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Abstract. For a graph G, the edge Mostar index of G is the sum of |mu(e|G) −mv(e|G)| over all edges e = uv
of G, where mu(e|G) denotes the number of edges of G that have a smaller distance in G to u than to v, and
analogously for mv(e|G). This paper mainly studies the problem of determining the graphs that maximize
the edge Mostar index among tricyclic graphs. To be specific, we determine a sharp upper bound for the
edge Mostar index on tricyclic graphs and identify the graphs that attain the bound.

1. Introduction

Let G = (V,E) be a graph with vertex set V(G) and edge set E(G). The order and size of G are the
cardinality of V(G) and E(G), respectively. The distance between u and v in G is the least length of the path
connecting u and v denoted by dG(u, v). For a vertex x and edge e = uv of a graph G, the distance between x
and e, denoted by dG(x, e) , is defined as dG(x, e) = min{dG(x,u), dG(x, v)}.

A single number that can be used to describe some properties of a graph is called a topological index,
or graph invariant. Topological index is a graph theoretic property that is preserved by isomorphism,
which is widely used for characterizing molecular graphs, establishing relationships between structure and
properties of molecules, predicting biological activity of chemical compounds, and making their chemical
applications.

Došlić et al. [7] introduced a bond-additive structural invariant as a quantitative refinement of the
distance non-balancedness and also a measure of peripherality in graphs, named the Mostar index. For a
graph G, the Mostar index is defined as

Mo(G) =
∑

e=uv∈E(G)

|nu(e|G) − nv(e|G)|,

where nu(e|G) is the number of vertices of G closer to u than to v and nv(e|G) is the number of vertices closer
to v than to u.

The problem of determining which graphs uniquely maximize (resp. minimize) the Mostar index in
some classes of graphs has received much attention. For example, Doslić et al. [7] studied the Mostar index
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Figure 1: The Graphs Ai (i = 0, 1, ..., 6) of size m in Theorem 1.1.

of trees and unicyclic graphs, and showed that path and star are, respectively, the unique tree having the
minimum and maximum Mostar index among all trees with n vertices. Upper or lower bounds of the
Mostar index for some special classes of graphs in terms of some fixed parameters were also presented,
such as trees [3–5, 11, 15], unicyclic graphs [18], bicyclic graphs [21], cacti [14], tricyclic graphs [12],
bipartite and split graphs [20]. For more studies about the Mostar index see [1, 6, 16, 22, 23].

Arockiaraj et al. [2], introduced the edge version of the Mostar index as a quantitative refinement
of the distance non-balancedness, also it can measure the peripherality of every edge and consider the
contributions of all edges into a global measure of peripherality for a given chemical graph. The edge
Mostar index of G is defined as

Moe(G) =
∑

e=uv∈E(G)

ψG(uv),

where ψG(uv) = |mu(e|G) − mv(e|G)|, and mu(e|G) denotes the number of edges of G that have a smaller
distance in G to u than to v, and analogously for mv(e|G).

Up to now, a number of results were obtained on the edge Mostar index of a graph. In [17], the edge
Mostar index of chemical structures and nanostructures was obtained. The extremal values of the edge
Mostar index over trees and unicyclic graphs and the maximum and the second maximum value of the
edge Mostar index among cactus graphs with a given number of vertices were obtained in [19]. In [8], the
minimum values of the edge Mostar index of bicyclic graphs with a fixed size was determined. The edge
Mostar index for several classes of cycle-containing graphs was computed in [10]. The Mostar and edge
Mostar index of polymers was computed in [9]. Recently, Hayat et al. [13] determined the sharp upper
bound for the edge Mostar index on bicyclic graphs with a fixed number of edges, and the graphs that
achieve the bound are completely characterized.

To have a full understanding of the relationship between the edge Mostar index and the structural
properties of graphs, in this paper, we consider the edge Mostar index over tricyclic graphs, and more
precisely, we obtain the sharp upper bound for the edge Mostar index on tricyclic graphs with a fixed
number of edges, and identify the graphs that attain the bound.
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Figure 2: The braces in Gm.

Theorem 1.1. Let G be a tricyclic graph of size m. Then

Moe(G) ≤



12, if m = 7, and equality holds iff G � F1,H1;
23, if m = 8, and equality holds iff G � A3,F1,H1;
36, if m = 9, and equality holds iff G � F1,H1,Ai(i = 2, ..., 6);
53, if m = 10, and equality holds iff G � A2;
72, if m = 11, and equality holds iff G � A1,A2;
m2
−m − 36, if m ≥ 12, and equality holds iff G � A0.

(Where Ai (i = 0, 1, ..., 6) are depicted in Fig. 1.1, F1,H1 are depicted and Fig. 6 and Fig. 7, respectively).

In section 2, we give some definitions and preliminary results. Theorem 1.1 is proved in section 3.

2. Preliminaries

In this section, some basic notations and elementary results are listed, which will be useful in the proof
of main results.

For v ∈ V(G), let NG(v) be the set of vertices that are adjacent to v in G. The degree of v ∈ V(G) ,
denoted by dG(v), is the cardinality of NG(v). A vertex with degree one is called a pendent vertex and an
edge incident to a pendent vertex is called a pendent edge. A graph G with n vertices is a tricyclic graph if
|E(G)| = n + 2. As usual, by Sn, Pn and Cn we denote the star, path and cycle on n vertices, respectively.

Let G1 · G2 be the graph obtained from G1 and G2 by identifying one vertex, say u of the two graphs. If
G1 contains a cycle and u belongs to some cycle, and G2 is a tree, then we call G2 a pendent tree in G1 · G2
associated with u. For each e ∈ E(G1), every path from e to some edges of G2 passes through u. Therefore,
the contribution of G2 to

∑
e∈E(G1) ψ(e) totally depends on the size of G2, that is, changing the structure of

G2 cannot alter the value
∑

e∈E(G1) ψ(e). If a graph H is gotten by removing repeatedly all pendents (If any)
of G. Then we say H is the brace of G. That is to say, H does not contain any pendent vertex. Obviously,
for all connected tricyclic graphs, their braces are shown in Fig. 2. Let Gi

m be the collection whose element
includes αi as its brace for i = 1, . . . , 15. For convenience, letA = ∪15

i=5G
i
m.

In the following, Hayat et al. [13] determined a sharp upper bound for the edge Mostar index on bicyclic
graphs with a fixed number of edges
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Figure 3: The Graphs Bi (i = 0, 1, ..., 4) of size m in Theorem 2.1.

Theorem 2.1. Let G be a bicyclic graph of size m. Then

Moe(G) ≤


4, if m = 5, and equality holds iff G � B3,B4;
m2
− 3m − 6, if 6 ≤ m ≤ 8, and equality holds iff G � B1,B3;

48, if m = 9, and equality holds iff G � B0,B1,B2,B3,B4;
m2
−m − 24, if m ≥ 10, and equality holds iff G � B0.

(Where B0,B1,B2,B3,B4 are depicted in Fig. 3).

Let Sm,r � Sm−r · Cr, where the common vertex of Sm−r and Cr is the center of Sm−r.

Lemma 2.2. [13] Let G1 be a connected graph of size m1 and G2 be a unicyclic graph of size m2. Then
Moe(G1 · G2) ≤Moe(G1 · Sm2,3) for m1 +m2 ≤ 8;
Moe(G1 · G2) ≤Moe(G1 · Sm2,3) =Moe(G1 · Sm2,4) for m1 +m2 = 9;
Moe(G1 · G2) ≤Moe(G1 · Sm2,4) for m1 +m2 ≥ 10;
where the fusing vertex of G1 · Sm2,3 (resp. G1 · Sm2,4) is the center of Sm2,3 (resp. Sm2,4).

By means of Theorem 2.1 and the above result, the following conclusions are obtained.

Lemma 2.3. Let G = G1 ·G2 be a tricyclic graph, where G1 is a bicyclic graph of size m1 and G2 is a unicyclic graph
of size m2. Then

Moe(G) ≤Moe(B3 · Sm2,3) for m1 +m2 = 8;
Moe(G) ≤Moe(B2 ·Sm2,3) =Moe(B3 ·Sm2,3) =Moe(B3 ·Sm2,4) =Moe(B4 ·Sm2,3) =Moe(B4 ·Sm2,4) for m1+m2 = 9;
Moe(G) ≤Moe(B0 · Sm2,4) for m1 +m2 ≥ 12;
where the fusing vertex of any of the above two graphs is the center of Sm2,3 or Sm2,4.

3. Proof of Theorem 1.1

For the proof of Theorem 1.1, we first develop several lemmas.
First, we obtain a sharp upper bound for Moe(G) onA = ∪15

i=5G
i
m.

Lemma 3.1. Let G ∈ A of size m. Then

Moe(G) ≤


23, if m = 8, and equality holds iff G � A3;
36, if m = 9, and equality holds iff G � Ai(i = 2, ..., 6);
53, if m = 10, and equality holds iff G � A2;
72, if m = 11, and equality holds iff G � A1,A2;
m2
−m − 36, if m ≥ 12, and equality holds iff G � A0;

Proof. Suppose G ∈ A, then G contains αi(i = 5, 6, ..., 15) as its brace. Let G1 be a bicyclic graph of size m1
and G2 be a unicyclic graph of size m2 such that G = G1 ·G2. Then, in view of Lemmas 2.2 and 2.3, if m = 8,
we get

Moe(G) = Moe(G1 · G2) ≤Moe(G1 · Sm2,3)
≤ Moe(B3 · Sm2,3) =Moe(A3);
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Figure 4: The Graphs for Lemmas 3.2, 3.4, 3.5, 3.6, 3.8, 3.9 and 3.10.

if m = 9, we get

Moe(G) = Moe(G1 · G2) ≤Moe(B2 · Sm2,3) =Moe(B3 · Sm2,3)
= Moe(B3 · Sm2,4) =Moe(B4 · Sm2,3) =Moe(B4 · Sm2,4)
= Moe(Ai)(i = 2, ..., 6);

if m ≥ 12, we have

Moe(G) = Moe(G1 · G2) ≤Moe(G1 · Sm2,4)
≤ Moe(B0 · Sm2,4) =Moe(A0).

By simple calculation, it is easy to check that, Moe(A0) = m2
− m − 36, Moe(A1) = Moe(A2) = m2

− 2m − 27,
Moe(A3) =Moe(A4) = m2

− 4m − 9, Moe(A5) =Moe(A6) =Moe(A7) = m2
− 3m − 18.

Clearly, Moe(A0) = m2
− m − 36 > Moe(Ai)(i = 3, ..., 7), for m ≥ 10, but A0 contains at least 12 edges.

Therefore, if m = 11, then Moe(A1) = Moe(A2) > Moe(Ai)(i = 3, ..., 7); if m = 10, then Moe(A2) > Ai(i =
3, ..., 7).

In what follows, we determine a sharp upper bound for Moe(G) on ∪4
i=1G

i
m.

For i = 1, ..., 4, αi(a1, a2, . . . ) represents the number of edges in each portion of the brace αi.

Lemma 3.2. Let G ∈ G1
m with brace α1(1, 1, 1, 2, 1, 1). Then

Moe(G) <


Moe(D1) = m2

− 3m − 24, if 7 ≤ m ≤ 10;
Moe(D1) =Moe(D2) = 64, if m = 11;
Moe(D2) = m2

− 2m − 35, if m ≥ 12.

Proof. Suppose that vi (i = 1, ..., 5) be the vertices in α1 of G, as shown in Fig. 4. Let ai be the number of
pendent edges of vi (i = 1, ..., 5). Suppose that a1 + a3 ≥ a2 + a4 ≥ 1 . Let G1 be the graph obtained from G by
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Figure 5: The Graphs D1,D2 of size m in Lemma 3.2.

shifting a2 (resp. a4) pendent edges from v2 (resp. v4) to v1 (resp. v3). We deduce that

Moe(G1) −Moe(G) =
(a1 + a2 − a3 − a4 − a5) − (a1 + a4 − a3 − a5) + (a3 + a4 + a5 + 2 − 3)

− (a2 + a4 + 3 − a3 − a5 − 2) + (a3 + a4 + a5 + 2 − 3) − (a2 + a4 + 3 − a3 − a5 − 2)
+ (a1 + a2 + a3 + a4 − a5) − (a1 + a3 − a4 − a5) + (a3 + a4 + 3 − a5 − 2)
− (a2 + a3 + 3 − a4 − a5 − 2) + (a3 + a4 + 3 − a5 − 2) − (a2 + a3 + 3 − a4 − a5 − 2)
+ (a1 + a2) − (a1 − a2) + (a1 + a2 + a3 + a4 + 3 − a5 − 1) − (a1 + a2 + a3 + 3 − a4 − a5 − 1)
+ (a1 + a2 + 3 − a3 − a4 − a5 − 1) − (a1 + a2 + a4 + 3 − a3 − a5 − 1)
= 2(a2 + a3 + a4 + a5) − 2 > 0.

For a5 > 0, let G2 be the graph obtained from G1 by shifting a5 pendent edges from v5 to v3. We obtain

Moe(G2) −Moe(G1) =
(a1 + a3 + a5) − (a1 + a3 − a5) + (a3 + a5 + 3 − 2) − (a3 + 3 − a5 − 2)

+ (a1 + a3 + a5 + 3 − 1) − (a1 + a3 + 3 − a5 − 1)
= 6a5 > 0.

Let G3 be the graph obtained from G2 by shifting a1 pendent edges from v1 to v3. We obtain

Moe(G3) −Moe(G2) =
(a1 + a3) − (a3 − a1) + (a1 + a3 + 2 − 3) − (a3 + 2 − 3) + (a1 + a3 + 3 − 2) − (a3 + 3 − 2)

+ 0 − a1 + (a1 + a3 + 1 − 3) − (a3 + 1 − a1 − 3)
= 5a1 > 0.

Clearly, G3 � D2, and G2 � D1 for a3 = 0. Observe that Moe(D1) = m2
− 3m− 24, and Moe(D2) = m2

− 2m− 35
.

Lemma 3.3. Let G ∈ G1
m of size m. Then Moe(G) < m2

−m − 36.

Proof. Suppose that G ∈ G1
m, then G has a brace α1(a1, a2, a3, a4, a5, a6) as shown in Fig. 8. We consider the

following three possible cases.
Case 1. α1 have at least three paths with length at least two.
Subcase 1.1. The three paths inclose a cycle.

Assume that the three paths are P(a1),P(a2) and P(a6) by the symmetry of α1. We choose nine edges, two
edges in the path P(a1) such that each one is incident to x or u, two edges in the path P(a2) such that each
one is incident to y or u, two edges in the path P(a6) such that each one is incident to y or z, one edge in the
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path P(a3) incident to z, one edge in the path P(a4) incident to z and one edge in the path P(a5) incident to z.
Let e be one of the nine edges. Then ψ(e) ≤ m− 7. This fact is also true for the remaining eight edges. Thus,

Moe(G) ≤ 9(m − 7) + (m − 9)(m − 1) < m2
−m − 36.

Subcase 1.2. The three paths composed a new path.
Assume that the three paths are P(a1),P(a2) and P(a4) by the symmetry of α1. We choose nine edges, two

edges in the path P(a1) such that each one is incident to x or u, two edges in the path P(a2) such that each
one is incident to y or u, two edges in the path P(a4) such that each one is incident to y or z, one edge in the
path P(a3) incident to z, one edge in the path P(a5) incident to z and one edge in the path P(a6) incident to x.
Thus,

Moe(G) ≤ 2(m − 6) + 4(m − 7) + 2(m − 8) + (m − 9) + (m − 9)(m − 1) < m2
−m − 36.

Subcase 1.3. The three paths share a common vertex.
Assume that the three paths are P(a1),P(a2) and P(a3) by the symmetry of α1. We choose nine edges, two

edges in the path P(a1) such that each one is incident to x or u, two edges in the path P(a2) such that each
one is incident to y or u, two edges in the path P(a3) such that each one is incident to u or z, one edge in the
path P(a4) incident to y, one edge in the path P(a5) incident to z and one edge in the path P(a6) incident to
x. We have,

Moe(G) ≤ 3(m − 7) + 3(m − 8) + 3(m − 9) + (m − 9)(m − 1) < m2
−m − 36.

Case 2. α1 have just two paths with length at least two.
Subcase 2.1. The two paths belong to the same cycle at α1.

Assume that the two paths are P(a1) and P(a2) by the symmetry of α1. We choose eight edges, two edges
in the path P(a1) such that each one is incident to x or u, two edges in the path P(a2) such that each one is
incident to y or u, one edge in the path P(a3) incident to u, one edge in the path P(a4) incident to y, one edge
in the path P(a5) incident to x and one edge in the path P(a6) incident to x. We deduce that,

Moe(G) ≤ 4(m − 6) + 3(m − 7) + (m − 8) + (m − 8)(m − 1) < m2
−m − 36.

Subcase 2.2. The two paths belong to the two different cycles at α1.
We choose eight edges in a similar way, as in Subcase 2.1. We obtain

Moe(G) ≤ 4(m − 5) + 4(m − 8) + (m − 8)(m − 1) < m2
−m − 36.

Case 3. α1 has exactly one path with length at least two.
Assume that the path is P(a4) with a4 ≥ 2. If a4 = 2, then by Lemma 3.2, Moe(G) < m2

−m − 36. If a4 ≥ 3,
then similarly choose eight edges as in Subcase 2.1. We obtain

Moe(G) ≤ 2(m − 5) + 6(m − 8) + (m − 8)(m − 1) < m2
−m − 36.

Lemma 3.4. Let G ∈ G2
m with brace α2(2, 1, 1, 2, 1). Then

Moe(G) <


Moe(F1) = m2

− 4m − 9, if 7 ≤ m ≤ 16;
Moe(F1) =Moe(F2) = 212, if m = 17;
Moe(F2) = m2

− 3m − 26, if m ≥ 18.

Proof. Suppose that vi (i = 1, ..., 5) be the vertices in α2(2, 1, 1, 2, 1) of G, as shown in Fig. 4. Let ai be the
number of pendent edges of vi (i = 1, ..., 5). Suppose a2 + a4 ≥ a3 + a5 ≥ 1. For a1 < a2 + 3a3 + a5 − 3, let G1
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Figure 6: The Graphs F1,F2,F3,F4 of size m in Lemmas 3.4, 3.5 and 3.6.

be the graph obtained from G by shifting a3 (resp. a5) pendent edges from v3 (resp. v5) to v2 (resp. v4). We
deduce that

Moe(G1) −Moe(G) =
(a2 + a3 + 1 − a1 − 4) − (a1 + a3 + a5 + 4 − a2 − 1) + (1 + a2 + a3 − 3 − a4 − a5)

− (a2 + 1 − a4 − a5 − 3) + (a1 + 3 − a4 − a5 − 2) − (a1 + a3 + 3 − a4 − 2)
+ (a2 + a3 + a4 + a5 + 3 − 3) − (a2 + a4 + 3 − a5 − a3 − 3) + (a1 + a2 + a3 + a4 + a5 + 4 − 1)
− (a1 + a2 + a4 + 4 − a3 − 1) + (a4 + a5 + 3 − 1) − (a4 + a5 + 3 − 1 − a3)
+ (a1 + a2 + a3 + 3 − 2) − (a1 + a2 + a3 − a5 − 2)
= 2a2 + 6a3 + 2a5 − 2a1 − 6 > 0.

Let G2 be the graph obtained from G1 by shifting a4 pendent edges from v4 to v1. We obtain

Moe(G2) −Moe(G1) =
(a1 + a4 + 4 − a2 − 1) − (a1 + 4 − a2 − 1) + (a1 + a4 + 3 − 2) − (a1 + 3 − a4 − 2)

+ (a1 + a2 + a4 + 3 − 2) − (a1 + a2 + 3 − 2) + (a2 + 1 − 3) − (a2 + 1 − 3 − a4) + (a2 + 3 − 3)
− (a2 + a4 + 3 − 3) + (3 − 1) − (a4 + 3 − 1)
= 3a4 > 0.

Let G3 be the graph obtained from G2 by shifting a2 pendent edges from v2 to v1. We obtain

Moe(G3) −Moe(G2) =
(a1 + a2 + 4 − 1) − (a1 + 4 − a2 − 1) + (a1 + a2 + 3 − 2) − (a1 + 3 − 2) + (1 − 3)

− (a2 + 1 − 3) + 0 − (a2 + 3 − 3)
= 2a2 > 0.

For a1 > 6 − 2a2, let G4 be the graph obtained from G3 by shifting a1 pendent edges from v1 to v2. We have

Moe(G3) −Moe(G2) =
(a1 + a2 + 1 − 4) − (a1 + 4 − a2 − 1) + (3 − 2) − (a1 + 3 − 2) + (a1 + a2 + 1 − 3)

− (a2 + 1 − 3) + (a1 + a2 + 3 − 3) − (a2 + 3 − 3)
= a1 + 2a2 − 6 > 0.

Clearly, G3 � F1 and G4 � F2. By simple calculation, we have Moe(F1) = m2
− 4m − 9, and Moe(F2) =

m2
− 3m − 26.

Lemma 3.5. Let G ∈ G2
m with brace α2(2, 1, 1, 2, 2). Then Moe(G) < Moe(F3) = m2

− 3m − 20.
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Proof. Suppose that vi (i = 1, ..., 6) be the vertices in α2(2, 1, 1, 2, 2) of G, as shown in Fig. 4. Let ai be the
number of pendent edges of vi (i = 1, ..., 6). For a6 > 0, let G1 be the graph obtained from G by shifting a6
pendent edges from v6 to v1. We obtain

Moe(G1) −Moe(G) =
(a1 + a3 + a5 + a6 + 5 − a2 − 1) − (a1 + a3 + a5 + 5 − a2 − 1)

+ (a1 + a2 + a4 + a6 + 5 − a3 − 1) − (a1 + a2 + a4 + 5 − a3 − 3)
+ (a1 + a3 + a5 + a6 + 4 − a4 − 2) − (a1 + a3 + a5 + 4 − a4 − a6 − 2)
+ (a1 + a2 + a4 + a6 + 4 − a5 − 2) − (a1 + a2 + a4 + 4 − a5 − a6 − 2)
+ (a1 + a2 + a4 + a6 + 4 − a5 − 2) − (a1 + a2 + a4 + 4 − a5 − a6 − 2)
+ (a1 + a3 + a5 + 4 − a4 − 2) − (a1 + a3 + a5 + 4 − a4 − a6 − 2)
+ (a2 + 1 − a4 − 3) − (a2 + 1 − a4 − a6 − 3) + (a3 + 1 − a5 − 3) − (a3 + 1 − a5 − a6 − 3)
= 11a6 > 0.

For a2 + a3 > a1, let G2 be the graph obtained from G1 by shifting a3 (resp. a5) pendent edges from v3 (resp.
v5) to v2 (resp. v4). We deduce that

Moe(G2) −Moe(G1) =
(a2 + a3 + 1 − a1 − 5) − (a1 + a3 + a5 + 5 − a2 − 1) + (a1 + a2 + a3 + a4 + a5 + 5 − 1)

− (a1 + a2 + a4 + 5 − a3 − 1) + (a1 + 4 − a4 − a5 − 2) − (a1 + a3 + a5 + 4 − a4 − 2)
+ (a1 + a2 + a3 + a4 + a5 + 4 − 2) − (a1 + a2 + a4 + 4 − a5 − 2) + (a2 + a3 + 1 − a4 − a5 − 3)
− (a2 + 1 − a4 − 3) + (3 − 1) − (a3 + 1 − a5 − 3) + (a1 + a2 + a3 + a4 + a5 − 2)
− (a1 + a2 + a4 + 4 − a5 − 2) + (a1 + 4 − a4 − a5 − 2) − (a1 + a3 + a5 + 4 − a4 − 2)
= 2a2 + 2a3 − 2a1 > 0.

For a2 + a4 ≥ 1, let G3 be the graph obtained from G2 by shifting a2 (resp. a4) pendent edges from v2 (resp.
v4) to v1 (resp. v4). We have

Moe(G3) −Moe(G2) =
(a1 + a2 + a4 + 5 − 1) − (a1 + 5 − a2 − 1) + (a1 + a2 + a4 + 5 − 1) − (a1 + 5 − a2 − 1)

+ (a1 + a2 + a4 + 4 − 2) − (a1 + a3 + a5 + 4 − a4 − 2) + (1 − 3) − (a2 + 1 − a4 − 3)
+ (a1 + a2 + a4 + 4 − 2) − (a1 + 4 − a4 − 2)
= 5a2 + 7a4 > 0.

Clearly, G3 � F3, and Moe(F3) = m2
− 3m − 20.

Lemma 3.6. Let G ∈ G2
m with brace α2(3, 1, 1, 2, 1). Then Moe(G) < Moe(F4) = m2

− 2m − 33.

Proof. Suppose that vi (i = 1, ..., 6) be the vertices in α2(3, 1, 1, 2, 1) of G, as shown in Fig. 4. Let ai be the
number of pendent edges of vi (i = 1, ..., 6). For a6 > 0, let G1 be the graph obtained from G by shifting a5
(resp. a6) pendent edges from v5 (resp. v6) to v1. We obtain

Moe(G1) −Moe(G) =
(a1 + a3 + a5 + a6 + 3 − a2 − 2) − (a1 + a3 + a5 + 3 − a2 − a6 − 2)

+ (a1 + a2 + a3 + a4 + a5 + a6 + 5 − 1) − (a1 + a2 + a3 + a4 + 5 − a5 − a6 − 1)
+ (a1 + a2 + a3 + a4 + a5 + a6 + 5 − 1) − (a1 + a2 + a3 + a4 + 5 − a5 − a6 − 1)
+ (a1 + a3 + a5 + a6 + 3 − a2 − 2) − (a1 + a3 + a5 + 3 − a2 − a6 − 2)
+ (a2 + a4 + 3 − a3 − 1) − (a2 + a4 + a6 + 3 − a3 − 1) + (a3 + a4 + 2 − a2 − 3)
− (a2 + a6 + 3 − a3 − a4 − 2) + (a1 + a5 + a6 + 4 − a2 − 2) − (a1 + a5 + 4 − a4 − 2)
= 2a3 + 4a5 + 7a6 − 2a2 − 2 > 0.
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Let G2 be the graph obtained from G1 by shifting a3 (resp. a4) pendent edges from v3 (resp. v4) to v1 (resp.
v2). We deduce that

Moe(G2) −Moe(G1) =
(a1 + a2 + a3 + a4 + 2 − 3) − (a1 + a3 + 3 − a2 − 2) + (a1 + a2 + a3 + a4 + 2 − 3)

− (a1 + a3 + 3 − a2 − 2) + (a1 + a2 + a3 + a4 + 5 − 1) − (a1 + a2 + 5 − a3 − 1)
+ (a1 + a2 + a3 + a4 + 3 − 1) − (a2 + a4 + 3 − a3 − 1) + (a1 + a2 + a3 + a4 + 3 − 2)
− (a2 + 3 − a3 − a4 − 2)
= a1 + 3a2 + 6a3 + 5a4 > 0.

Let G3 be the graph obtained from G2 by shifting a1 pendent edges from v1 to v2. We obtain

Moe(G3) −Moe(G2) =
(a1 + a2 + 2 − 3) − (a1 + 3 − a2 − 2) + (a1 + a2 + 2 − 3) − (a2 + 2 − a1 − 3)

+ (a1 + a2 + 3 − 1) − (a2 + 3 − 1) + (a1 + a2 + 3 − 2) − (a2 + 3 − 2) + (4 − 2) − (a1 + 4 − 2)
= 3a1 + 2a2 − 2 > 0.

Thus, Moe(G) < Moe(G1) < Moe(G2) < Moe(G3). Clearly, G3 � F4, and Moe(F4) = m2
− 2m − 33.

Lemma 3.7. Let G ∈ G2
m of size m. Then Moe(G) < m2

−m − 36 for m ≥ 9, and Moe(G) ≤Moe(F1) for m ≤ 9.

Proof. Suppose that G ∈ G2
m, then G has a brace α2(a1, a2, a3, a4, a5) as shown in Fig. 8. Assume that a4, a5 ≥ 2.

We consider the following three possible cases.
Case 1. a4, a5 ≥ 3.
Subcase 1.1. a1 = a2 = a3 = 1.

We choose nine edges, three edges in the path P(a4) such that two are incident to x or y and one is in the
middle of P(a4), three edges in the path P(a5) such that two are incident to x or z and one is in the middle of
P(a5), one edge in the path P(a2) incident to x, one edge in the path P(a3) incident to x and one edge in the
path P(a1) incident to y. We have

Moe(G) ≤ 4(m − 4) + 4(m − 7) + (m − 9) + (m − 9)(m − 1) < m2
−m − 36.

Subcase 1.2. At least one of a1, a2, a3 is greater than 1.
If a2, a3 ≥ 2, then we choose 10 edges, three edges in the path P(a4) such that two are incident to x or y

and one is in the middle of P(a4), three edges in the path P(a5) such that two are incident to x or z and one
is in the middle of P(a5), two edges in the path P(a2) incident to x or y, one edge in the path P(a3) incident
to x and one edge in the path P(a1) incident to y. We have

Moe(G) ≤ 2(m − 4) + (m − 5) + 2(m − 6) + 2(m − 8) + 3(m − 9) + (m − 10)(m − 1) < m2
−m − 36.

If a1 ≥ 2, then we choose 10 edges, three edges in the path P(a4) such that two are incident to x or y and
one is in the middle of P(a4), three edges in the path P(a5) such that two are incident to x or z and one is in
the middle of P(a5), two edges in the path P(a2) incident to x or y, one edge in the path P(a3) incident to x
and two edges in the path P(a1) incident to y or z. We obtain

Moe(G) ≤ 4(m − 4) + 6(m − 7) + (m − 10)(m − 1) < m2
−m − 36.

Case 2. a4 ≥ 3, a5 = 2.
Subcase 2.1.a4 ≥ 4, a5 = 2, and a1 = a2 = a3 = 1.

We choose nine edges, four edges in the path P(a4) such that two are incident to x or y and two are in
the middle of P(a4), two edges in the path P(a5) such that one is incident to x and one is in the middle of
P(a5), one edge in the path P(a2) incident to x, one edge in the path P(a3) incident to x and one edge in the
path P(a1) incident to y. We have

Moe(G) ≤ (m − 4) + 2(m − 5) + (m − 6) + 2(m − 7) + 3(m − 8) + (m − 9)(m − 1) < m2
−m − 36.
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H1 H2 H4H3

Figure 7: The Graphs H1,H2,H3,H4 of size m in Lemmas 3.8, 3.9 and 3.10.

Subcase 2.2.a4 = 3, a5 = 2, and a1 = a2 = a3 = 1.
The Subcase follows from Lemma 3.6.

Subcase 2.3.a4 ≥ 3, a5 = 2, and at least one of a1, a2, a3 is greater than 1.
The proof is similar to the Subcase 2.1.

Case 3. a4 = a5 = 2.
Subcase 3.1. At least one of a1, a2, a3 is greater than 1.

If a2, a3 ≥ 2, then we choose eight edges, three edges in the path P(a4) such that two are incident to x or
y and one is in the middle of P(a4), two edges in the path P(a5) such that one is incident to x and other is in
the middle of P(a5), two edges in the path P(a2) incident to x or y, one edge in the path P(a3) incident to x
and one edge in the path P(a1) incident to y. We have

Moe(G) ≤ 4(m − 5) + 4(m − 7) + (m − 8)(m − 1) < m2
−m − 36.

If a1 ≥ 3, then we choose nine edges, two edges in the path P(a4) such that one is incident to x and other
is in the middle of P(a4), two edges in the path P(a5) such that one is incident to x and the other is in the
middle of P(a5), one edge in the path P(a2) incident to x, one edge in the path P(a3) incident to x and three
edges in the path P(a1) such that two are incident to y or z and one is in the middle of P(a1). We obtain

Moe(G) ≤ 2(m − 5) + 2(m − 6) + 4(m − 7) + (m − 9) + (m − 9)(m − 1) < m2
−m − 36.

If a1 = 2, then by Lemma 3.5, Moe(G) ≤ m2
− 3m − 20 < m2

−m − 36.
Subcase 3.2. a1 = a2 = a3 = 1.

By Lemma 3.4, we have Moe(G) < m2
−m − 36 for m ≥ 9, and Moe(G) ≤Moe(F1) for m ≤ 9.

Lemma 3.8. Let G ∈ G3
m with brace α3(1, 2, 2, 2). Then

Moe(G) <


Moe(H1) = m2

− 4m − 9, if 7 ≤ m ≤ 10;
Moe(H1) =Moe(H2) = 68, if m = 11;
Moe(H2) = m2

− 2m − 31, if m ≥ 12.

Proof. Suppose that vi (i = 1, ..., 5) be the vertices in α3(1, 2, 2, 2) of G with dG(v1) = dG(v2) = 4 and dG(v3) =
dG(v4) = dG(v5) = 2, as shown in Fig. 4. Let ai be the number of pendent edges of vi (i = 1, ..., 5). Suppose
that a3 ≥ a4 ≥ a5. For a4 + a5 > a1 + a2 + 8, let G1 be the graph obtained from G by shifting a4 (resp. a5)
pendent edges from v4 (resp. v5) to v3. We deduce that

Moe(G1) −Moe(G) =
(a3 + a4 + a5 + 1 − a1 − 3) − (a1 + a4 + a5 + 3 − a3 − 1) + (a3 + a4 + a5 + 1 − a2 − 3)

− (a1 + a4 + a5 + 3 − a3 − 1) + (a1 + a3 + a4 + a5 + 3 − 1) − (a1 + a3 + a5 + 3 − a4 − 1)
+ (a2 + a3 + a4 + a5 + 3 − 1) − (a2 + a3 + a5 + 3 − a4 − 1) + (a1 + a3 + a4 + a5 + 3 − 1)
− (a1 + a3 + a4 + 3 − a5 − 1) + (a1 + a3 + a4 + a5 + 3 − 1) − (a2 + a3 + a4 + 3 − a5 − 1)
= 4(a3 + a4 + a5) − 2(a1 + a2) − 8 > 0.
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For a2 + a3 > 1, let G2 be the graph obtained from G1 by shifting a2 ) pendent edges from v2 to v1. We have

Moe(G2) −Moe(G1) =
(a1 + a2 + 3 − a3 − 1) − (a1 + 3 − a3 − 1) + (a3 + 1 − 3) − (a2 + 3 − a3 − 1)

+ (a1 + a2 + 3 − 3) − (a1 + 3 − a2 − 3) + (a1 + a2 + a3 + 3 − 1) − (a1 + a3 + 3 − 1)
+ (a3 + 3 − 1) − (a2 + a3 + 3 − 1) + (a1 + a2 + a3 + 3 − 1) − (a1 + a3 + 3 − 1)
+ (a3 + 3 − 1) − (a2 + a3 + 3 − 1)
= 2(a2 + a3) − 4 > 0.

Clearly, G2 � H2 for a1 = 0, a3 > 0, and G2 � H1 for a3 = 0, a1 > 0. For a1+a3 > 2, let G3 be the graph obtained
from G2 by shifting a1 pendent edges from v1 to v3. We have

Moe(G2) −Moe(G1) =
(a1 + a3 + 1 − 3) − (a1 + 3 − a3 − 1) + (a1 + a3 + 1 − 3) − (a3 + 1 − 3) + (3 − 3)

− (a1 + 3 − 3) + (a1 + a3 + 3 − 1) − (a3 + 3 − 1) + (a1 + a3 + 3 − 1) − (a3 + 3 − 1)
= 2(a1 + a3) − 4 > 0.

Thus, Moe(G) < Moe(G1) < Moe(G2) < Moe(G3). Clearly, G3 � H2, and by simple calculation, we deduce that
Moe(H2) = m2

− 2m − 31, Moe(H1) = m2
− 4m − 9.

Lemma 3.9. Let G ∈ G3
m with brace α3(2, 2, 2, 2). Then Moe(G) < Moe(H3) = m2

−m − 48.

Proof. Suppose that vi (i = 1, ..., 6) be the six vertices in α3(2, 2, 2, 2) of G with dG(v1) = dG(v2) = 4 and
dG(v3) = dG(v4) = dG(v5) = dG(v6) = 2, as shown in Fig. 4. Let ai be the number of pendent edges of vi
(i = 1, ..., 6). Suppose that a3 ≥ a4 ≥ a5 ≥ a6 > 0. Let G1 be the graph obtained from G by shifting ai ( i ≥ 4)
pendent edges from vi ( i ≥ 4) to v3. We obtain

Moe(G1) −Moe(G) =
(a2 + a3 + a4 + a5 + a6 + 1 − a1 − 3) − (a1 + a4 + a5 + a6 + 3 − a2 − a3 − 1)

+ (a1 + a3 + a4 + a5 + a6 + 1 − a2 − 3) − (a2 + a4 + a5 + a6 + 3 − a1 − a3 − 1)
+ (a1 + a3 + a4 + a5 + a6 + 3 − a2 − 1) − (a1 + a3 + a5 + a6 + 3 − a4 − a2 − 1)
+ (a2 + a3 + a4 + a5 + a6 + 3 − a1 − 1) − (a2 + a3 + a5 + a6 + 3 − a1 − a4 − 1)
+ (a1 + a3 + a4 + a5 + a6 + 3 − a2 − 1) − (a1 + a3 + a4 + a6 + 3 − a2 − a5 − 1)
+ (a2 + a3 + a4 + a5 + a6 + 3 − a1 − 1) − (a2 + a3 + a4 + a6 + 3 − a1 − a5 − 1)
+ (a1 + a3 + a4 + a5 + a6 + 3 − a2 − 1) − (a1 + a3 + a4 + a5 + 3 − a2 − a6 − 1)
+ (a2 + a3 + a4 + a5 + a6 + 3 − a1 − 1) − (a2 + a3 + a4 + a5 + 3 − a1 − a6 − 1)
= 4(a3 + a4 + a5 + a6) − 8 > 0.

For a1 + a2 > 0, let G2 be the graph obtained from G1 by shifting a1 (resp. a2) pendent edges from v1 (resp.
v2) to v3. We have

Moe(G2) −Moe(G1) =
(a1 + a2 + a3 + 1 − 3) − (a2 + a3 + 1 − a1 − 1) + (a1 + a2 + a3 + 1 − 3)

− (a2 + 3 − a1 − a3 − 1) + (a1 + a2 + a3 + 3 − 1) − (a1 + a3 + 3 − a2 − 1)
+ (a1 + a2 + a3 + 3 − 1) − (a2 + a3 + 3 − a1 − 1) + (a1 + a2 + a3 + 3 − 1)
− (a1 + a3 + 3 − a2 − 1) + (a1 + a2 + a3 + 3 − 1) − (a2 + a3 + 3 − a1 − 1)
+ (a1 + a2 + a3 + 3 − 1) − (a1 + a3 + 3 − a2 − 1) + (a1 + a2 + a3 + 3 − 1)
− (a2 + a3 + 3 − a1 − 1)
= 10a1 + 6a2 + 2a3 − 8 > 0.
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Figure 8: The Graphs for Lemmas 3.3, 3.7, 3.11 and 3.12.

Thus, Moe(G) < Moe(G1) < Moe(G2). Clearly, G2 � H3, and by simple calculation, we obtain Moe(H3) =
m2
−m − 48.

Lemma 3.10. Let G ∈ G3
m with brace α3(1, 2, 2, 3). Then Moe(G) < Moe(H4) = m2

− 3m − 24.

Proof. Suppose that vi (i = 1, ..., 6) be the six vertices in α3(1, 2, 2, 3) of G with dG(v1) = dG(v2) = 4 and
dG(v3) = dG(v4) = dG(v5) = dG(v6) = 2, as shown in Fig. 4. Let ai be the number of pendent edges of vi
(i = 1, ..., 6). Assume that a3 ≥ a2, and a4 + a5 + a6 > 1. Let G1 be the graph obtained from G by shifting ai (
i ≥ 4) pendent edges from vi ( i ≥ 4) to v3. We get

Moe(G1) −Moe(G) =
(a1 + 4 − a3 − a4 − a5 + −a6 − 1) − (a1 + a4 + a5 + 4 − a3 − 1)

+ (a3 + a4 + a5 + a6 + 1 − a2 − 4) − (a2 + a4 + a6 + 4 − a3 − 1)
+ (a1 + a3 + a4 + a5 + a6 + 4 − 1) − (a1 + a3 + a5 + 4 − a4 − 1)
+ (a2 + a3 + a4 + a5 + a6 + 4 − 1) − (a2 + a3 + a6 + 4 − a4 − 1)
+ (a1 + a2 + a3 + a4 + a5 + a6 + 5 − 1) − (a1 + a2 + a2 + a4 + 5 − a5 − a6 − 1)
+ (a1 + a2 + a3 + a4 + a5 + a6 + 5 − 1) − (a1 + a2 + a2 + a4 + 5 − a5 − a6 − 1)
+ (a1 + 3 − a2 − 3) − (a1 + a5 + 3 − a2 − a6 − 3) + (a1 + 3 − a2 − 3)
− (a1 + a5 + 3 − a2 − a6 − 3)
= 2(a3 + a4 + a5) + 6a6 − 2a2 − 12 > 0.

For a1 + a2 > 0, let G2 be the graph obtained from G1 by shifting a1 (resp. a2) pendent edges from v1 (resp.
v2) to v3. We have

Moe(G2) −Moe(G1) =
(a1 + a2 + a3 + 1 − 4) − (a3 + 1 − a1 − 4) + (a1 + a2 + a3 + 1 − 4) − (a3 + 1 − a2 − 4)

+ (a1 + a2 + a3 + 4 − 1) − (a1 + a3 + 4 − 1) + (a1 + a2 + a3 + 4 − 1) − (a2 + a3 + 4 − 1)
+ (3 − 3) − (a1 + 3 − a2 − 3) + (3 − 3) − (a1 + 3 − a2 − 3)

= 2a1 + 6a2 > 0.

Thus, Moe(G) < Moe(G1) < Moe(G2). Clearly, G2 � H4, and by simple calculation, we get Moe(H4) =
m2
− 3m − 248.

Lemma 3.11. Let G ∈ G3
m of size m. Then Moe(G) < m2

−m − 36 for m ≥ 9, and Moe(G) ≤Moe(H1) for m ≤ 9.
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Proof. Suppose that G ∈ G3
m, then G has a brace α2(a1, a2, a3, a4) as shown in Fig. 8. Assume that 1 ≤ a1 ≤

a2 ≤ a3 ≤ a4. We proceed with the following three possible cases.
Case 1. 3 ≤ a1 ≤ a2 ≤ a3 ≤ a4.

We choose twelve edges, eight edges in the paths P(ai) (i = 1, 2, 3, 4) such that each one is incident to x
or y, four edges in the middle of P(ai) (i = 1, 2, 3, 4). We deduce that

Moe(G) ≤ 8(m − 8) + 4(m − 12) + (m − 12)(m − 1) < m2
−m − 36.

Case 2. a1 = 2.
Subcase 2.1. 3 ≤ a2 ≤ a3 ≤ a4.

We choose eleven edges, eight edges in the paths P(ai) (i = 1, 2, 3, 4) such that each one is incident to x or
y, three edges in the middle of P(ai) (i = 2, 3, 4). We deduce that

Moe(G) ≤ 6(m − 7) + 2(m − 9) + 3(m − 11) + (m − 11)(m − 1) < m2
−m − 36.

Subcase 2.2. a2 = a3 = a4 = 2.
The Subcase follows from Lemma 3.9.

Case 3. a1 = 1.
Subcase 3.1. 3 ≤ a2 ≤ a3 ≤ a4.

We choose ten edges, six edges in the paths P(ai) (i = 2, 3, 4) such that each one is incident to x or y, three
edges in the middle of P(ai) (i = 2, 3, 4), and one edge in P(a1) incident to x. It follows that

Moe(G) ≤ 6(m − 4) + 4(m − 10) + (m − 10)(m − 1) < m2
−m − 36.

Subcase 3.2. a2 = 2, 3 ≤ a3 ≤ a4.
The proof is similar to the Subcase 3.1.

Subcase 3.3. a2 = a3 = 2, 3 ≤ a4.
If a4 = 3, then it follows from Lemma 3.10. If a4 ≥ 4, then we choose nine edges, four edges in the path

P(a4) such that two are incident to x or y and the other two are in the middle of P(a4), two edges in the path
P(a3) (resp. P(a2)) such that one is incident to x and the other is in the middle of P(a3) (resp. P(a2)) and one
edge in P(a1) incident to x. We have

Moe(G) ≤ 2(m − 5) + 2(m − 7) + 4(m − 6) + (m − 9) + (m − 9)(m − 1) < m2
−m − 36.

Subcase 3.4. a2 = a3 = a4 = 2.
By Lemma 3.8, Moe(G) < m2

−m − 36 for m ≥ 9, and Moe(G) ≤Moe(H1) for m ≤ 9.

Lemma 3.12. Let G ∈ G4
m of size m. Then Moe(G) < m2

−m − 36.

Proof. Suppose that G ∈ G4
m, then G has a brace α4(a1, a2, a3, a4, a5, a6) as shown in Fig. 8. We choose eight

edges, two edges in the path P(a5) such that each is incident to w or y, two edges in the path P(a6) such that
each is incident to z or x, the four edges yz, yw,wx, zx. We obtain

Moe(G) ≤ 4(m − 5) + 4(m − 8) + (m − 8)(m − 1) < m2
−m − 36.

The proof of Theorem 1.1 follows from Lemmas 3.1, 3.3, 3.7, 3.11 and 3.12.
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