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Extended Bernoulli wavelet approximation method and its applications
in solving the Lane-Emden differential equation and linear integral

equation

Sonoo Singha, Vivek Kumar Sharmaa,∗

aDepartment of Mathematics and Statistics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur-273009, India

Abstract. In this paper, we generalized the Bernoulli wavelet called extended Bernoulli wavelets (EBWs).
The EBWs are derived by dilation and translation of the Bernoulli polynomials. We have solved the Lane-
Emden differential equation with the help of extended Bernoulli wavelet method and compared proposed
method with the Legendre wavelet method, Chebyshev wavelet method (first kind and second kind) and
ODE 45 method. Also, we have solved linear integral equation with the help of proposed method and
compared with the solution obtained by the Legendre wavelet method. Illustrative examples have been
discussed to demonstrate the validity and applicability of the present method.

1. Introduction

Wavelets theory is a newly emerging area in mathematical research fields. It has been applied in
engineering disciplines, bioscience, biotechnology, viscoelastic materials, statical mechanics, the detection
of submarines and aircraft, and other models of real- life problems. Wavelets allow a wide range of
functions and operators to be represented accurately. In addition, wavelets establish a connection with fast
numerical algorithm [2]. Wavelets are strong tools that can be used to explore new directions in the solution
of differential equations and integral equations. Many researchers have started to use various wavelets for
the analysis of problems of high computing complexity.

The application of Legendre wavelets for solving differential and integral equations is thoroughly
considered by many authors [16, 17, 19–21]. Also, Chebyshev wavelets are used for solving some differential
and integral equations [1, 10]. In recent years many mathematicians and physicists have been interested
in studying singular initial and boundary value problems for second order ordinary differential equations
(ODEs). One of the equations describing this type is the Lane–Emden type equation. Various types of
Lane-Emden type equations have been studied in numerous research works because of their significant
applications in various scientific domains [13, 23, 26, 28]. Numerous phenomena in mathematical physics
and astrophysics, including the theory of star structure, the thermal behavior of a spherical cloud of
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gas, isothermal gas spheres, and the theory of thermionic currents, were modeled using the Lane-Emden
differential equation.

Solution of linear integral equation and Lane-Emden IVPs & BVPs have been discussed by many
authors. Authors like Kumar and Pandey [9], Wazwaz [26], Yousefi [28], Liao [14], and Yigider [27]
have discussed various wavelet methods and other methods for solving the Lane - Emden equation.
Parand and Pirkhedri [18] have discussed some other methods for solving the astrophysics equations.
Lal and Yadav [13] have presented solution of Lane - Emden equation by using Gegenbauer wavelets.
Doha et.al [3] have investigated the solution of the Lane - Emden equation using second kind Chebyshev
wavelet method. Recently, some other approximate solutions using the perturbation method [25] for
the Lane–Emden equation are obtained. Lal and Kumar [11] discussed linear integral equation and its
numerical solution, Lal and Yadav [12] investigate solution of Fredholm integral equation. According to
the best of my knowledge, no one has been used the extended Bernoulli wavelets method to solve linear
integral equation and Lane-Emden differential equation.

In this paper, the attempt is made to solve Lane-Emden differential equation using extended Bernoulli
wavelet collocation method (EBWCM). This method consists of reducing the differential equation into a
set of algebraic equations by first expanding the extended Bernoulli wavelets with unknown coefficients.
by solving these coefficients, we get the required solution. Also, we solved linear integral equation by
using extended Bernoulli wavelet method. Here we demonstrate the method by considering the some of
illustrative examples.

The paper is organized as follows: Section 1 is introductory. Definitions and preliminaries of wavelets
are given in section 2. Convergence analysis of wavelets are given in section 3. Section 4, contains the
explanation of numerical approximation of function. Method of solution and numerical examples are
presented in section 5. The conclusion of the work is drawn in section 6.

2. Definitions and Preliminaries

2.1. Bernoulli wavelet
Wavelets are a family of functions constructed from dilation and translation of a single function ψ(t)

called the mother wavelet. When the dilation parameter a and translation parameter b vary continuously,
we have the following family of continuous wavelets as

ψa,b(t) = |a|
−1
2 ψ

(
t − b

a

)
, a , 0, a, b ∈ R.

If we restrict the parameters a and b to discrete values as: a = a−k
0 , b = nb0a−k

0 , where a0 > 1, b0 > 0, and n
and k are positive integers, we have following family of discrete wavelets:

ψk,n(t) = |a0|
k
2ψ

(
ak

0t − nb0

)
,

where ψk,n(t) form a wavelet basis for L2(R). In particular, when a0 = 2 and b0 = 1, then ψk,n(t) form an
orthonormal basis.

Bernoulli wavelets ψn,m(t) = ψ(k, n̂,m, t) were first defined in [7] and have four arguments; n̂ = n− 1, n =
1, 2, . . . , 2k−1, k is assumed to be any positive integer numbers, m is the degree of the Bernoulli polynomials
and t is the normalized time. On the interval [0, 1), these wavelets are defined as

ψn,m(t) =


2

k−1
2 β̃m(2k−1t − n̂), n̂

2k−1 ≤ t < n̂+1
2k−1 ;

0, otherwise,

with

β̃m(t) =


1, m = 0;

1√
(−1)m−1(m!)2

(2m)! α2m

βm(t), m > 0,
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where m = 0, 1, 2, . . . ,M − 1, n = 1, 2, . . . , 2k−1.
The coefficient 1√

(−1)m−1(m!)2
(2m)! α2m

is for normality, the dilation parameter is a = 2−(k−1) and the translation param-

eter b = n̂2−(k−1). Here, βm(t) are the well-known Bernoulli polynomials of order m which can be defined
by

βm(t) =
m∑

i=0

(
m
i

)
αm−iti,

where αi, i = 0, 1, . . . ,m are Bernoulli numbers and can be defined by the identity

t
et − 1

=

∞∑
i=0

αi
ti

i!
.

The first few Bernoulli numbers are

α0 = 1, α1 =
−1
2
, α2 =

1
6
, α4 =

−1
30
, α6 =

1
42
, α8 =

−1
30
, . . . and α2i+1 = 0, i = 1, 2, 3, . . .

The first few Bernoulli polynomials are

β0(t) = 1, β1(t) = t −
1
2
, β2(t) = t2

− t +
1
6
, β3(t) = t3

−
3
2

t2 +
1
2

t, β4(t) = t4
− 2t3 + t2

−
1

30
, . . .

2.2. Properties of Bernoulli polynomial
1. β

′

m(t) = mβm−1(t), m ∈ Z+

2.
1∫

0
|βm(t)| dt < 16 m!

(2π)m+1αm+n(t), m ≥ 0

3. βm(1 − t) = (−1)mβm(t),

4.
1∫

0
βm(t) dt = 0,

5.
t∫

a
βm(x) dx = βm+1(t)−βm+1(a)

m+1 ,

6.
1∫

0
βn(t)βm(t) dt = (−1)n−1 m!n!

(m+n)!αn+m, m,n ≥ 1 [7, 15, 22].

According to Kreyszig [8], Bernoulli polynomials, form a complete basis over the interval [0, 1].

2.3. Extended Bernoulli wavelets
The EBWs on the interval [0, 1) are defined by

ψ
(µ)
n,m(t) =


µ

k−1
2 β̃m(µk−1t − n̂), n̂

µk−1 ≤ t < n̂+1
µk−1 ;

0, otherwise,

with

β̃m(t) =


1, m = 0;

1√
(−1)m−1(m!)2

(2m)! α2m

βm(t), m > 0,

where n̂ = n − 1, n = 1, 2, . . . , µk−1, µ = 2, 3, 4, . . . k = 1, 2, 3, . . . m is order of the Bernoulli polynomial
(m = 0, 1, 2, . . . ,M − 1) and t is normalized time. In the above definition, the polynomials βm(t) are the
Bernoulli polynomials of degree m which are defined in [7].
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2.4. Function approximation by extended Bernoulli wavelet

A function f (t) ∈ L2(R) defined over [0, 1) is expanded in terms of EBWs series as

f (t) =
∞∑

n=1

∞∑
m=0

c(µ)
n,mψ

(µ)
n,m(t), (1)

where c(µ)
n,m = ⟨ f , ψ(µ)

n,m⟩ on L2 [0, 1] [19].
If the above infinite series is truncated then Eq. (1) is written as

Sµk−1,M(t) =
µk−1∑
n=1

M−1∑
m=0

c(µ)
n,mψ

(µ)
n,m(t) = CTψ(µ)(t), (2)

where

C =
[
c(µ)

1,0, c
(µ)
1,1, . . . , c

(µ)
1,M−1, c

(µ)
2,0, . . . , c

(µ)
2,M−1, . . . , c

(µ)
µk ,0
, . . . , c(µ)

µk−1,M−1

]T
,

ψ(µ)(t) =
[
ψ

(µ)
1,0, ψ

(µ)
1,1, . . . , ψ

(µ)
1,M−1, ψ

(µ)
2,0, . . . , ψ

(µ)
2,M−1, . . . , ψ

(µ)
µk−1,0

, . . . , ψ
(µ)
µk−1,M−1

]T
. (3)

3. Convergence Analysis

Theorem 3.1. Suppose that f (t) ∈ Cm[0, 1] and CTψ(µ)(t) is the approximate solution using extended Bernoulli
wavelet then the error bound would be given by

∥E∥ ≤

∥∥∥∥∥∥ 2
m!4mµm(k−1)

max
t∈ [0,1]

| f m(t)|

∥∥∥∥∥∥ ,
where µ = 2, 3, 4, . . . .

Proof.

Applying the definition of norm in the normed space, we have

∥E∥2 =
∫ 1

0

[
f (t) − CTψ(t)

]2
dt.

Dividing interval [0, 1] into µk−1 subintervals In =
[

n−1
µk−1 ,

n
µk−1

]
, n = 1, 2, 3, . . . , µk−1.

Therefore,

∥E∥2 =

µk−1∑
n=1

∫ n
µk−1

n−1
µk−1

[
f (t) − CTψ(t)

]2
dt

≤

µk−1∑
n=1

n
µk−1∫

n−1
µk−1

[
f (t) − pm(t)

]2 dt.
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Where pm(t) is the interpolating polynomial of degree m which approximates f (t) on In. By using the
maximum error estimate for polynomial on In, then

∥E∥2 ≤

µk−1∑
n=1

∫ n
µk−1

n−1
µk−1

[
2

m!4mµm(k−1)
max
t∈ In
| f m(t)|

]2

dt

≤

µk−1∑
n=1

∫ n
µk−1

n−1
µk−1

[
2

m!4mµm(k−1)
max
t∈ [0,1]

| f m(t)|
]2

dt

=

∫ 1

0

[
2

m!4mµm(k−1)
max
t∈ [0,1]

| f m(t)|
]2

dt.

Hence,

∥E∥ ≤

∥∥∥∥∥∥ 2
m!4mµm(k−1)

max
t∈ [0,1]

| f m(t)|

∥∥∥∥∥∥ .
Here we have used the well-known maximum error bound for the interpolation.

4. Numerical verification of wavelet approximation

This section is designed to see the numerical accuracy of the calculated approximation for the function

f (t) =

et2
, t ∈ [0, 1];

0, otherwise.

For this, let us derive the basis functions of the extended Bernoulli wavelets for µ = 2, 3, 5; k = 2 & M = 3.

For µ = 2; k=2 & M=3

ψ1,0(t) =
{ √

2, 0 ≤ t < 1
2 ;

0, otherwise,

ψ1,1(t) =
{

2
√

6
{
(2t) − 1

2

}
, 0 ≤ t < 1

2 ;
0, otherwise,

ψ1,2(t) =


6
√

10×{
(2t)2

− (2t) + 1
6

}
, 0 ≤ t < 1

2 ;
0, otherwise,

ψ2,0(t) =
{ √

2, 1
2 ≤ t < 1;

0, otherwise,

ψ2,1(t) =
{

2
√

6
{
(2t − 1) − 1

2

}
, 1

2 ≤ t < 1;
0, otherwise,

ψ2,2(t) =


6
√

10×{
(2t − 1)2

− (2t − 1) + 1
6

}
, 1

2 ≤ t < 1;
0, otherwise.
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For µ = 3; k=2 & M=3

ψ1,0(t) =
{ √

3, 0 ≤ t < 1
3 ;

0, otherwise,

ψ1,1(t) =
{

6
{
(3t) − 1

2

}
, 0 ≤ t < 1

3 ;
0, otherwise,

ψ1,2(t) =


6
√

15×{
(3t)2

− (3t) + 1
6

}
, 0 ≤ t < 1

3 ;
0, otherwise,

ψ2,0(t) =
{ √

3, 1
3 ≤ t < 2

3 ;
0, otherwise,

ψ2,1(t) =
{

6
{
(3t − 1) − 1

2

}
, 1

3 ≤ t < 2
3 ;

0, otherwise,

ψ2,2(t) =


6
√

15×{
(3t − 1)2

− (3t − 1) + 1
6

}
, 1

3 ≤ t < 2
3 ;

0, otherwise,

ψ3,0(t) =
{ √

3, 2
3 ≤ t < 1;

0, otherwise,

ψ3,1(t) =
{

6
{
(3t − 2) − 1

2

}
, 2

3 ≤ t < 1;
0, otherwise,

ψ3,2(t) =


6
√

15×{
(3t − 2)2

− (3t − 2) + 1
6

}
, 2

3 ≤ t < 1;
0, otherwise.

Similarly, we can find wavelet basis for µ = 5, k = 2,M = 3. Then the value of Sµk−1 ,M are calculated and are given as

S21 ,3(t) =



(0.7707281540549176)
√

2 + (0.05649436808579126) × 2
√

6
(
(2t) − 1

2

)
+(0.016259969973289524) × 6

√
10(((2t)2

− 2t) + 1
6 ), 0 ≤ t < 1

2 ,

(1.2977737820357043)
√

2 + (0.2829623566596548) × 2
√

6
(
(2t − 1) − 1

2

)
+(0.05147767834313928) × 6

√
10

(
(2t − 1)2

− (2t − 1) + 1
6

)
, 1

2 ≤ t < 1,

0, otherwise.

S31 ,3(t) =



(0.5994656620865749)
√

3 + (0.01936663454990928) × 6
(
(3t) − 1

2

)
+(0.005254880201759972) × 6

√
15

(
(3t)2

− (3t) + 1
6

)
, 0 ≤ t < 1

3 ,

(0.7517489243185208)
√

3 + (0.07273786541946725) × 6
(
(3t − 1) − 1

2

)
+(0.009363113213045962) × 6

√
15

(
(3t − 1)2

− (3t − 1) + 1
6

)
, 1

3 ≤ t < 2
3 ,

(1.1821725512854664)
√

3 + (0.19001036697162021) × 6
(
(3t − 2) − 1

2

)
+(0.023384803314553896) × 6

√
15

(
(3t − 2)2

− (3t − 2) + 1
6

)
, 2

3 ≤ t < 1,

0, otherwise.

S51 ,3(t) =



(0.45324868441877236)
√

5 + ((0.005247494087688237) × 2
√

15
(
(5t) − 1

2

)
+(0.0013796886183712331) × 30

(
(5t)2

− (5t) + 1
6

)
, 0 ≤ t < 1

5 ,

(0.491261038102119)
√

5 + (0.017059091405668525) × 2
√

15
(
(5t − 1) − 1

2

)
+(0.0017300990784008263) × 30

(
(5t − 1)2

− (5t − 1) + 1
6

)
, 1

5 ≤ t < 2
5 ,

(0.5771167924340004)
√

5 + (0.03338642939956284) × 2
√

15
(
(5t − 2) − 1

2

)
+(0.0025833932219967437) × 30

(
(5t − 2)2

− (5t − 2) + 1
6

)
, 2

5 ≤ t < 3
5 ,

(0.7348359974376159)
√

5 + (0.05947656908972121) × 2
√

15
(
(5t − 3) − 1

2

)
+(0.004340039319235545) × 30

(
(5t − 3)2

− (5t − 3) + 1
6

)
, 3

5 ≤ t < 4
5 ,

(1.0141262188647)
√

5 + (0.1054437226038818) × 2
√

15
(
(5t − 4) − 1

2

)
+(0.007918706373111206) × 30

(
(5t − 4)2

− (5t − 4) + 1
6

)
, 4

5 ≤ t < 1,

0, otherwise.
The graphs of Sµk−1 ,M and f (t) has been plotted for µ = 2, 3, 5; M = 3 and k = 2 in Figures 1, 2, and 3.
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Figure 1: Graphical representation of S21 ,3 and f (t) Figure 2: Graphical representation of S31 ,3 and f (t)

Figure 3: Graphical representation of S51 ,3 and f (t)
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5. Illustrative Examples

5.1. Algorithm for Solving the Lane-Emden differential equation
Let y(t) be the solution of the Lane - Emden differential equation [9]:

y
′′

+
β

t
y
′

+ h(t, y) = 1(t), t ∈ (0, 1], y(0) = a, y
′

(0) = b. (4)

Where β, a & b are real constant, h(t, y) is a real valued function and 1(t) is nonhomogeneous term. The proposed
method follows as
Let us assume that

y(t) =
µk−1∑
n=1

M−1∑
m=0

c(µ)
n,mψ

(µ)
n,m(t) = CTψ(µ)(t), (5)

is the solution of the differential equation. By initial condition of Eq. (4), the Eq. (5) reduces to

y(0) =
µk−1∑
n=1

M−1∑
m=0

c(µ)
n,mψ

(µ)
n,m(0) = a, y

′

(0) =
d
dt

µk−1∑
n=1

M−1∑
m=0

c(µ)
n,mψ

(µ)
n,m(0) = b.

Putting Eq. (5) in Eq. (4), we have

(CTψ(µ)(t))
′′

+
β

t
(CTψ(µ)(t))

′

+ h(t, (CTψ(µ)(t))) = 1(t). (6)

In Eq. (6), CT contains µk−1M unknown coefficients. Therefore, removing initial conditions, µk−1M − 2 more conditions
are required for the solution of differential equation. For determining the values of µk−1M unknown coefficients c(µ)

n,m,
collocation points ti =

i−1
µk−1M

, i = 3, . . . , µk−1M, are substituted in Eq. (6) to obtain µk−1M − 2 equations. Hence, these

µk−1M equations give the values of the unknown coefficients c(µ)
n,m. In addition, higher-order differential equations can

be solved using this technique.

Example 1.
Consider the Lane - Emden differential equation

y
′′

+
2
t

y
′

+ y = t3 + t2 + 12t + 6, t ∈ (0, 1], y(0) = 0, y
′

(0) = 0. (7)

the exact solution of Eq. (7) is y(t) = t2 + t3.
It is now possible to solve the differential equation by applying the EBW technique that was previously discussed. For
the approximate solution of the Eq. (7), we take µ = 2, 3; M = 4, and k = 2.

For various values of t in the interval [0, 1), the exact solution (ES) and approximation solution of the Lane-Emden
differential equation determined by the extended Bernoulli wavelet method (EBWM) have been obtained. Also, Tab.
(1) of [10] provides comparisons of this solution using the Legendre wavelet method (LWM), first kind Chebyshev
wavelet method (FKCWM), second kind Chebyshev wavelet method (SKCWM).
The comparision of the exact solution and approximate solutions of the Lane-Emden differential equation (7) by EBWM,
LWM, CWM and ODE 45 method are shown in the Table (1) and Figures (4) & (5).

t Exact sol. y(t) LWM [10] FKCWM [10] SKCWM [10] ODE 45 method EBWM for µ = 2,
k=2,M=4

EBWM for µ = 3,
k=2,M=4

0.1 0.0110000000000000 0.1105200243 0.0109999998 0.0110000002 0.011000084711643 0.0110002886336427 0.0110000000000000
0.2 0.0480000000000000 0.0483697994 0.0479999999 0.0480000001 0.048000617039672 0.0480002886336427 0.0480000000000000
0.3 0.1169999999999999 0.1181960706 0.1169999999 0.1170000000 0.116999923775231 0.1170002886336428 0.1170000000000000
0.4 0.2240000000000000 0.2267734978 0.2239999999 0.2240000001 0.223999687741197 0.2240002886336427 0.2239999999914254
0.5 0.3750000000000000 0.3803447612 0.3750000001 0.3750000001 0.374999558962347 0.3749999999992738 0.3749999999915540
0.6 0.5760000000000000 0.5851525426 0.5760000001 0.5760000001 0.575999479514219 0.5759999999992873 0.5759999999917186
0.7 0.8329999999999999 0.8474395224 0.8330000003 0.8330000002 0.832999439266877 0.8329999999993025 0.8329999999929758
0.8 1.1520000000000001 1.1734483820 1.1520000000 1.1520000000 1.151999439150442 1.1519999999993207 1.1519999999931549
0.9 1.5390000000000001 1.5694218030 1.5390000010 1.5390000000 1.538999482365030 1.5389999999993419 1.5389999999933526

Table 1: Comparison table between the exact solution, Legendre wavelet solution, Chebyshev wavelet solution, ODE 45
method and extended Bernoulli wavelet solution for various values of variable t for M = 4 of example 1.

Comparision of absolute errors of the Lane-Emden differential equation (7) by EBWM, LWM, CWM and ODE 45
method are shown in the Table (2) and Figure (6).
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Figure 4: Comparison between the exact solution, Legendre
wavelet solution, Chebyshev wavelet solution, ODE 45 method
and extended Bernoulli wavelet solution of example 1.

Figure 5: Comparison between the exact solution and extended
Bernoulli wavelet solution for various values of variable t for M = 4
of example 1.

t LWM FKCWM SKCWM ODE 45
method

EBWM for µ =
2, k=2, M=4

EBWM for µ =
3, k=2, M=4

0.1 0.000052002 2×10−10 2×10−10 8×10−08 3×10−7 0
0.2 0.000369799 1×10−10 1×10−10 6×10−7 3×10−7 0
0.3 0.001196071 1×10−11 1×10−15 7×10−08 3×10−7 1×10−15

0.4 0.002773498 1×10−10 1×10−10 3×10−07 3×10−7 8×10−15

0.5 0.005344761 1×10−10 1×10−10 4×10−07 7×10−13 8×10−12

0.6 0.009152543 1×10−10 1×10−10 5×10−07 7×10−13 8×10−12

0.7 0.014439522 3×10−10 2×10−10 5×10−07 7×10−13 7×10−12

0.8 0.021448382 0 0 5×10−07 7×10−13 7×10−12

0.9 0.030421803 1×10−9 0 5×10−07 7×10−13 7×10−12

Table 2: Comparison table between the absolute errors of the Legendre wavelet solution, Chebyshev wavelet solution, ODE
45 method and extended Bernoulli wavelet solution of example 1.
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Figure 6: Graphical representation of absolute errors of Legendre wavelet solution, Chebyshev
wavelet solution, ODE 45 method and extended Bernoulli wavelet solution of example 1.

5.2. Algorithm for Solving Linear Integral Equation
The linear integral equation solving algorithm is going to be covered in this section. Let us consider the linear

integral equation

y(x) = f (x) +
∫ 1

0
K(x, t)y(t) dt (8)

where K(x, t) is continuous in the region [0, 1] × [0, 1], f (x) is continuous on [0, 1], and y(x) is an unknown function that
needs to be evaluated. The functions y(x), f (x), and K(x, t) are now approximated as

y(x) = CTψ(x), f (x) = STψ(x), and K(x, t) = (ψ(x))TRψ(t) (9)

where C, S are µk−1M × 1 vectors and R is µk−1M × µk−1M matrix. Substituting these values in Eq. (8), we have

C = (I − R)−1S, (10)

where C is a µk−1M × 1 column vector. This method is illustrated with help of following example.

Example 2.
Consider the Fredholm integral equation

y(x) =
x
2
+

1
4

∫ 1

0
ex+t y(t) dt (11)

The exact solution of above Eq. (11) is y(x) = x
2 +

ex

9−e2 .
For µ=2,3,5 in the interval [0, 1), the exact solution (ES) and approximate solution of Eq. (11) developed using extended
Bernoulli wavelet method (EBWM). Also, we have compared this solution using the Legendre wavelet method (LWM),
which is given in Table (1) of [11].
The comparision of the exact solution and approximate solutions of the linear integral equation (11) by EBWM, LWM
are shown in the Table (3) and Figures (7) & (8).
By Table (3) and Figures (7) & (8), it is evident that the exact solution and EBW solution of the linear integral equation
(11) coincide almost everywhere.

The absolute errors between exact solution and approximate solution by extended Bernoulli wavelet method for
µ = 2, 3, 5, and Legendre wavelet method given in Table (4) and Figure (9).
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t Exact sol.
y(t)

LWM
[11] for
k = 3,M = 3

EBWM for
µ = 2, k =
2,M = 3

EBWM for
µ = 3, k =
2,M = 3

EBWM for
µ = 5, k =
2,M = 3

0.0 0.62075 0.62084 0.62155 0.62097 0.62079
0.1 0.73603 0.73601 0.73575 0.73594 0.73603
0.2 0.85819 0.85822 0.8579 0.85825 0.85824
0.3 0.98793 0.98789 0.98815 0.98791 0.98793
0.4 1.12606 1.12609 1.12637 1.12595 1.12612
0.5 1.27345 1.27360 1.27478 1.27345 1.27345
0.6 1.43109 1.43105 1.43061 1.43120 1.43117
0.7 1.60005 1.60010 1.59965 1.60004 1.60008
0.8 1.78151 1.78145 1.78189 1.78139 1.78161
0.9 1.97681 1.97680 1.97732 1.97700 1.97681

Table 3: Comparison table between the exact solution, Legendre wavelet solution and extended
Bernoulli wavelet solution for various values of variable t for M = 3 of example 2.

Figure 7: Comparison between the exact solution, Legendre
wavelet solution and extended Bernoulli wavelet solution for
various values of variable t for M = 3 of example 2.

Figure 8: Comparison between the exact solution and extended
Bernoulli wavelet solution for various values of variable t for M = 3
of example 2.
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t Abs. Error [11]
for k=3, M=3

Abs. Error for
µ = 2, k=2, M=3

Abs. Error for
µ = 3, k=2, M=3

Abs. Error for
µ = 5, k=2, M=3

0.0 9 ×10−5 8.0 ×10−4 2.2 ×10−4 4×10−5

0.1 2 ×10−5 2.8 ×10−4 9.0 ×10−5 0
0.2 3 ×10−5 2.9 ×10−4 6.0 ×10−5 5 ×10−5

0.3 4 ×10−5 2.2 ×10−4 2.0 ×10−5 0
0.4 3 ×10−5 3.1 ×10−4 1.1 ×10−4 6 ×10−5

0.5 2 ×10−4 1.3 ×10−3 0 0
0.6 4 ×10−5 4.8 ×10−4 1.1 ×10−4 8 ×10−5

0.7 5 ×10−5 4.0 ×10−4 1.0 ×10−5 3 ×10−5

0.8 6 ×10−5 3.8 ×10−4 1.2 ×10−4 1 ×10−4

0.9 1 ×10−5 5.1 ×10−4 1.9 ×10−4 0

Table 4: Comparison table between the absolute errors of the Legendre wavelet solution, and extended
Bernoulli wavelet solution of example 2.

Figure 9: Comparison between the absolute errors of the Legendre wavelet solution, and
extended Bernoulli wavelet solution of example 2.
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6. Conclusions

An extended Bernoulli wavelet method has been proposed for the numerical solution of Lane-Emden differential
equation. The performance of EBWCM superior to the CWM and LWM which is justified through the illustrative
examples. Superior accuracy is attained in the case of EBWM over the other methods. Also, we have solved linear
integral equation wih the help of proposed method and compared with the solution obtained by the Legendre wavelet
method. The main advantage of this method is its simplicity and small computation costs.
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