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On a class of Kirchhoff problem involving Choquard nonlinearity with
real parameter
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Abstract. In this paper, we focus on investigating the existence and multiplicity of nontrivial weak
solutions for a class of Choquard-Kirchhoff type equations. These equations involve a variable s(x, -)-order
fractional (71(x, -), T2(x, -))-Laplacian operator with a real parameter and a continuous variable parameter.
The main challenges lie in the Choquard nonlinearities and Kirchhoff functions, along with the presence of
double Laplace operators involving two variable parameters.

1. Introduction

In recent times, considerable emphasis has been directed towards examining issues related to the non-
local fractional Laplacian or more broadly, integro-differential operators. These operators naturally emerge
in various applications, including continuum mechanics, phase transition phenomena, population dynam-
ics, minimal surfaces, and game theory. They represent a common result of the stochastic stabilization
of Lévy processes, see [7, 18| 25]. Moreover, recent research has delved into the regional fractional Lapla-
cian, limiting the operator’s scope to a variable region near each point. For example, the authors in [22],
investigated the presence, symmetry features, and concentration phenomena of solutions in the nonlin-
ear Schrodinger equation with non-local regional diffusion. The distinct characteristics of these regional
operators make them particularly interesting in the mathematical theory of non-local operators. Also
finds diverse applications and research applications in physical systems, particularly in non-homogeneous

Kirchhoff-type equations [29], where the authors studied a Schrodinger-Kirchhoff-type equation with frac-
tional p-Laplacian in R” of the form:

(f f ) e dy)< A+ VEIRu = fio0) + () xeRY,
REN |x_ |N+ST

where 0 <5 <1< 1 < 00,15 <1, fand g are two continuous functions.
In the setting of Kirchhoff problem involving the variable-order fractional 7(-)-Laplacian operator, the
authors in [31] established the existence of at least two distinct solutions for the aforementioned problem
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using the generalized abstract critical point theorem. Furthermore, they demonstrated the existence of one
solution and an infinite number of solutions by employing the mountain pass lemma and the Fountain
Theorem. The equation is as the form:

I (x) — x ()T 50 002, _ N
(f Lz . leH(W)T(xwd dy | (=A); )% + I« K =puglx, k) xeRY,

K € WSOTO(RN),

where N > p(x, y)s(x, y) for any (x,y) € RN x RN, M represents a continuous Kirchhoff-type function,
g(x,u) is a Carathéodory function, and y > 0 serves as a parameter. In the context of Kirchhoff-Choquard
equations incorporating the variable-order fractional 7(-)-Laplacian, reference [5] details the authors” work
establishing the existence of weak solutions, ground state solutions utilizing the Nehari manifold, and
the existence of infinitely many solutions using the Fountain Theorem and Dual Fountain Theorem. This
investigation concentrated on a class of doubly nonlocal Kirchhoff-Choquard type equations, where the
variable-order fractional p(-)-Laplacian operator takes a specific form.

lic(x) — w(y)[*&Y f [ic[F®
Vv
(f Lz T(x, Y Nx — y|N+s(x TR, y)d dy + . (x) %(x)

_ (v,
X[ (=AY + V("] = ( i lx(i/y%dy) f,K) xeqQ,

u=0 R\ Q.

wherem : R » R, V:Q > R}, u: RVXRY — (O,N), f: QXR - R, 7 : RN XRY — (1,0),
s : RN xRN — (0,1) are continuous functions, T := 7(x,x), Q € RN is a smooth bounded domain and F is
the primitive of f.
After this, many authors have looked into the problem using Laplacian, p-Laplacian, and fractional N-
Laplacian operators. They used either the technique presented in this paper or critical point methods.
Some notable references include: [1, 3] 9H18] 2628, 30].

Inspired by the aforementioned studies, our objective in this article is to examine the Choquard—Kirchhoff
type equations. These equations involve the variable s(x, -)-order fractional (71(x, -), T2(x, -))-Laplacian oper-
ator with both a real parameter and a continuous variable parameter:

H(Idsm0)) (FAY, k() + A5 ([0 ) (<A, ()
H

= Elre@)HO2k(x) + ( Md]/) h(x, k(x)) + g(x), ingQ, 1)

a lx = ylaby)
K= 0 ln RN\Q,
where
i @) — e(y)[ N
[K]S('),Ti(') = Lx@ T (x ]/)|x y|N+s(r ) Ti(x,Y) Xdy’ 1=12 (2)

and Q represents a bounded smooth domain in RN, # and % denote models of Kirchhoff coefficients, &
is a real parameter, and s, 11, T2, 4, &, H, h, g are typically continuous functions. The specific assumptions for

these functions will be introduced in the subsequent discussion. The operators (— A)S() are referred to as
variable s(-)-order 7;(-)-fractional Laplacians, where 7;(-) : QX Q — (1,+o0) fori = 1,2, and s():QxQ —
(0,1) with N > s(x, y)7i(x, y) for all (x, y) € Q X Q. These operators can be defined as

f li(x) = k(W72 (1(x) — x(y))

lx — y|N+s (x,y)Ti(x,y)

(_A)iik).) K(x) = dy, VxeQ, 3)
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where x € C;’(Q) and p.p. stands for the Cauchy principal value.

In contrast, Fiscella and Valdinoci presented the initial concept of a stationary Kirchhoff variational
equation in [23]. This equation captures the non-local influence of tension resulting from fractional length
measurements of the string. In fact, represents a fractional adaptation of the Kirchhoff equation model
introduced by Kirchhoff in [24]. To be more specific, Kirchhoff formulated a model described by the
following problem:

829 PO f '
97 oL

which extends D’ Alembert’s wave equation. One notable feature of model () is that it contains a nonlocal

BZQ
8x2 =0 (4)

P() aom

2
term * + £ b ‘ % l . The parameters L, h, E, m, Py in model (@) represent different physical meanings,

which we will not cover here.
In this paper, we make the assumption that s(-) and 7;(-) are uniformly continuous functions, while
a: QX — (0,N) is a continuous function, and satisfies the following assupmtions:

(A1): 0<s <s"<1, 1<t <1, 1<1,<71;, 0<a <a" <N,

where
sT:= inf s(v,y), s'i= sup s(xy)
(ry)eaxQ (x,y)edxQ
;= inf _7i(x,y)and 7] sup 7i(x,y) fori=1,2.
(ey)elxQ x,y)e@xf&
Let denote
Tmax () 1= max{T1(), T2()}, Tmin(-) := min{71(:), 72(-)}, 5(x) = s(x, x), Ti(x) = Ti(x, x)

and

* L NTmax(x)
00 N S0t
(A2) : s(-), Ti(*) and a(-)are symmetric function, i.e. s(x, y) = s(y, x), Ti(x, y) = Ti(y, x)

and a(x, y) = a(y, x) for any (x,y) € QA x Q.
(A3): h: QX R — R is a continuous function such that 3C; > 0 and r € C, (]RN ) N 2 with 7, <r <
T;.)(x)such that

Ih(x, 1) < C1ItI®™!,  forany (x,t) € Q xR,

where & = {r(x) D Tmax(X) < r(x)g~ < r(x)gt < T:(.)(x) for all x € RN }, with function g € C, (Q X Q) such that

2 a(x, y)
q(x, y) Y

=2 forany(x,y) € QX Q,

(A4): There exists A > 7}, such that 0 < AH(x,t) < 2th(x,t), for anyt € R\{0} and for any x € Q.
(As): The Kirchhoff functions .%; : R* — IR* (i = 1, 2) are continuous such that there are positive constants

ﬁie[,T )ﬁ max{fB1, B2} and k; = k;(v) > 0 for all v > 0 such that

tA(F) < BiHi(t), forany teRY,

ki > Ji(t) > ki, forall t>uv,
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where JZ(t) = fot Ji(v)dv.
(Ap): For any v > 0, there are two positive constants k; and k* = k;(v) > 0 such that

ki < () < k¥, forall t>u,
(A7): The perturbation g satisfies g € L*(Q) and g > 0 a.e. in Q,
All these assumptions lead us to consider the following two main results.

Theorem 1.1. Assuming that (A1)-(Ay) are satisfied, and considering Q as a bounded smooth domain in RN with
€ Co(Q) such that 1 < u* < T, then there exist & and go > 0 such that for any & € (—o0, & ] and if ||gll> < go,

max”/
problem (1) possesses at least one positive nontrivial weak solution.

Theorem 1.2. Assuming that (A1)-(A7) are satisfied, and considering Q as a bounded smooth domain in RN with
€ Co(Q) such that 1 < u* < Ty, then there exist & > 0 and g > 0 such that for any & € (0, &*] and if l|gll2 < go,
problem (1) possesses at least one negative nontrivial weak solution.

This paper is organized like this: In the second section, we discuss familiar properties and results related
to fractional Sobolev spaces with variable exponents. In the third section, we provide proofs for our two
existence results.

2. Preliminaries and Functional Analytic Framework

We begin by revisiting fundamental properties of variable exponent Lebesgue spaces and variable order
fractional Sobolev spaces.

Variable Exponents Lebesgue Spaces.

For any m € C,(Q), let’s revisit the variable exponent Lebesgue space
L"(Q) = {K : Q — R: « is measurable and f [(x)["Pdx < oo},
Q
equipped with the Luxemburg norm

1%llmy = inf {g >0: f
Q

It is well known that (L"’(')(Q), [ - IIm(.)) is a separable reflexive Banach space, see [19]. Moreover, let m’ €

x(x) m(x)

9

dxsl}.

C+(Q) be the conjugate exponent of m, that is

1 1

M—i_ml_(x):l’ forannyQ

Lemma 2.1. [19] Assume that x € L"O(Q) and v € L™ )(Q). Then

va dx
Q

Defining the modular function o,y : L"(Q) — R, by

1 1
< (F + (m,)_)”K”m()”v”m'() < 2l 1l -

Ty () = f J1c(x)|" M dx.
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Proposition 2.2. [20][21] Assume that x € L"O(Q) and {x,}nen C L"O(Q). Then
(D) Kl < 1(resp. =1,> 1) & (k) < 1(resp. =1,> 1),

(ll) [lcllm(y <1 — ||K||$(,_) < om(y(K) < ||K||Z(2,
(i) [[Kllmey > 1 —> Il ) < omey () < Akl S

(iv) limy, 0 [|Knllyy = O (resp. 00) & limy, e Oy (k) = 0 (resp. o),

(0) im0 (K7 = Kl = 0 © im0 Oy (K — x) = 0.
Proposition 2.3. [4][2l] Let a(-) satisfy (A1) — (Az). Let my, mp € C, (Q X Q) verify

1 a(x, y) N 1
my(x, y) N ma(x, y)

=2 forany(x,y) € AX Q.

Then, for x € L™ (]RN) nL™ (]RN) and v € L™ (]RN) N L™ (]RN) we have

x(x)v(y)
LXQ de dy| < C (Kl 0y + el 011 )

for a suitable positive constant C independent of x and v.

Variable-Order Fractional Sobolev Spaces.

Henceforth, we will provide a concise overview of fundamental properties concerning fractional Sobolev
spaces with variable order. Additionally, we will introduce essential lemmas and propositions that will
serve as tools in proving our main results.

The fractional Sobolev space with variable order and variable exponent is given by

) () = K (y)["e
w;j'(?)(a) ={x e L"(Q): f k() = <)l dx dy < oo, for some x > 0
axg M|y — yN+mE sy

with the norm [|«|ls¢),m¢) = lxllac) + [Kls¢),m(), where

x(x) — x(y)|"xy)
, axg "I |x — y|N+mEysy)

Let Wo := {ic € W3¢ (Q) : « = 0 on Q) endowed with the norm [[xllw, = licls)m()-

Remark 2.4. Note that (W, llx|lw, ) is a reflexive Banach space and Wy, denotes the dual spaces of W.
Now, we introduce a compact embedding theorem for W=00)(Q).
Lemma 2.5. [4] Let s(-), 71(-) and ta(-) satisfy (A1) — (Az). Then, for any m € C+(Q) with 1 < m(x) < T;(_)(x) for
any x € Q, there exists a positive constant C,, = C,,(N, s, T1, T2, m, Q) such that
lIxllmey < Cullxcling,
for any x € Wy. Furthermore, the embedding Wy < L"(RQ) is compact.

Lemma 2.6. [5] (Hardy—Littlewood—Sobolev type inequality) Let s(-), T1(), T2(-) and u(-) satisfy (A1) — (A2), with
N > m*s*. Let g € C. (QXx Q) beas in (A3). Letr € C, (]RN) N P, where & is defined in (As). Then, for any

K € Wo we have x|’ € LT (]RN) NLT (IRN) with

r(x) r(x)
f [ ()" ()l dx dy < C(Hlklr(')|
axq X =yl

ia*(n) + ”lkv(i)“iq*(m)'

where C is a positive constant and independent of x.
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We define the fractional modular function aigk?) :Wo — R, by

: K(x) — k()"
= [,
: axg [x — yINHmEy)sy)

Proposition 2.7. [4] Suppose that k € Wy and {x,}nen € Wo. Then
(@) licllw, < 1(resp. =1,> 1) & a5, () < 1(resp. = 1,> 1),
(i) lcllw, < 1 — Il < 035 () < [ellzy,

(iii) lfcllwy > 1 — Ihcllzy, < 036 (1) < el
(iv) lim, e [|Knllw, = O (resp 00) & lim,, 02(12) (kn) = 0 (resp o0),

(0) Ty [lin = lly, = 0 & Jimy oo 07, (10 = ) = 0.

Definition 2.8. We say that a function « € Wy is a weak solution of[I} i

— (%, y)— _ _
%([K]S(')/Tl('))f Iie(x) = k(Y)ED2(xe(x) — 1(y)) (@ (x) (p(y))dxdy

axQ |x — y|N+Tl (x,1)s(x,y)

— To(x,y)-2 _ _
+%([K]S(')'T2('))LXQ [1c(x) = k()N 2 (k(x) — x(¥))(P(x) — (V)

lx — yN+T2@y)sy) dx dy

_ H(x, k() H(y, k()¢ (y)
- (x)-2
& L [1c(20) M1 () (x)dx + LXQ = o dxdy + L g(x)p(x)dx,

for any @ € Wy.

Clearly, the weak solutions of{T|are exactly the critical points of the Euler Lagrange functional €; : Wy — R,
given as follow

€ () = A([K)eymr) + Ha([K)srm00) — € fm ﬁw(x)l“(")dx
1 H(x, x(x))H(y, x(y
Lxﬁ

) |x — y|a(x,y)

> ))dx dy—fgg(x)x(x)dx,

where Z(t) = fot Hi(v)dv, i = 1,2. Note that €; € C' (Wp, R) and its Gateaux derivative at the point ¢ € Wy
is the functional

— T1(%,y)-2 _ _
€090 = H(ixhore) [ OO |x_y(|§§3<x,y§f§,’y),)((’)(x) o0 41 4y

— T2(x,y)—-2 _ _
+%([K]s(‘)ﬂz(')) L () — kI (k) — k(@)@ ) — 9(Y))

|x — y|N+TZ(x/]/)5(xry)

) H(x, k(x))H(y, k(y))p(y)
=¢ fg ()21 (x)p(x)dox + [:zxs:; i — gloCD dx dy + Lg(x)(p(x)dx,

dx dy

3. Main result

Palais-Smale compactness condition.
The objective of this section is to demonstrate the fulfillment of the Palais-Smale condition, denoted briefly
as (PS). To achieve this, we revisit the fact that € satisfies the (PS) condition at the level ¢ € R, if every
sequence {i,},en C Wy that satisfies:

€: (k) — ¢ and (E’é (ky) — 0 inWj asn-— oo, (5)

has a convergent subsequence in Wj.
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Lemma 3.1. Assuming that (As) — (A4) hold. Then
(D) if 1 < u* < Ty then for any & € R, € fulfills the (PS) condition,
(i) if A < u~ < u* < (1), then for any & > 0, € fulfills the (PS) condition.

Proof. Let & € R and let {x,},en C Wy be a sequence satisfying (]ED
Step 1: Let prove the boundedness of the sequence {x,},en by employing a proof by contradiction. Subse-
quently, by passing to a subsequence, which is still denoted as {«,},en, we have

Bim licullw, = 0o and - [[Kallw, 21,
for all n € N. From (A;) we have for any x € Wy

(@) = kI () = k@I () = ()l
[x — yNru@ysy)  |x — yN+REnstn) Ty — y|N+ma@y)stoy)

forae. x,y € RV, (6)

Therefore, using the Holder inequality, Propositions[2.2land[2.7} (As), (A7), (B), (€), Lemma[2.5, 36; > 0 such
thatasn — oo

¢+ O [licully, +0(1) = A () = (€ (i) , )

- - 1
%([Kn]s(),ﬁ(-)) + /L%/Z([Kn]s(-),’rz(-)) - A& L ﬁlxn(x)l“"‘)dx

A [ He o (HY, <)
2 Lx“ x — y|oty) dxdy-4 Lﬂ(x)Kn(x)dx

i (x) = Ku(y)| 1O
- %([Kn]s(),ﬁ(.)) L () ) dx dy

<0 Ix _ y|N+T1(X ,1)s(x,)

IKn(x) Kn(}/)l” 2
= ([n) 20 fm = gy X Y+ fn gx)ren(x)dlx

H(x, 1,(x)H(y, €2 (y))p(y)

QxQ x — ylatew)
71 X, y

A 1) = a(¥)|
= (ﬁﬂi ) 1) fm oo XY

T2(x,Y)
Kn(X) — Ky
Y L () = ()| sy
pr axg [x — yNFREsey

—éb[(————lyKA@W”dx

‘f H@mmwmmm@)m%mmm@]
axQ |x — ylate

+§\fWKAxNM@dx+ dx dy
Q

dy

-(A-1) L g(x)xn(x)dx

> min{kl,kz}( A _ 1)f |Kn(X) - Kn(y)
Q

BTmax o | — YN Cosey)

_g(f;_qawﬂmﬂ—m—lmWMWMz

s A T A + +
> minfky, k} (ﬁT - 1) llcull g — & (F - 1)Cﬁ lIxallyy, = Callicallwg,

Tmax (X/y)

dx dy
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where ¢ = max{¢&, 0} and C; > 0. From this, we can discern two situations:

Case 1: if 1 < u* < 1y, then since A > pt},., and by (A4), from the aforementioned estimate, we promptly
encounter a contradiction.

Case 2: if A < u~ < u* < (1), we consider & > 0 then, by the above estimate we have as 1 — oo

¢ + Og [lxullw, +0(1) = min{ky, k2} (,F?nax - 1) leallyg™ = Co licallg,

which still gives a contradiction, since A > B7f., > BTmax > 1. Thus {x,},en is bounded in W.
Step 2: {xu}nen has a strong convergent subsequence. Indeed, from Lemma combined with the
reflexivity of Wy, there exist a subsequence, still denoted by {«,}.en, and k € Wy such that

Kp — Kk in Wy,
Ky — & in LFO(Q), 7)
K (X) — x(x) a.e. in Q.
Moreover, we have
K€, (i), (i = 1 < 1€ ) (Il + licllwg) — 0, as 1 —> oo,
As {x,},en 1s bounded in W and (E:S (k) — 0, one has
(€% (rn), (ky —x)) — 0, as n—> oo.

For simplicity, let us denote by L, : Wy — W as

Jic(x) = k()P (1e(x) — (1)) V(%) = v(Y))
|x _ y|N+T,-(x,y)s(x,y)

(Ly(x),v) = dx dy,

QxQ
for any x,v € Wy and i = 1,2. By combining the boundedness of {k,},en in Wy and (7), we derive that
0(1) = (€ (x,), (s — 1))
= A4([k01s0,10) (L, (), (= €)Y + H5([01s0,020)) (L (), (1 = K))
~& [ B ) (6, - 0 @t
B f ) H (x, 10 (x)) i (y, k() (0 — %) (1)
QxQ

|x — yla(x/]/)

dx dy - fp g(x) (k, — 1) (x)dx (8)

By employing Lemma[2.1]and (7), we get

()2 )-1
| fg (O, 3) (1, 1) (k2] < 207 s = ], — 0,
as 1 —> oo. Therefore,
lim f s GO 16, (1) (k5 — 1) (¥)clx = 0. ©)

Moreover, from (A7) and Holder’s inequality, we deduce that:

< lgllalin = xll2 — 0,

ﬁ 99 (k0 — 1) (¥)dx
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as 1 —> oo. Therefore,
lim f g(x) (K, — 1) (x)dx = 0. (10)
n—oo Q

Now, let’s estimate the fourth term on the right-hand side of (8). So, using (A3), Proposition[2.2land Lemma
for any x € Wy one has

1/q
IHC, (Dl < Co ( f e () 9 dx) < €y max {llialligy e Il )
Q

< Cymax {Cllullly,, Choyo- Ialliy, (11)
that is H(-, ©,(-)) € L7 (Q), and similarly
IHC, (Dl < Comax{Crey Mically,, Cro-lcally, |- (12)

Therefore, with reference to (I1), (I2), and Proposition 2.3}, we have

H (x, k0 () 1 (y, kn () (0 = %) ()
axa x — ylo®y

< C(IH € a Mg W G, ien ) GnC) = KOl +IH G, sl 1€ 30n (D) () = kD)
< Camax {Cl, . ially, Cliy lially | I G, eu (D) G ) = KDy
+ Comax [l Ikally,, Cloyo-all W 160 Gen() = 6Ol (13)

dx dy

Moreover, by using (A3), Lemma[2.1} Lemma and (7) we obtain as n — oo

M 1) () = <CDIE < CF f e (Ol [ () = )T dx
Q

(r()-D)g* AT
< Cs [, o e = 07|,
< Cy (||1<n||<,§,);3” el Y050 = 01,
< Coll(cn = I, = o(1), (14)
and similarly as n — oo
I1.C, 1n()) (u() = KON = 0(1). (15)

Therefore, combining with (13), and (I5), we obtain

H (x, ,(x) I (y, %0 (v)) (16 = %) ()

axQ lx — ylaty)

dxdy|— 0, as n— oo. (16)

Hence, according to (8)-(9) and (T6), one has
lim (62(7@:)/ (1cn — %))
n—oo

= lim [ (Ikdr00) Ly (90, Gn = 1))+ H([nk0,) (Lo ), (0 = 1)) | = 0.
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From this, employing a similar argument as in (6) and using (As), we have as n — oo

0(1) = ‘%/1([1(”]5('),’[1(')) <LT1 (Kl’l)r (Kl’l - K)> + %([Kn]s(),'rz(-)) <L12 (Kn)/ (Kn - K))
> min{Kj, K5} <L7max (tn) , (Kn — K)) .

(17)
For any given (x, y) € Q X Q, applying the Young inequality yields
| 1 (x) = 1en ()P (%) = xe(y)

max 7, 1
Tmax (%)) "

- _ Tmax (%)
)

Tmax (X, 1 *
< == = k)™ 4 —he@) = e,
() T

1
< T ” Jien(x) = ()

(18)
such that
max(x/y)
. 160 () = 1a(w)|
mintfa, K] <LTmaX (Kn) ’ (Kn - K)> = LXQ lx — y|N+Tmax(x,y)s(x,y) dx dy
max (%,)—1
) = e ()| ™ @) - ()]
- dx dy
axQ |X — y|N+TmaX(x,y)s(x,y)
max( 7, )
Jien(x) = 1n ()| ™
2C7 N+ dx dy
axa ¥ — yNFTmaly)soy)
e(x) = ()l
h f — 1IN+ Tmax(x,y)s(x,y) dx d]/ : (19)
axa =yl
By utilizing (7) and the Fatou lemma,
max( 7, )
. |Kn(X) - K"(y)r XY |K(X) _ K(y)|7max(x,y)
lim inf NG )dxdyz e xdy,
n—oo axQ |x — ]/| Tmax (X, Y)S(X, Y, axQ |x - ]/| Tmax (X, 1)s(x,
this, combined with ([17) and (19), results in
max (%)
K (x) - K ( )T K(x) — K Tmax (%,Y)
i [ @k dy = f ) ~ O 0

n—o Jogg |x — y[NFmax@y)stey) axg [x = yINFTmax)sy)

Tmax (X,Y/)

en) [T @) = ke
o = gt YT NGt < Y

Tmax(x,]/)
|Kn(x) - K(X) - Kn(y) + K(y)|
= LXQ |x _ y|N+~[maX(x/y)5(x,y) dx dy + 0(1).

Nevertheless, employing (7) and the Brézis-Lieb type lemma for variable exponents, we obtain as n — oo

This, along with (20), results in

Tmax (X,1)
. Jien () = K(x) = () + 1()] ™
lim

_ e sO) o
n—00 Jovq |x —_ y|N+Tmax(xr]/)5(x/}/) dx dy - nh—>nlo GTmax(') (Kn K) 0.

Based on this and Proposition @ we can conclude that x,, — x in Wy as n — oo. This concludes the
proof. O
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Mountain pass structure.

Lemma 3.2. Assume that (A1) — (A3) holds. Let u € C4(Q) such that 1 < u* < ty,,.. Then, there exist a positive
constants v, & = E*(v), no = no(v) and a = a(v) such that €z(x) = a > 0 for any x € Wy with ||x|lw, = v, whenever
¢ €(0,&Tand |Inll2 < no.

Proof. Let x € Wy be such that ||x|lw, = v (where v € (0, min{l, 1/CH}), with C,, given in Lemma . using
@), (17), (12), Lemmas Propositions2.2land 2.7] one has

Ce(x) = %([K]s()rl )+<7£/2([K]5()TZ( 5f—|1<(x)|“(")dx

Q

QxQ I — yleeoy)

1 Ik (x) — K(y)|71(x,y)

>

> ﬂ1TT %([K]s(-),n()) LXQ Ix — y|N+Tl(x,y)s(x,y) dx dy

(@) = ()
95/2( K]smn())f ( ) dxdy
:B 2 QX

o |x — yN+eysy)

x 1 H(x, x(x))H(y, x(y))
"¢ L mh{(x)'y( 'dx - 2 axQ x — ylatey) dx dy f g(0)x(x)dx

. — Tmax(xly)
> Kinin f IK(X) K(y)l dx dy_gf L|K(x)|”(")dx
xQ g H()

" PTiax i — NG sCey)

_1 [ Hx)H(y, ()
2 Jaxa lx = ylod)

Kmm S| * C
e i—_‘fy(-) = 5 (IHC OE + IHC, <) - gl

K max 5 2r-
> i [ES[H% A ”K”u() Csllxlliy, — Collgllzllxliw,

N

dx dy—fg(x)x(x)dx

B ﬁTr-;ax
4

mn Fax 5 C10 . 2r
> Bt —lellyy> — = IIKII§N0 = Gsllxllyy, — Collgllallcliw,

max

K - *C .
= 1/Tmax (# — Cgv? T:m) _ 6__1(’1,}! — Collgllav, (21)
max H

with £&* = max{¢, 0} and Ky, = min{Ky, Ky}, We have 7f,, < 2r~ and choosing v € (O,min {1,1/C‘, ,

[Km,-,,/2/3¢;axc8]”(2”‘73w)}), we get, for any x € Wy with |[x|lw, = v, that

i +
Vi Kiin _ £7Cro -
+ —
ZﬁTmaX

Moreover, set & = vma# K. U~ /4Bt aCio- Thus, for any & € (0, £*], according to one has

Ce(x) 2 Collgll2v- (22)

Tinax *Kinin

(G2 (K) 2> m =a>0.
This complete the proof. [

Lemma 3.3. Assume that (A1), (A2), (As), (As) and (A7) holds. Let p € C+(RQ) be such that 1 < p* < 1,
for any & € R 3¢ € Wy with ||pllw, > v, where v > 0 is given in Lemma|[3.2} such that €¢(¢) < 0.

Then,

max*
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Proof. Let &£ € R. According to (A4) there exist two numbers z1,z, > 0 such that
H(x,t) > z|tM?,  for any x € Qand |f| > z,. (23)
By utilizing the condition (As), one has
Hi(t) < K, forany t>1. (24)

Take ¢ € C° (]RN ), with ¢ > 0 and let t € R such that ¢~ > d,. From (23) and (24) we obtain

Ce(t9) = Fa([t0hr ) + Fa([t Dl ) - & L ﬁltqb(X)l“‘”dx

1 f H(x, top(x))H(y, td(y))
2 Jaxa x — ylo@y

dxdy - Lg(x)tqb(x)dx

< OO0 + ATl — f GO Odx
U Q

G O G )
e fm BT e A L gO0P(x)dx

A ( f ltb(x) — b ()| )ﬁ ey
Q

- (Tr_nin)ﬁ «a lx— y|N+S(x,y)r1(xry)

(1) |t¢<x>—t¢<y>|fz<x'y>)‘* & -
+ (L dx dy [J_t L|¢(X)| dx

(T, \Jaxa | — yINtstopriy)
zit! @M 2lp()1M>
1
- PP dx dy -t f Vo0
2 an x — y|reoy) Yy Qg( )p(x)
BThmax B . | (x) — ¢)(y)|’[max(x,y) B
< (L), Ha(1 drd
(T,;m)ﬁ maxd (1), ol )}(LXQ |x—y|N+S(x'y)Tmax(X,y> xdy
zit! @M 2Ip()1

1 ————————dxdy - tLg(x)(p(x)dx (25)

2 Jaxa  lx—yletw

Since A > Bt} we obtain that €:(t¢) — —oo as t — oco. Thus, given sufficiently high ¢, we may obtain

@ = t¢ such that ||pllw, > vand €:(p) <0. O

Proof of Theorem

It can be deduced from Lemma [3.T] (i) and Lemmas and taking into account that €¢(0) = 0, because
of (Aj3), that for any & < &*, €; meets all Mountain Pass Theorem requirements. Consequently, there exists
a Palais-Smale subsequence {x,},en such that x, — xp as n — oo in Wy. Thus, «( serves as a nontrivial
solution to problem (1) with positive energy €¢(xg) > 0.

To prove Theorem 1.2 we need the following lemma.

Proposition 3.4. Assume that (A1), (A2), (As), (As) and (A7) holds. Then, for any & € (0, £*], there exists k1 € Wy
such that
—o0 < €g(x7) = inf €:(x) <0,
k€B,

where B, = {x € Wy : |lxllw, < v}and & and v are given by Lemma

Proof. Letw € Cy’ (]RN ) withw > 0, and lett > 0 sufficiently small such that ||tw|lw, < 1. Therefore, according
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to (As) and (23), we have for any & > 0

- - 1
€ (tw) = Hi([twl,n0) + Ha([twlino) - & f@ o el s

Hx,t H(y,t
i % (x tl)Hy, ko) f@ gt ()dx

QxQ Ix — ylo@y)

* * é + X
< Kb i0) + Ko o) =t [ oo
Q

2247 A2 A2
_ 17 —|a)(x)| ()l dxdy - tf g(x)w(x)dx
L-;‘

axa =yl

* t —t T1(%,y) * t —t T2(x,y)
k ( f |tw(x) — tw(y)l ) dvdy + ’f ( f |tw(x) — ta(y)| ) dv dy
Q Q

%0 lx — y|N+s(x,y)71(x,y) T %0 lx — y|N+s(x,y)Tz(x,y)

T . .
min min

244 A2 AJ2
L f w@dy - 2 [ eI
H Q 2 Jaxg  lx—ylew)

T _ Tmax(%,Y) +
Kkt ( f jw(x) — @(y)| ) dxdy - %tu f lw()“dx — ¢ f g)w(x)dx,
Q 8 =

T wq |x = YN Tmax (oY)
where k* = max{kj, k;}. By (A1), we deduce that € (tw) < 0 as t — 0*. Hence, we get

—00 < €:(ky) = inf €:(u) <O0. (26)
keB,

dxdy - tf g(x)w(x)dx
Q

This end the proof. O

Proof of Theorem
According to Ekeland variational principle in B, and Lemma Proposition Ak, ) uen C B, such that

1 1
C(xc1) < Ce (k) < Ce(x) + - and  C: (k) < Cg(x) + EHK” — «llw,, (27)

for all x € B, and n € IN. Let for all v € dB; := {x € Wy : |lx|lw, = 1}, and for any ¢ > 0 small enough that
kn + €v € B, and using (26), one has

Cs (k, + ev) — Ce (k) > —%

Since € is Gateaux differentiable in Wy, we have

Cs (ky + ev) — € (k) S _1

(€, (1), v) = lim - .

7

for all v € dB;. Thus
1
(g/( nl)rs < -
(&% Gen) )] <

Hence, there exists a sequence {x,},en C B, such that €:(x,) — €s(x1) < 0 and @:E (x,) — 0in W; as
n— oo,

By Lemma {xn}new has a convergent subsequence in Wy, still represented by {«,}.en, such that x, — x;
in Wy as j — oo. Therefore, x; is a solution of (I), with € (x;) < 0. Theorem yields two distinct
solutions: x; with positive energy and «, with negative energy. To summarize, the existence of the second
solution relies on & being positive. Thus, there exists &* > 0 such that for each & € (0,&*], problem (I) has
two separate nontrivial weak solutions. This finishes the proof.
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