tZAZ—(H-S)
t

In particular, when r = s,

R ax)|| < %“‘R(ArXAl’r) +31 tlerXX*Ar+t2A2(1’r) : (24)
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Proof. We prove the first inequality. Applying Proposition 5.2, then direct calculations of the singular values
imply

IR (AX)
[ R (A’XAH) 1 (%A’XX*AS + tZAzf(H»s))
£ ]

RAX0H) 4 LAXXAT) T x (AsxAr)

)

+g \/(||9< (ArXA1T)| - [|R (4sxAT5)|

IN

1
2
1

<7 (H‘R(A'XAH)

+ | (asxar)

),

)2 + i( %A’XX"AS + 12A2-(r+9) 2 A2-(r+9) 4 lZASXX*AV
t t

+

as required. [

Corollary 5.4. Let A, X € M, such that A > O. Then forany 0 <r,s <1,

)

e (% ] - [ asxars

1R (4x)]| < i (H% (arxA1)

+ ”% (AxA™™)

2
)+ AIATXX A AP,

In particular, when r = s,

% ax0] < 2 (| x| + A1)

Proof. We prove the first inequality. It follows from Corollary 5.3 that

)

+ 111 \/(“% (ArXAl_”)” - ”% (ASXA1—5)||)2 + (tlz [JATXX*As|| + t2”A||2—(r+s))

IR (A%)|| < }L (HR (arxA™)

+ | (axa=)

2
We infer the desired result by taking a minimum over t > 0. [

6. Further applications of Theorem 2.1

We conclude this work by presenting the following discussion, leading to some interesting bounds for
the spectral norm. Assume that0 <t € Rand let Ty = U|Ty| and T, = V |T;| be the polar decompositions of

T7 and T, respectively. Letting A = |T1|%, X = |T1|% u,y= VITzl%, and B = |T2|%, in Theorem 2.1, we get

2|15+ o]
< max {||2mi 1 + Ly + ‘|T FVITT + T T U F
< 1 a2l 2 1 2 1 (25)
1 —r +s +7 —s
(BT + T I VT ¥ .
If we setr = s =1, in (25), we infer that
. 1 ) 1 .
2||T; + To| < max{ L+ I+ [T + Tl || (21 + STl + T2 + T }
If we put r = s = 0, in (25), we obtain
1
2|15 + Tol| < max {2711+ 5 1Tl + ol A TT o+ Ty T
(26)

1 1 _1 N 1
BTl + 5 ITol + [T To Tl + Ty A T T

}

4
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provided that Ty, T, are invertible. From (26), we have
2||T; + 1o

1 | 1 _1
BITil+ 5 ITal + [ o T3ITy[E + | Tof Ty T

}

1 1. 1 1 _1
< max{(# + = )ITill + | Tai 4 T3Tal? o+ (Tt Ty

}

< max{

4

1 1 _1 - 1
t2|T2|+t—2|T2|+||T1|2T2|T2| 2+ |Th 2T T2l

2 1 1 _1 JE — 1
(2 STl + TR T+ gyt

1
< (t2 ; t—z)max{unu,nTzn}

T Tl T + Ty 2T Ty 2

s max ([Tt Tym + T T

That is,

|5 + T2l < max (Tl I T2l

Ty A To|Tol ™ + Ty 2 T3 Tol

AT + R TTY,

+ 1max{
2

2

If T = U|T] is the polar decomposition of T, Inequality (26) also implies

1
7] < 2

£21T] + tlz IT| +2|RT]|

, 27)

where T is the Aluthge transform of T, defined by T = [T|zU|T|z. This transform played a key role in

advancing some norm and numerical radius inequalities, as one can see in [1, 3, 25, 27, 28]. While the above

argument works for invertible Ty, T, the conclusion in (27) holds true for any T € IM,, by a limit argument.
Thus, we reach the following corollary.

Corollary 6.1. Let T € M,,. Then

1 .
[ 7] < Jmin |

. _

(tz + t—z)m + 2)%T|”

< tmin (24 L)imi+ 2 |27
1 T

= ST+ 5 [RT]).

If we substitute T by ¢'T in the above corollary, we obtain w(T) < % (||T|| +w (-f)) ; which is the celebrated

bound shown in [28].
Assume that 0 < t € R. Let T; = U|Ty| and T, = V|T;| be the polar decompositions of T; and T5,

respectively. Letting A = |T1|%, X = |T1|% u,y= VITzl%, and B = |T2|%, in (19), we get

)

. 1
PIT" + t—2|Tz|”S

|75+ 12
i

< =

4

Al

+

_ 1
f2|T1|1 T4 t_2|T1|1+r

s 1
i2|T2|1 S 4 t_2|T2|1+S

2

2 1=r Lis Lir 1=
) + ATV E s

1
2 1-r | = 1+s
2T + ST
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From the above inequality, one can get

1
1 2 1-r 1 1+r 2 1-s 1 T+s
< g (e« ) + AT+ imat)
1 1, 1 1ms Lo sV Lr L sl
A+ | - femst= + S mpe)) +4(‘|T1|z T T Fim )
4 12 12 1
Indeed,
|5 + T2

AT + 7|T1|1+r

X
A
.

A
=

A
4

+3\/( V.

where we have used the facts that || - || is unitarily invariant, and that |T*|7 = U|T|7U"*, when T = U|T] is the
polar decomposition of T to obtain the equality in the above argument.
In particular, we have the following.

- 1
tZITzll S 4 §|T2|1+5

)

- ||l |T2|1+s

)

s 1 8
_ 2 1-s , 1+s
BT + 5 |Tl

)

1
_ |2 1-s , — 1+s
PIT[ + 51Tl

)

o ([ |T2|1+5

1
2Ty + *Z|T1|1+S

2
| +ar’s Vs i e

t2|T Il T4 7|T1|1+r

tlezllfs + §|T2|1+s

2 1o 1as Ler 1os |\
)+ 4(im F v E | E v )

1 ;
2 1-r , 1+s
PIT[ + S ITi]

1 . 1
2 1-r 1+r 2 1-s T+s
T + §|T1| +|[E1T21 ™ + §|T2|

AITI + Ty )2 a5 Vi E v Jum F wm s )

leT |l T4 7|T1|1+7

1 ;
t2|T2|1 S 4 §|T2|l+s

_ 1 s
2T + §|T1|1+‘

+4(H|T1\ b |T

HlT | '

Corollary 6.2. Let T € M, and let t > 0. Then

b3l
By
A

Declarations

t2|T|1—r‘ + tllell-H’ +

1
t2|T|1_s + t_z |T|1+S

)

t2|T|1 S |T|1+‘?

1+5

-1
217 1-7 T+sf _
2T + 2 |T|

e

e,
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