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A t-intersecting Hilton-Milner theorem for vector spaces for n = 2k + 1
and g >3
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Abstract. Let V be an n-dimensional vector space over GF(g) and [1‘: ] denote the family of all k-dimensional
subspaces of V. Suppose that ¥ C [/] denotes a non-trivial t-intersecting family with ¢t > 2. Cao et al. [2]
determined the structures of ¥ with maximum size for large n. Wang et al. [12] improved the applicable

range to n > 2k + 2. In this paper, we determine the structures of ¥ with maximum size for n = 2k + 1 and
g=3.

1. Introduction

The study of intersecting family is an important topic in combinatorics and has a long research history
ever since Erdés, Ko, and Rado [4] determined the maximum-sized intersecting family of subset, which is
usually called EKR theorem. The extremal structures of families with the maximum sizes were characterized
as the family of all subsets containing a fixed element x of an n-element set X if n > 2k + 1.

Let V be an n-dimensional vector space over GF(gq) and [Z]q denotes the family of k-dimensional sub-

spaces. For any complex number x and nonnegative integer k, the generalized g-binomial coefficient is

defined by [;(‘]q = 14 Z:j Simple counting can prove that the size of [Z]q is [}] . Without causing

kg
confusion, the subscript g will be omitted in the following text.
The g-analogue of questions about sets and subsets are questions about vector spaces and subspaces.

The study on the EKR theorem for vector spaces can be seen in [3, 5, 8, 10]. In [2, 12], for some k-space U
and t-space E such that dim(U () E) = ¢ — 1 the authors defined

THMz{WE[Z}:ESWanddim(WO U)Zt}U

E+U
vl
For k > t + 2, the authors also defined

\%4 \%4
Fags2) = {F € [k] :dim(ANF) >t +1 for some fixed A € [t N 2]}

2020 Mathematics Subject Classification. Primary 05D05; Secondary 05A30.

Keywords. Hilton-Milner theorem, t-intersecting, vector spaces.

Received: 21 February 2024; Revised: 05 April 2024; Accepted: 23 April 2024

Communicated by Paola Bonacini

Research supported by the National Natural Science Foundation of China (Grant No. 11971319, Grant No. 12271234), Young
backbone teachers funding plan of Henan Province (Grant No. 2020GG]S194).

* Corresponding author: Jizhen Yang

Email addresses: yunpengwang1981@163. com (Yunpeng Wang), yangjizhe116@163. com (Jizhen Yang)



Y. Wang, J. Yang / Filomat 38:28 (2024), 9997-10011 9998

The EKR structure is commonly referred to as a trivial structure in some literature. Relatively speaking,
a family is called t-intersecting and non-trivial if the intersection of any two elements of the family is not
less than t and the intersection of all elements is less than t. For vector spaces, it can be expressed as a family
F is t-intersecting and non-trivial if dim(Fy N Fy) > ¢t for any Fy,F, € ¥ and dim((ges F) < ¢t — 1. Hilton
and Milner [7] determined the maximum size of an intersecting non-trivial family of sets and characterized
extremal structures of the families with the maximum sizes. Recently, some studies have extended the
Hilton-Milner theorem to vector spaces. Blokhuis et al. [1] generalized the Hilton-Milner theorem for t = 1
and n > 2k + 1+ 62,4. J. Wang et al. [11] shows the proof of the case n > 2k + 1 and t = 1 as a corollary of a
Kruskal-Katona-type theorem. M. Cao et al. [2] generalizes the theorem to t-intersection and proved that
Frum, Fa¢+2) are the maximal non-trivial family with n > 2k + t + min{4, 2t}. Y. Wang et al. [12] improve this
parameter to n > 2k + 2 and ¢t > 2. The rest problem of the t-intersecting Hilton-Milner theorem for vector
spaces is the case n =2k + 1 and t > 2.

Due to some cases of t-intersecting Hilton-Milner theorem for n = 2k + 1, > 2 and g > 3 that cannot
be solved using the methods mentioned in the article above, this paper solves these problems by counting
basis vectors. Our main result is as follows:

Theorem 1.1. Suppose that n = 2k + 1,9 > 3,t > 2 and k > t + 2. For any t-intersecting and non-trivial family
F C[[] there holds |F| < |Fuml, if k > 2t + 2; |F| < [Fago), if t + 2 < k < 2t + 1. Equality holds if and only if

(@) F =Fnum ifk =2t +2;
(i) F = Faps), ift+2<k<2t+1

In the next section, we introduce commonly used symbols. Some preliminary results will be given in
Section 3. The proof of the main result is in Section 4.

2. Notation

Let A, B,E,L < V. We have the following notation.

e A + B denote the sum of A and B. In particular, if A N B = 0, we write their sum as A @ B, the direct
sum of A and B.

e Let ¥ be a t-intersecting family of k-spaces and L be an £-space t-intersecting each F € ¥ with minimum
dimension and let

Li={H<V:dimHNL)=t,dimHNF) >t forany F € F},
Fo={FeF :dim(FNL)=t},

F1={FeF :dim(FNL)>t+1},

FGtlLHL ={Fe¥ :He Lyand dim(FNLNH) =1i}.

Then |F| = Y./, IF G, t, €,k H, L) = |[Fol + |Fl.

e Let i, A be nonnegative integers and t, £, k be positive integers. Define

(=2t+i+A
) -t -t+A||k—-t+1 n—==0—=Al i

and S(a, €, k,A) = ):f:u f@, €,k A). Let H € L; such that dim(H) = ¢ + A. If H is the vector space with
minimum dimension in Ly, then f(i, £, k, A) is an upper bound of the number of vector spaces that t-intersect
each F € ¥ and exactly i-intersect H N L. Therefore, S(a, ¢, k, A) is an upper bound of the number of vector
spaces that t-intersect each F € ¥ and a-intersect H N L. In particular, S(max{0,2t — £}, ¢, k, A) is an upper
bound of || under this assumption.

e For any family, the covering number 7,(¥) is the minimum dimension of a vector space that t-intersects
all elements of F.

e For any family ¥ C [I,:], define Fpy={Fe ¥ : M < F).
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3. Lemmas

In this paper, we let g be a prime power and 6;; denote the Kronecker delta. To prove Theorem 1.1, we
apply the following lemmas.

Lemma 3.1. Let a, b, c,d be positive integers such that b <aandd < c < a.
(i) Ifq =3, then

q(a—b)b < [Z] < D100 qb(u—b). )
(ii) Ifd < min{b,a — b}, then

Al c-dyd < |C| (a-b)p
Lk ZLP : 2)

(iii) Ifd<a—-band b > 2, then

g' -1 g+1 1
TR b(a—b)—d+3 < b(a—b)—d+1 " (3)
@G- " q (g-1)q

Proof. From [9, Lemma 2.1], it can be seen that g < []] < 24" for g > 3. Observe that [[] = 1.
Therefore, we obtain (i). The inequality of (ii) is due to [12, Lemma 2.3].
Now we prove (iii). According to the definition of g-binomial coefficients, it follows that

[a] (qa—b+1 _ 1)(qa—b+2 ~1) b qa—b+i -1 (qa—b+1 _ 1)(qa—b+2 _ 1)q(u—b)(b—2)
= : > 4)
| Ty v § S @-D@-1) (
Recall that d < a — b. Since (g7 — 1)g%*~2*3 < (g1 — 1)(¢"""*? — 1)¢“, then by (4) we have
d
-1
q < g+1 < 1 . (5)
(- VP[] ~ QD=3 = (g = 1)gha-b-a+1
O
Lemma3.2. Letn>k+{—t+1,k>C>t+2andail) = q(é) [c’?l][Z:f:f]. Then
n—t n-t-1 &«
I R (31020 25 ] R — _1yi-1,.
[k_ t] 7 [ . ] Zf( D ai(0). ©)
Furthermore,
[Frml > a1(k) — az(k) > (1 - W)ﬂl(k)' (7)

Proof. In [12, Lemma 2.4], the authors prove this Lemma for n > 2k + 1. In fact, using the same method, it
can be proven that this Lemma holds forn > k+ (-t +1. [J

Lemma 3.3. [12, Lemma 2.9] Let H, T, L be h, t, {-spaces, respectively, such that H < T < L and for m > 2 let
Fn=M:M<L, H=MNTand dim(M) = m}.

Then [Tl = [[24Jg0,
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Lemma 3.4. Let H, Fy be 2k — t, k-spaces, respectively. If dim(H N Fy) < k — 1, then the number of vector spaces in

[IZ] t-intersecting Fy is no more than [k’i”] %{k:tt_’ll].

Proof. The number of vector spaces in [I,g] t-intersecting F; increases with dim(H N F;) increases. Thus

we only need to consider the case dim(H N F;) = k—1. Let ¥’ = {F € [';I] :dim(F N (F1 N H)) > t} and
F' ={Fe [I,f] : dim(F N (F; N H)) = t — 1}. Recall that dim(H) = 2k — t. For each F € [I,;I], we have
dim(F)+dim(F1NH) = dim(FN(F;NH))+dim(F+(F1NH)). Since F+(F1NH) < H, then dim(F+(F1NH)) < 2k—t.
It follows that dim(F N (F; N H)) > t — 1. Hence ¥/ W F’ = [Iz], where '@’ is known for the disjoint union of
two set. It follows from Lemma 3.3 that [F/| = [(7]]¢%*D¢=). Then we have |F’| = [*1] - [F]]qk—+D6-0,
Substituting n = 2k and £ = k in (6) gives that

k—t .
2k — k-1 t +1{|2k—t—i
(k—t)(k—t+1) i-1 ()
i R S e ®
Leta; = q(é) [k_’;”][Zk - ’] Then a calculation of g-binomial coefficients shows that
. q(z‘)[k—t+1][2kk—tt—li] _ ( i+1 1)(q2k t—i _ 1) 3 i s . (9)
T A T e e e TR

The identity (8) can be rewritten as

[2" - t] _ q<kt)<kt+1>[k - 1] _ {“1 ~ 25 @y~ az), if 24 (k—t),
a

= 1 , (10)
k—t k-t = L — aj) — ey, i 21 (k- 8).

Combining (9) and (10) leads to that [F’| < a; = [*"*'][%/5']. The proof is complete. [

Lemma 3.5. Let F be a t-intersecting family and S be an s-subspace of V, where t —1 < s < k —1 and L be the

minimum dimensional space t-intersecting each F € F with s < diim(L) = £. Then |Fs| < [ t“]f S[Z g]

Proof. Lemma 3.5 is a spacial case of [12, Remark 2.6]. [J

Lemma 3.6. [2, Lemma 2.8] Let n > 2k + 1 and t > 2. Then |Fum| > |Fa¢+)l, if k = 2t + 2; |Fuml < [Fag2)l, if
F+2<k<2t+1.

Remark 3.7. In [12, (1.1)] and (7), the authors shows that

n-—t n—-k-1 t
_ B (k=t)(k—t+1) k—t+1
|F il [k—t] [ _t ]q +[1]q , (11)
n—t=2] [t+2]{[n-t-1] [n-t-2
[F a2l = k_t_2]+[t+1]([k—t—l]_[k—t—2])' .
Forq>3,k>t+2andt > 2, a calculation of g-binomial coefficients yields that

1 \[t+2]|[n—t-1|_ 242|t+2|ln—t-1

- >—= .
|TA(t+2)|>(1 qk+1)[ 1 ][k_t_1}—243[ 1 ][k—t—l] -

It follows from (11) that

n—t n—-k-1
_ (k=t)(k—t+1)
|THM|>[k—t] [ k—t ]q '
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Substituting n = 2k + 1 and € = k into (6) yields that
k—t
2k+1—t k-1 : k—t+1]|| 2k—t¢ k—t+1][2k—t-1
_(k=t)(k—t+1) _ 1yi-1. _
P Rt P S CTTCES R P ¥ A P
Combining the two equalities above, we can get
k—t_l k—t—l_l _ _ _ —
|7_,HM|>1_(q : )q ] )q)k t+ 1] 2k—t (1 1 )k t+1][ 2k—t .
(%2 = D(g*t-1) 1 k-t-1 (9% - )¢t 1 k-t-1
Forg>3,k>t+2andt > 2, there holds

71{k—t+ 1] 2k—t
|Frm| > 7—2[ 1 Hk—t— 1]- (14)

For simplicity, let
. k-t+1|ln—-t-1 . t+2(n—-t-1
il = [ 1 ][k —t- 1]’ F i) = [ 1 ][k —t- 1]‘
By (13) and (14), we will prove that |¥| < 0.986 max{|F};,,l, |7:A*(t+2)|} instead of |F| < max{|Frml, |Fa¢+2)l} in most
cases.

Lemma 3.8. Let t,{,k,a, A be integers satisfying 4 < t +2 < £ <minfk — A,k — 1} and a > max{1,2t + 1 - ¢} and
q>3. Then

S, Lk ) _ 8¢(a, €,t, 1) 1

[k—t+l][ 2k—t ] - qk—€+t—1+a2+(f—2t+/\—2)a(q — 1)5—2t+/\+a—1 + q(t’—t+/\—1)t(q — 1)€—t+/\—1 '
1 k—t-1

where S(a, t, £, k) is defined in Section 2 and

(15)

q2a+f—2t+/\—1 (q _ 1)
2u+€—2t+A—1(q _ 1) -1

e, tA)= p (16)

Proof. Sincet—i<{—t<k—t-1,itfollows from Lemma 3.1(ii) that

ft’:lt] q(€—2t+i)(t—i)
2k—t1 = Ak+1)(k-t-1)"
[k_t_l] q( +1)( )

(17)

By Lemma 3.1(i), we can get

2 I o
= < —t,t—i 7 (C—t)(t=i)
[t—z] [l—2t+i]_2 9 and

2k+1-C€-A
k—-€-A

] < 2q(k+1)(k—€—/\)' (18)

Combining (17) and (18), we can obtain

£, ¢,k 1) D3010=00-41-4 =)+ QL2+ e +(e=H+1)(E=26+ A=) e+ 1) k(=)

[k—i+1] [kﬁ:tll - q(k+1)(k—t—1)(q _ 1)6’—2t+/\+i—1

Simplifying the right-hand side of the inequality above leads to

1 3=0i0=0¢—t4-i
fG, €k A) < 2570i070¢

[k—t+1][ 2k—t] T RO 20 A (g — )20 AT
1 M-t

(19)
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Assume thati < t—1. Since (k—O)(t—i) + > +(( =2t +A=1)i = k— €+t =1+ (k—C—1)(t—i—1)+2+ (=2t + A =2)i
and (k— ¢ —-1)(t—i—1) >0, it follows that

f(i, ,k,A) 23=0i0=0¢-14-i
< - - — . (20)
[k—iﬂ][kz_kt—_tl] qk—€+t—1+12+(£—2t+/\—2)z(q _ 1)5—2t+/\+1_1

Recall thata > {1,2t + 1 — ¢}. It is easy to see that (a + j)*> > a> + (2a + 1)j for j > 1. Therefore, it can be seen
from the formula for the summations formula of geometric series that

Zf;} f(lz f, k, /\) B 8 q2a+€—2t+}t—1(q _ 1) (21)
[k—§+1][k2_kt:t1] - qk—€+t—1+g2+(t’—2t+/\—2)a(q — 1)[—2t+/\+a—1 q2a+€—2t+/\—1 (q — 1) -1
In view of Lemma 3.1 (ii), we see that [kz_ﬁitl] > [2";_1;_ fﬂ]q("”)(f‘t”‘l) for £+ A > t+1. Then
_ —t+A-1 -
ft0kn) [ (5 1 )
= [ C gt g

Combining (21) and (22) yields (15). The proof is complete. [J

Lemma 3.9. Let € bean integer such that t+2 < € < kand L be the {-space with minimum dimension that t-intersects
eachFeF.1Ifq>3and dim(LNF) > t+1forany F € ¥, then |¥| < %lTITIMl.

Proof. Select a (t + 1)-space on L. The number of choices is [ tfl]. Expand this (¢ + 1)-space to {-spaces and by

-t-1
Lemma 3.5 we see that the number of the spaces (t + 1)-intersecting L is no more than [tfl][k_i”] [Zk}:}g q.

By Lemma 3.1 (i) and (ii), we can get [, ] < 2q(-"=D+D and [2417]qke D=1 < [ 2671 50160 regpectively.
A calculation of g-binomial coefficients shows that

—t-1

[tfl][kfiJrl] [2](]:’_1;{] . zq(f—t—l)(t+1)+(k—t+1)(€—t—2) ~ 2 - g (23)
L2 = (g - D 2gk D) g2 (g — 1)i2 9

The proof is complete. [

4. Proof of Theorem 1.1

Proof. In this section, we always assume that g > 3. Let V be a (2k + 1)-dimensional space and ¥ € [‘,f] be
a maximum-sized t-intersecting non-trivial family. We divide the proof into three cases according to the
value of 74(F). Since the ratio of |¥};,,| to [Fum| and the ratio of |T,Z(t +2)I to |Fa(+2)| are easy to estimate, then
the trick of the proof is to compare the upper bound of |¥| with max{|F7;,,|, Ifg(t +2)|}.

41 (F)=t+1

In this subsection, we first estimate upper bounds of || and then compare them with max{|F};, I, IT;( 1+2) I}.

Proposition 4.1. [2, Lemma 3.7] Assume that T,(F) = t + 1 and define T to be the family of (t + 1)-subspaces of V
that t-intersect all subspaces in . One of the three possibilities holds:

(5 P S S (R

1) |[71=1and
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(ii) |71 > 1,7(7") = t and there is an {-subspace W (t + 2 < £ < k + 1), and a t-space E, such that T = {M : E <
M < W, dimM = t + 1}. In this case,

C—tlln—-t-1 H| n=C | 4pi  |k=C+1|k—t+1|[n—t-2| ,_
|ﬂg[l”k—i&—l]+[1][k—£’+1]q +[ 1 ][ 1 Hk—t—z]q L (24)

(iii) F = Fa¢+o). In this case,
—t-2 t+2(f[n—-t-1 n—t-2
d [ —t- 2]+[t+1]([k—t—1]_[k—t—2])'

According to Proposition 4.1, we only need compare the upper bounds of the first two cases with

max{|F s Ifj{(t +2)|}. Record the upper bounds of the first two cases in Proposition 4.1 as If,;,)peyl and |7, (”perl,
respectively. Recall that #n = 2k + 1. By Lemma 3.1(ii), we have [2}(]‘:::21]11"*1 < [kat ' ]. Then
IT(lperI < q-— 1 (qk_t - 1)(qt+1 - 1)6] < q-— 1 + q
[k iﬂ][Z—tt—ﬂ - qk—t+1 -1 qk+1(q — 1)2 - qk—t+1 -1 (q — 1)2'

Recall that g > 3 and k > t + 2. It is easy to see that the right-hand side of the inequality above achieves its
maximum value when g = 3 and k = ¢ + 2. Hence IT('W| < 0.827|F /-

Now we consider |ﬁ;zl;)zer| Let ¢ be defined as in Proposition 4.1 (ii). In this case, if £ = k+1, then ¥ = Fuum
by [2, Lemma 3.4]. Assume that t + 2 < ¢ < k. It follows from Lemma 3.1(ii) that [ikj’{,l;f]q(k*l)(k‘t‘l) <
[kzk— ] qk(k €+1) Then

(i) _ _ _ _
|7—‘u;’phr| B ql’ t_1 s q(k+1)(k [+1)(qt -1 .\ (qk e+1 _ 1)q€ t
max {[Hl-Z]’ [k §+1]} [Z::j] qk—t+1 -1 q(k+1)(k—t—1)(qt+2 _ 1) qk+1 (q _ 1)
1 1 1
< qk—€+1 q(k+1)(t’ t-2)+ t(q 1)

A simple argument shows that the right-hand side of the inequality above achieves its maximum value at
(k,£,t,9) = (4,4,2,3). It follows that [F,),,| < 0.5max{|F};,,l, F el

42, t+2<T(F)=¢€<k-1

In this subsection, we assume that t + 2 < 7,(¥) = € < k—1 and L is the vector space with minimum
dimension that t-intersects each F € ¥. Recall the definition of £;. We categorize the discussion by the
dimension of the vector space in £;. By Lemma 3.9, |7 < %ITITIMI if dim(FNL) >t+1foreachF € .
In the following we may assume that there exists an F € ¥ such that dim(F N L) = t. Hence £; # 0, if
71> 0.986 max{|F 1, 1F 5 1) -

Let H € £;. Our proof process is mainly divided into two parts. Firstly, we assume dim(H) = t and prove
|7 < 0.986 max{|F;,,l, IT;(HZ)I}. Secondly, if || > 0.986 max{|F};,,l, |Tj<t+2)|}, then we have dim(H) > t + 1.
From this we can get [#] < 0.986 max{|¥;,,|, 1¥ ., [}, which is a contradiction.

(t+2)|
Proposition 4.2. Let H € £; and dim(H) = €. Then |¥| < 0.986 max{|F};,,l, |7:,;(t+2)|}'
Proof. It follows from [12, Lemma 2.12] that || < S(max{0,2t — ¢}, ¢, k,0). A calculation of g-binomial
coefficients yields that
fe=2,t+2,k0) _LIGES1 @ - D@~ - D@ - g
Py B | ) I Uit
ft=1t+2k0) _ [0 ey _ @ -+ -1
[ [ (@ -1~ 1)

(25)

(26)
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The following proof process needs to be discussed in detail.

Case 1. £ > 2t + 1. Substituting a = 2, A = 0 into (16), we have ¢(2,{,k, 0) < %. It follows from (15) that

5(2,¢,k,0) < 8 162 1 o7
[k—i+1][k2_kt—_t1] T g B(g — 1)e-2 o1 t gUt=Di(g — 1)1 (27)
The right-hand side of (27) obtains its maximum value when (k, ¢, t,4q) = (6,5,2,3). Hence
52,¢,k,0)
s = 0.028. (28)
(Pt
Substituting i = 0,A = 0and i = 1, A = 0 into (20) respectively yields that
f(0,£,k,0) 4 4
oy 2ty S k=Cr=1(g — 1)(-2t-1 <y (29)
I Pt 9
f(L,4,k,0) 8 4
T 2kt = k—1-2(g — 1)f-2t s 9 (30)
i | ) B A

Combining the (28), (29) and (30), we see that S(0, £, k, ) < 0.917|F7, |-
Case2. { =t+2 Ift =2and ¢ =4, then a simple argument shows that the right-hand sides of both
inequalities (25) and (26) reach their maximums when (g, k) = (3, 5), respectively. That is

f0,450 _ @=1)@ - g’

< <0.201, (31)
LGS~ @ - DE -1
f(ll 4/ k/ O) (‘72 - 1)4q2
< < 0.703. 32
(A~ @ -D@-17 ¢2)
According to (22), it follows that
2,4,k,0
i o L o056, (33)

(13 7=
Combining (31), (32) and (33), we see that [F] < 0.96 max{l?}’{wz)l, [F 5l
If t > 3, then multiplying both sides of (26) by ["/*']/[*?] at the same time yields that

fE-1t+20 @ -1+’ -DE@" =D _ g+ _ 8

(A2 (@ -1+ -1)(g - 1) T qiq-1) " 27

(34)

Observe that the right-side hand of (25) reach its maximum when (k, q) = (t+3, 3). Substituting (k, q) = (t+3, 3)
into (25) and (¢, q) = (t + 2, 3) into (22) yields that

ft-2t+2,t+3,0) (g -1@ -1g* _1

=, 35
[Hl-Z][tEG] - (qt+6 _ 1)(qt+2 _ 1) -3 ( )

f(t,t +2,k,0) 1 1
[k_i"'l][kz_kt__a] < qt(q — 1) < 5—4 (36)

Combining (34), (35) and (36) yields that || < 0.649 max{|F};,,I, ITg(t +2)|}.
Case 3. t+3 < ¢ <2t Itisclear thatt > 3. Sincet+3 < ¢ < 2t, then 2t + 2 — £ > 2. Therefore

pt+2-1¢,4,1,0) < % by (16). It follows from (15) that

SQt+2-1¢,6,k,0 4
(@t + ”’)< 8 > > < 0.152. (37)

1
< X—=+—=——
| ey -1 53 g¢*@g-1)




Y. Wang, J. Yang / Filomat 38:28 (2024), 9997-10011 10005

By Lemma 3.1(i) and (ii), we can obtain [,,, ] < 24¢-=D@1-0 and [#H-(gleDC=t-1) < [ 27 ] respectively.
A calculation of g-binomial coefficients shows that

t O—t 2 rk—t+1772k+1-67 2(0——1)> e _0)420— i1y
ft+1-6,6k0) Ll T | < 2q(DRHIZOR22AC)

[k7§+1][k2_kt:t1] [k §+1][k2_kt_t1] - (q 1) q(k+1 (£-t-1)
Observe that k > ¢ + 1 > t + 4. Simplification of the right-hand side of the inequality above gives
2t+1-¢,6,k,0 2 1
i k—t+19r 2k—t ) < 1)2gk=0(~t-1)-2 < 2" (38)
Pl (@-1)q
Again by Lemma 3.1(i), we can get [,/ ] < 29¢"9?=0 and ['1?] > ¢**1. Then
2—0,0,k0) 2gD@-02A? 5 5
1 t+271 2kt : < q(k+1)(€—t—1)+t+1 = o) =g (39)
(VL] 9 9

Combining (37), (38) and (39), we see that |7| < S2t - ¢, {,k,0) < 0.875 max{lfg(HZ)l, |F ot O

Let H € £; and dim(H) = £+ A. If A = 0, then |F] < 0.986 max{|77;,,l, |7:1Z(t+2)|} by Proposition 4.2.
Recall that [Fa@2)| > 0.995|T2(t +2)I and |Fam| > 0.986|77;,,| by (13) and (14), respectively. That is, |F] <

max{|Fuml, [Facll. I 1F] > max{[Faml, [Fa¢+2)l}, then dim(H) > € + 1. In the following, we may assume
that A > 1. Leta > max{1,2t + 1 - £€}. Then ¢(a,{,k, A) < % by (16). It follows from (15) that

S(max{1,2t+1-1¢},¢,k,A) 8 18 1
< ——— < 0.474. 4
[k—i+1][k2_kt—_tl - qk—€+t—1(q — 1) 17 th( - 1)2 <0. ( 0)
If 2t +1 < € < k -1, substituting i = 0 into (19) we can get
f0, 4,k A) 4 2
Kty 2k = (Y 2re AT (k—0)t < 9 (41)
FLES @-1 q
Ift ; 2 hs {ds 2t ?r(lfdg )t > 3, then g2 — 1 > 2242, Substituting i = 2t — ¢ into (19) and multiplying [**"]/["1?]
on both sides o we can get
f@t—=¢,¢,k A) < 486 3 486 < 18 1
7] kat—tl = 121(g — DATgh-0U-n+2t+1k T 127 (g — DAt 121° (42)

Ift =2,then? = 4and f(0,4,k,A) = [ZM]["T]A[zkk_’f_’/‘A]qS. By Lemma 3.1 (ii), we have [ 1g*+D0+D) < [3-2],
It follows that

£(0,4,k,A) . A1+ E=D(A-T) . . .

< = < < —. (43)
[k;l][i}i—?’Z] (@ = DAg? - 1)gk D)~ (= DM@ - Dg?* 11 ~ (-1)(g>-1) ~ 16
Combining (40), (41) and (43) yields that
0.697|F /4l if€>2t+1,
S(max{0, 2t - £}, €,k A) < 0.623max{|F, | [F ), ift+2<{<2tandt>3, (44)
0.662|F /4, if (¢,t)=(4,2).

It follows from [12, Lemma 2.12] that |F| < S(max{0, 2t — €}, €, k, A) + |F1]. According to the definition of 7'1,
any F € 1 must contain a (t + 1)-subspace E on L and the number of choices for E is [, +1] Since 7,(F) = ¢,

then by Lemma 3.5 we have [F] < [t+1][k m][ " 1[2k+1 ‘. Tt follows from Lemma 3.1(i) and (ii) that
Vil < 2D+ k=t+1)(4-2) ) )

(2] qe g -1 S g Sy

Combining (44) and (45) yields that [#| < S(max{0, 2t — £}, {,k, A) + |F1] < 0.772 max{|F

(45)

v Tl
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43. w(F)=k>t+1

In this subsection, we assume that 7,(¥) = k > t + 1. By Lemma 3.9, |¥| < %IT;IMI ifdim(FNL)>t+1
for each F € . In the following we may assume that there exists an L, L, € ¥ such that dim(L; N L,) = t.

In this section, we still use the method of comparing the upper bound of || with max{|77;,,l, I?'g(t +2)I}.
However, for some special cases, S(max{0, 2t-I}, k, k, 0) is ineffective for this method. Therefore, we introduce
a third vector space beyond L, L, to prove || < 0.986 max{|F};,,|, Ifz(t +2)I} by intersection.

Observe that

£,k k,0) _ [ X[t][k—t]X[k—t+1]k_2t+iq2(t_i)z o)
max ([, [ 2] 2] LLE - 1

Estimating the first term of the right-hand side of (46) by Lemma 3.1 (ii) and estimating the second term of
the right-hand side of (46) by Lemma 3.1 (i) yields that

£,k k, 0) R e
max {[Hl—Z], [k—i+1]} [kZ_kiL—_t1 = q(k+1)(k—t—1)+max[0,2t+1—k}(q _ 1)k—2t+i—1

After simplification, we can get

f(l, k, k, 0) 22_5i,0 =0t i (47)
max {[Hl—Z], [k—i+1]} [k2_ki}—_t1 - qi2+(k—2t—1)i+max{O,2t+]—k} (q _ 1)k—2t+i—1 :
Ifi>landk—t>t—ifori>1,then ;9 = Ot = 0. It follows that
i,k k0 4
t{Z( k—t+1) 2k—t < i2+(k—2t—1)i+max{O,2t+1—k}( _ 1)k—2t+i—1 ' (48)
max {[ il ]} o] 4 q
Observe that (a + j)* —a? = 2aj + j* > (2a + 1)j. Then
S(a, k, k,0) 4 1
< X _— (49)
max {[t-&l—2], [k—i+1]} [k2_kt—_t1 qu2+(k—2t—1)a+max{0,2t+1—k}(q _ 1)k—2t+u—1 ; q(k—2t+2a)](q _ 1)]

Applying the formula for the summations formula of geometric series to the second term on the right-hand
side of (49) yields that

S(a, k, k,0) < 4 k21420 (g — 1) ' 50)
max {[Hl—Z], [k—§+1]} (2 g+ k-2-Tatmax(026+1-K] (g — 1)k-2+a-1 " qk-20420) (g — 1) — 1
We divide our proof into four cases.
Case 1. k > 2t + 2. If (k,q) = (2t + 2, 3), then by Lemma 3.1 (iii) we see that
fOkK0) _ g1 @ -1 -1
A @-D@-nizh @-e -
3
If (k,q) # (2t + 2,3), by (47), there holds
fOkke) _ 2 [ ifaxd -
(RS @D 1 ks o 4a,
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It is not difficult to see that the right-hand side of (50) decreases as k increases. Substituting a = 1 and
k =2t +2in (50) yields that

S(L,k, k, 0)
P
Combining (51) and (53) yields that |F| < f(0, k, k,0)+S5(1, k, k, 0) < 0.956|F},,,l, if (k, ) = (2t+2,3); Combining
(52) and (53) yields that |7 < f(0,k, k,0) + S(1,k, k,0) < 0.7791F ;. if (k, q) # (2t +2,3).
Case 2. t+2 < k <2t —1. Itis clear that t > 3. It follows from Lemma 3.1(ii) that [, Jqg**V*-1 <
[Zk—t] @t=Bk=t) Then
k-t-119 €

44 _
q(qg—1) _ 18

F@-D-1° 161" )

<1><
-9

f@E-kkk0) _ [ glherbatrg oy gt -1 o
A I A I e Ve e B L o
Since t > 3and g > 3, then 4! — 1 > £4"*1. In view of (54), we have
fQ2t -k, k k,0) 801
t2q 2kt <l-g- (55
|y 814q
Again by Lemma 3.1(ii), we can obtain [,/ Jg**D*-=D < [ 27 [¢®*1-0¢=D Then
f(2t +1-kkk, 0) q(k—t—1)(2t+1—k)+2(k—t—1)2+2k—2t B 1
[t;?.][k%kt—_tl] s (q _ 1)2q(k+1)(k7t71)+2t+17k - th—l—k(q _ 1)2‘ (56)
According to k < 2t — 1 and g > 3, it follows from (56) that
fQt+1-kkk,0) 1 91
277 2Kkt S iR o 1)2 s A2 (57)
| Py g# g - 1) q
Substituting a = 2t + 2 — k in (50) yields that
St +2 -k k,k,0) < 424k - 1) _ 4 (58)
[tqz][kz_lz—_tl] - (q — 1)q4t+3—2k(q2t+4—k(q -1)-1) q2t—1—k(q2t+4—k(q -1)- 1)‘
Since k < 2t — 1 and g > 3, then g1 %(g?***(g - 1) = 1) > ¢° — ¢° — 1 > 44*. That is
2t+2 -k, k k
S@i+2-kkk0) 1 9

[P q

Combining (55), (57) and (59), we see that

S22t -k, k, k,0) 801 91 1 1 (80 5 9, 1 1
A A T [ty iy s —1)51——31— .
[t;Z][k{kt:tl] 81q 4q2 q4 q4 81 4 q4 qk+1

Hence %] < 82t — k, k. k,0) < (1= 4751 IF )| < [Faeo)| by (13).
Case 3. k = 2t. Substituting a = 2 and k = 2t in (50) yields that
(g —
SQkkO) 4 gq-D) _1

< < —. 60
22 P@-1) g*@-1)-1 : 7 (€0)
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By Lemma 3.1(i), it can be seen that [ %] > g*+*D*~*=D_ Then

fO.k,k,0) < thz < (9= D™ =1- g -1 <1- l (61)
[t-ll—Z][kZ_kt—_tl] - [t-i1—2][k2_kt—_t1] - qt+2 -1 qt+2 -1~ Zq

If |7 (1,tk k; Ly, Ly)| = 0, then

71 _fOEEO+S@EE) 1 1 11

[ o[y e P
which implies || < [Fa@s2)l. Since k = 2t, then F(0,t,k,k; L1,Ly) € L1 + Lo. If |[F(1,t,k, k; Ly, Ly)| > 0 and
F(1,t,k k; L, Ly) € [M1"2], then [F (0, t,k, k; L1, Lo)| + |F (1, £, k, k; L1, Lo)| < [*7']. Observe that

k+17
q

Bl _ @=D@"-» _ g2-g"-g+1 62
[t+2][ 2k—t] - (q'+2 - 1)(€/k t—1) qk+2 —gi+2 - qk—t +1° (62)
1 k-1
Since g > 3and t > 2, then g1 — g'*2 — g** + g > 14", It follows that
[21<];t] qk+1 _ qt+2 _ qk—t +q % qk+1 1
22 T g g =1- s s1- 27 (63)
1 k-1

Combining (60) and (63) yields that IF] < (1= & + %) IF 5| < (1= 7 IF )| < [Fagiol If there
exists an F1 € F(1,t,k,k;L1,L,) such that F; £ L + L, then we re-estimate |F (0, ¢k, k; L1, L,)|. Recall that
F(0,t,k k; Ly, Ly) C [L1+L2] and dim(F; N (L1 + Lp)) < k— 1. By Lemma 3.4, the number of vector spaces in
[1+1] t-intersecting Fy N (L1 + Ly) is no more than [/*'][%~']. Then

7O tkkL L) _ 0SS @ =@ =) 1 b
[t;Z][kZ_kt—_tl] [t-il-Z][kZ_kt—_tl] (qt+2 )(q’a‘t 1) qt

By (56), we can get

UCLATL P N} (65)
[P T @
Combining (60), (64) and (65), we see that |F| < |7 (0, ¢,k k; L1, L)l + f(1,k,k,0) + S(2,k,k,0) < 0.973|7’~;(t+2>|.
Case 4. The case k = 2t + 1. Firstly, assume that ¥ C [LlJ,:LZ]. Then |F| < [Zkk_t]. By (63) and (13), we see
that [%] < (1= £)1F; 0| < Fags)-

Secondly, assume that 7(0,t,k k; L1, L) C [LlJ,;LZ] and Ut TG tkkL, L) & [L”LZ] Then there exists
an F, € Ut 1F (G, t,k k; Ly, Ly) such that dim(F, N (Ly + L)) < k — 1. Itis clear that |7 (0,t,k,k; L1, L,)| is less

than the nurnber of the vector spaces t-intersecting F, in [7*2]. Then [F(0,t,k k; L1, Lo)l < [ 13! by
Lemma 3.4. It follows that

7Otk kLy L) _ [5IGEST 2 -1 1 )
(P2 A e

Substituting a = 2 and k = 2t + 1 in (50) yields that

(g-1
kS_(tZ,lk,l;g) < 4 x 5q @-1) _ 6 o
[FE 2] 7 g @ -12 " °(g-1)—1 " 485
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By Lemma 3.1(iii), we can get
fLkkO _ g-1 (@ -D@" - LY
(IR T @ - D@? - DI @-D¥¢-1) T -1 -1 64
Combining (66), (67) and (68) yields |F| < |7 (0, ¢,k k; L1, Ly)| + f(1,k,k,0) + S(2,k, k,0) < 0.546I7:2(t+2)|.
Finally, assume that #(0,t,k,k;L1,Ly) € [L“,:LZ]. Then there exists an F3 € ¥(0,t,k, k; L1, L;) such that

Fs ¢ ["77]. Let Ey = F3N Ly and E; = F3 N L. We divide the vector spaces in F(0,t,k, k; L1, L,) into three
classes as follows:

(68)

F' = {F € T(O,t,k,k;Ll,Ll) F<I4 +L2},
F = {F € ?(O, t,k,k,'Ll,Lz) . F j<_ L1+ Ly and dlm(P N El) + dlm(P N E2) > 1},
F = {F (S '7:(0, t,k k; Ll,Lz) :F f_ L1+ L, and dlm(P N E]) + dlm(P N Ez) = 0} .

Recall that dim(F3N(L1+L>)) = 2tand dim(L; +L) = 2k—t. It follows from Lemma 3.4 that |F| < [*T[37].
By (66), we have

t+2|7:21|<—t < lt (69)
gl )
If dim(F N Eq) + dim(F N E;) > 1, then select a 1-dimensional vector space A in E; or E;. The number of
choices is 2[;] Without loss of generality, it is assumed that A < E;. Let E = L; N L, where dim(E) = ¢. Select
a t-dimensional vector space containing A outside of E on L; and a ¢-dimensional vector space outside of

E on L,. The numbers of choices are [F;;']¢'*"D and [¥;"]¢" by Lemma 3.3, respectively. Now we have
selected a 2t-dimensional vector space. Since 7;(¥) = k, then there exists a k-dimensional space in ¥ that is
disjoint with this 2¢-dimensional space, and by Lemma 3.5 we can obtain

., k—t—1[k=t][k=t+1] o
01 P N A ™

With the use of Lemma 3.1(iii), we can obtain

vad . qt+1 -1 y Z(qt _ 1)2q2t2—t . 2(q +1)
[VILEA T @-velZh et @-hg

Assume that dim(F N Eq) + dim(F N E) = 0. Since dim(F N F3) > t and dim(F3 N (Ly + L)) = 2t, then
dim(F N (F3 N (L1 + Ly))) = t — 1. That is, F intersects F3 N (L; + Lp) outside E; and E, at least (t — 1)-
dimensional vector space. Observe that dim((F N L;) N (FNLy)) = 0. Then FN (L1 +Ly) = (FNL)®
(F N Ly)). Therefore, there is a unique decomposition of the basis vectors on F N (F3 N (L1 + Ly)). Let
E = {ey,e,...,¢;) and select a (t — 1)-dimensional subspace T on Fn (F3 N (L1 + Ly)). Then T can be
wr1ttenasT-(e +€21, +€22,... 1t1+e“1> where (¢, 2, .. 1) < Eifori e {1,2}. We now
consider the number of cho1ces of T. Select a(t—1)- d1men51or1al space on F N L,, which can be written as
T = <€1,1 +Zz 1 Aiei, € 12 +Zl 1)\2,,61,... “ 1 +Z, 1Ar-1e:), where 0 < Aj; < g -1 and 2, 1)\2 # 0 for
je{l,2,...t =1} Let T = (el > 12, .-,€1,_1)- Then dim(T}) = t — 1, otherwise dim(T; N E) > 0. Hence the
number of the choice of T is [F ]. For a fixed j, the number of the choices of e j + Zf-zl Ajjeiisqt =1.If t > 3,
then we have Zle Ajiei # Zle Aj,ie; for different ji, j» € {1,2,...t—1}. Otherwise dim(T1NE;) > 1. A simple
counting shows that the number of choices of T is no more than [, 1](q 1)1, Since T is decomposed in a

(71)

unique way, then we have to select T, = (ez 1 +Z, 1(g—2Av)ei, €, e, + Zl 1@=Agei, ... €5, 4 +Zl 1g— A1)
on F N L,. We first select a (t — 1)- -dimensional subspace from E», named T;. The numf:;er of choices of T} is

[ 1J- Then we select (t — 1) vectors from T, one by one and name them ¢, ,, € ,€

51/ Cor -1y, 1, TESpectively. Smce
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’ ’ ’ . t—1 t-1
517€0s -+ 1€y, 1 IS NO More than ["]'] . Therefore

, . -1 . .
the number of choices of T, is no more than [, ][tll] . Now we also need to select two 1-dimensional

vector spaces outside of Ty, Eq, E on Ly and outtsilde of T,, Ey, E on L, respectively. Since we have selected
(t — 1)-dimensional vector spaces in T; + E and T, + E, respectively, then the 1-dimensional spaces selected
have to be outside of T; + E and T, + E. Otherwise dim(F NE) > 1, according to the dimension sum formula.
Recall that k = 2t + 1 and dim(T; + E) = dim(T, + E) = 2t — 1. Then the numbers of choices of these two
1-spaces are both no more than [f]qf by Lemma 3.3. Now we have selected 2f-dimensional vector space.

Since 7:(F) = k = 2t + 1, it follows from Lemma 3.5 that

o T2 ¢ Ple-1]"k—t+1 -
R

By the definition of g-binomial coefficient and (72), we can get

T} has [']'] vectors, then the number of the choices of e

|7:///| - qt -1 (q + 1)2(qt _ 1)t(qt—1 _ 1)t—1q2t

S X - (73)
[P0~ G- G-
Applying Lemma 3.1(iii) to the first term of the right-hand side of of inequality (73) yields that
7 @+ D@ D@ - @+ 1)
[t+1-2] [kZ_kt—_tl] < (q — 1)t—1q2t2+2t+3 < (q - 1)t—1qt+2 : (74)
By (74), we see that
|7:///| %, lft > 3,
t+271 2kt < 54 . (75)
| ) o5, ift=2,925.
Combining (69),(71) and (75) yields that
0.548|F ;| if £23,
7O, t,k, k; Ly, L)l = [F'| + |F7| +1F"] < (76)
0.247\F 40l if t=2and g 25.

Combining (67), (68) and (76) yields that |F| < | (0, ¢,k k; L1, L)+ f(1,k, k,0)+ S(2,k, k,0) < 0.983I772(t+2)| for
(t,9) ¢ {(2,3),(2,4)}. Assume that (t,9) € {(2,3),(2,4)}. By the definition of f(1,k,k,0), (70) and (72), we list
the values of f(1,k, k,0) and I?:(t +2)|, as well as the upper bound values of |¥”| and || in the following
table.

@LR [ f1,550 ] 71 vad F i)
(3,2,5) 9734400 12130560 6635520 35850400
(4,2,5) | 254898000 | 365568000 | 204000000 | 2028024265

Combining (67), (69) and the table above yields that |F| < |F(0,t,k, k; L1, Lo)| + f(1,k, k,0) + S(2,k,k,0) <
0.919|7‘j;(t+2)|, if (£,9) = (2,3); |F1 < 0.482|7“2(t+2)|, if (,9) = (2,4).
The proof is complete. [

5. Conclusion

Forn =2k+1,9g>3,k>t+2andt > 2, we prove that £ is the maximal non-trivial t-intersecting
family, if k > 2t + 2; Fa¢+2) is the maximal non-trivial t-intersecting family, if £ + 2 < k < 2t + 1. This result
improves the applicable range of parameter n to n > 2k + 1 + 6, for t-intersecting Hilton-Milner theorem
for vector spaces.
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