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Abstract. Semi-weak k-hyponormality has been considered to study the weak subnormality of Hilbert
space operators. In this paper, we consider a recursive weight sequence α(a, b, ρ) induced by two atomic
Berger measure with atoms {a, b} and density ρ for 0 < a, b, ρ < 1, and the corresponding weighted shift
Wα(a,b,ρ). For all k ≥ 2, we characterize semi-weak k-hyponormalities of recursively generated weighted
shifts with first two equal weights. We also show that a semi-weakly k-hyponormal weighted shift needs
not satisfy the flatness property, in which equality of first two weights forces all weights to be equal.

1. Introduction and Preliminaries

Let H be a separable infinite dimensional complex Hilbert space and let B(H) be the algebra of all
bounded linear operators on H . A bounded operator T is subnormal if it is the restriction of a normal
operator to a (closed) invariant subspace. For A and B in B(H), we let [A,B] := AB − BA. A k-tuple
(T1, ...,Tk) of bounded operators in B(H) is called hyponormal if the operator matrix ([T∗j ,Ti])k

i, j=1 is positive
on the direct sum of H ⊕ · · · ⊕ H (k-copies). An operator T ∈ B(H) is said to be (strongly) k-hyponormal if
(T, ...,Tk) is hyponormal ([5],[8],[9]). Obviously, 1-hyponormal operator T is hyponormal. It is well known
that according to the Bram-Halmos’ criterion, an operator T is subnormal if and only if T is k-hyponormal
for all k ∈N, whereN is the set of positive integers ([3]).

An operator T is said to be polynomially hyponormal if p(T) is hyponormal for all complex polynomials
p. For k ∈ N, an operator T is weakly k-hyponormal if for every polynomial p of degree k or less, p(T) is
hyponormal ([8],[15],[16]). For k = 2, T is said to be quadratically hyponormal. An operator T is called
semi-weakly k-hyponormal if T + sTk is hyponormal for all s in the set C of complex numbers ([17]). An
operator T is completely semi-weakly hyponormal if T is semi-weakly k-hyponormal for all k ∈ N ([21],[23]).
Clearly, quadratic hyponormality is equivalent to semi-weak 2-hyponormality. The following implications
hold: subnormal ⇒ polynomially hyponormal ⇒ completely semi-weakly hyponormal, and weakly k-
hyponormal ⇒ semi-weakly k-hyponormal. However it is known that converse implications are not
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always true ([17],[21]). Sometimes [semi-]weak 3- and 4-hyponormality are referred to as [semi-]cubic and
quartic hyponormality.

For a bounded weight sequence α = {αi}
∞

i=0 of positive real numbers, the weighted shift Wα acting on
ℓ2(N0), with an orthonormal basis {ei}

∞

i=0, is defined by Wαe j = α je j+1 for all j ∈ N0 := N ∪ {0}. Weighted
shifts have played important roles in detecting properties of weak subnormality ([12], [13], [14]). In the area
of gap theory between subnormality and hyponormality, the flatness is important to detect the structure
of such weighted shifts (cf. [4], [5], [6], [20]). The flatness of subnormal weighted shifts was begun by J.
Stampfli ([24]); he proved that if Wα is a subnormal weighted shift with the weight sequence α = {αi}

∞

i=0
and α0 = α1, then α0 = α1 = α2 = · · · , i.e. flat. In [6] R. Curto improved his result as that if Wα is a
2-hyponormal weighted shift with first two equal weights, then the sequence α is flat. Also he proved that

Wα is quadratically hyponormal with the weight α :
√

2
3 ,

√
2
3 ,

√
3
4 ,

√
4
5 , · · · . Hence the following problem

arose naturally.

Problem 1.1 ([7, Problem 4]). Describe all quadratically hyponormal weighted shifts Wα with the first
two equal weights.

Since R. Curto introduced Problem 1.1 in 1991, several operator theorists have studied this problem for
more 30 years. In [4], Choi proved this flatness in the case of polynomially hyponormal weighted shift.
Li-Cho-Lee in [20] proved that if Wα a cubically hyponormal weighted shift with α satisfying the first two
equal weights, then α forces flatness of Wα.

There are another family of subnormal shifts arising from Stampfli’s subnormal completion ([24]): for
positive real numbers u, v,w with u < v < w, there exists a recursively subnormal weighted shift W(

√
u,
√

v,
√

w)∧

(cf. [2], [10], [18], [22]). In [9] Curto-Fialkow proved that there exists 1 < x < y such that W1,(1,
√

x,
√

y)∧ is
quadratically hyponormal. For the weighted shift Wα(x) with α(x) :

√
x, (
√

u,
√

v,
√

w)∧ (x < u < v < w), it is
well-known [11] that 2-hyponormality of Wα(x) is equivalent to subnormality. Moreover, in [23] Li-Lee-Baek
proved that subnormality of Wα(x) is equivalent to polynomial hyponormality and completely semi-weak
hyponormality (cf. Proposition 2.3).

Due to the result in [20], it holds that every weakly k-hyponormal weighed shift with first two equal
weights satisfies the flatness property for all k ≥ 3, that is, Problem 1.1 does not extend to the case of weak
k-hyponormality. On the other hand, in [17] authors provided an example that a weighted shift Wα with

α :
√

2
3 ,

√
2
3 ,

√
3
4 ,

√
4
5 , · · · is semi-cubically hyponormal but not semi-weakly k-hyponormal for any k ≥ 4.

So it is natural question whether a semi-weakly k-hyponormal weighted shift with first two equal weights
has the flatness property. Hence it is meaningful studying on the following Problem 1.2.

Problem 1.2. Describe semi-weakly k-hyponormal weighted shifts with first two equal weights for each
integer k ≥ 2.

Authors in [1] described a nonempty range of x, which provides a weighted shift Wα(x) with the weight

α(x) : 1, 1,
√

x,
(√

111
100 ,

√
112
100 ,

√
113
100

)∧
being a semi-cubically hyponormal. Therefore it is worthwhile to find

appropriate weighted shifts with first two equal weights which can provide a positive answer to Problem
1.2.

This paper consists of four sections. In Section 2 for an arbitrary given triplet (a, b, ρ) with 0 <
a, b, ρ < 1, we introduce a new notion of a recursively generated weight sequence α(a, b, ρ) induced by
two atomic Berger measure. And we show the relationship between α(a, b, ρ) and Stampfli’s weight se-
quence (

√
u,
√

v,
√

w)∧ (0 < u < v < w).
In Section 3 for a recursive sequence α(a, b, ρ) with 0 < a, b, ρ < 1, we formulate a rather simple formula

for quadratic hyponormality of the weighted shift Wα(a,b,ρ), and provided some related examples.
In Section 4 we provide a concrete model which gives the affirmative answers to Problem 1.2. Using our

model, we characterize semi-weak k-hyponormalities of recursively generated weighted shifts with first
two equal weights for all k ≥ 2 (see Theorem 4.3 or Theorem 4.5).

Some of the calculations in this paper were accomplished by using the software tool Mathematica ([25]).
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2. Recursively generated weight sequence by two atoms

Let a and b be positive real numbers with a, b ≤ 1 and denote

φ0 = −ab and φ1 = a + b. (2.1)

Define a generating function f as follows:

f (t) = t2
− φ1t − φ0 (t ∈ R).

Consider two real numbers 0 < ρ0, ρ1 < 1 satisfying ρ0 + ρ1 = 1 and the Vandermonde equation(
1 1
a b

) (
ρ0
ρ1

)
=

(
1

ρ0a + ρ1b

)
.

Put ρ = ρ0. Then ρ1 = 1 − ρ. Now we consider a (two atomic) probability measure

µ := µ(a,b,ρ) = ρδ{a} +
(
1 − ρ

)
δ{b} with 0 < ρ < 1.

Then the measure µ is the Berger measure and there exists a sequence {γn}
∞

n=0 ⊂ R+ such that

γn =

∫
R+

tndµ(t) = ρan +
(
1 − ρ

)
bn (n ≥ 0). (2.2)

Define

αn ≡ αn(a, b, ρ) =
√
γn+1

γn
(n ≥ 0).

This produces a sequence α(a, b, ρ) := {αn}
∞

n=0 such that

αn =

√
ρan+1 +

(
1 − ρ

)
bn+1

ρan +
(
1 − ρ

)
bn (n ≥ 0). (2.3)

Using the notations (2.1) and (2.3), the sequence α(a, b, ρ) turns out to be recursively generated (or simply
recursive) by the triplet (a, b, ρ) satisfying

α2
n = φ1 +

φ0

α2
n−1

, n ≥ 1. (2.4)

We note that if two atoms are equal, i.e. a = b, then the sequence α(a, b, ρ) forces the flatness regardless
of the density value ρ. To avoid this trivial case, we consider two different atoms in this paper.

Proposition 2.1. For a weight sequence α(a, b, ρ), the following assertions hold.
(i) The sequence α(a, b, ρ) is monotone increasing;
(ii)

lim
n→∞

α2
n =

{
a, if a > b,
b, if a < b.

Proof. (i) Using (2.3), it follows from simple computations that

α2
n+1 − α

2
n =

ρ(1 − ρ)an−1(a − b)2bn−1

(ρan + (1 − ρ)bn)
(
ρan−1 + (1 − ρ)bn−1) (n ≥ 0).
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Since 0 < ρ < 1, α2
n+1 > α

2
n (n ≥ 0), which implies the result.

(ii) Suppose that 0 < b < a ≤ 1. Then b
a < 1. So

lim
n→∞

α2
n = lim

n→∞

aρ + (1 − ρ)
(

b
a

)n+1

ρ + (1 − ρ)
(

b
a

)n = a.

For the other case 0 < a < b ≤ 1, the proof is similar and easy. □

It turns out from Proposition 2.1 that α(a, b, ρ) becomes a bounded increasing sequence of positive
numbers.

Lemma 2.2. For a weight sequence α(a, b, ρ), put

K := −
φ2

1

2φ0

(
φ1 +

√
φ2

1 + 4φ0

)
and L2 :=

1
2

(
φ1 +

√
φ2

1 + 4φ0

)
.

Suppose a < b. Then

K =
(a + b)2

a
and L2 = b.

Proof. It is straightforward from simple computations. □

For a given triplet (a, b, ρ), let the sequence γ = {γn}
∞

n=0 be given as in (2.2). Consider a Hankel matrix
M(i) for all i ≥ 0,

M(i) =
[
γi+ j

]
j=0,1,2

.

It follows from (2.4) that the sequence γ = {γn} satisfies the followings:

γ0 = 1, γ1 = ρa + (1 − ρ)b, γn = φ0γn−2 + φ1γn−1 (n ≥ 2).

Then the rank of the matrix M(i), rankM(i) = 2 for all (i ≥ 0). Denote Wα(a,b,ρ) for the corresponding weighted
shift with a recursive sequence α(a, b, ρ). It is obvious that Wα(a,b,ρ) is a subnormal recursively generated
weighted shift (cf. [8, p. 220]).

For the reader’s convenience, we recall Stampfli’s subnormal completion (cf. [9],[24]). For given real
numbers

√
u(≡ α0),

√
v(≡ α1),

√
w(≡ α2) with u < v < w, define

α2
n = Ψ1 +

Ψ0

α2
n−1

, n ≥ 2,

whereΨ0 = −
uv(w−v)

v−u andΨ1 =
v(w−u)

v−u . Then we obtain a recursively generated weight sequence and denote
it by (

√
u,
√

v,
√

w)∧ and the associated weighted shift W(
√

u,
√

v,
√

w)∧ is subnormal ([24]). For a weighted shift
Wα(x) with α(x) :

√
x, (
√

u,
√

v,
√

w)∧ (x < u < v < w), it is well known [9] that

Wα(x) is 2-hyponormal ⇔ 0 < x ≤

√
uv(w − v)

u2 − 2uv + vw
(≡ H2).

Given a triplet (a, b, ρ) with 0 < a, b, ρ < 1, consider three positive real numbers u < v < w of Stampfli’s
weight sequence (

√
u,
√

v,
√

w)∧ as follows:

u = ρa +
(
1 − ρ

)
b, v =

ρa2 +
(
1 − ρ

)
b2

ρa +
(
1 − ρ

)
b
, w =

ρa3 +
(
1 − ρ

)
b3

ρa2 +
(
1 − ρ

)
b2 . (2.5)
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From (2.4), we note that the sequence (
√

u,
√

v,
√

w)∧ is exactly the same as the weight sequence α(a, b, ρ)
induced by a triplet (a, b, ρ).

Let a weight sequence α(x; a, b, ρ) be a backward extension of α(a, b, ρ) as follows:

α(x; a, b, ρ) :
√

x,

√
ρan +

(
1 − ρ

)
bn

ρan−1 +
(
1 − ρ

)
bn−1 (n ≥ 1). (2.6)

For the recursive weight sequence α(a, b, ρ), using formulas in (2.5), we have

H2(a, b, ρ) =

√
ab

a
(
1 − ρ

)
+ bρ

. (2.7)

Combining (2.7) for the weight sequence α(a, b, ρ) and the results of [11, Theorem 1.3] and [22, Theorem
4.3], we can obtain the following proposition.

Proposition 2.3. For a recursive weight sequence α(x; a, b, ρ) as in (2.6), let Wα(x;a,b,ρ) be the associated weighted
shift. Then the following assertions are equivalent:
(i) Wα(x;a,b,ρ) is 2-hyponormal;
(ii) Wα(x;a,b,ρ) is subnormal;
(iii) Wα(x;a,b,ρ) is polynomially hyponormal;
(iv) Wα(x;a,b,ρ) is weakly k-hyponormal, for any positive integer k ≥ 2;
(v) Wα(x;a,b,ρ) is semi-weakly k-hyponormal, for any positive integer k ≥ 2;
(vi) Wα(x;a,b,ρ) is completely semi-weakly hyponormal;
(vii) 0 < x ≤ ab

a(1−ρ)+bρ
.

Example 2.4. For the case of a = 1
2 , b = 2

3 and ρ = 1
3 in α(a, b, ρ), we consider a backward extension weight sequence

α(x; 1
2 ,

2
3 ,

1
3 ) as follows:

α
(
x;

1
2
,

2
3
,

1
3

)
:
√

x,

√
11
18
,

√
41
66
,

√
155
246

,

√
593
930

, · · · .

Let Wα(x; 1
2 ,

2
3 ,

1
3 ) be the corresponding weighted shift. From Proposition 2.3, we can see that

Wα(x; 1
2 ,

2
3 ,

1
3 ) is 2-hyponormal⇐⇒Wα(x; 1

2 ,
2
3 ,

1
3 ) is subnormal⇐⇒ 0 < x ≤

3
5
.

3. Quadratic hyponormality of a weighted shift Wα(x;a,b,ρ)

Recall that T is semi-weakly k-hyponormal if T + sTk is hyponormal for k ≥ 2, i.e.[(
T + sTk

)∗
,T + sTk

]
≥ 0,

for all s ∈ C ([17]). It is obvious that the semi-weak 2-hyponormality is equivalent to the quadratic
hyponormality. Throughout this paper we may consider k ≥ 2. In this section, we first formulate a rather
simple criterion for the quadratic hyponormality of a recursively generated weighted shifts Wα(x;a,b,ρ) with
the weight sequence α(x; a, b, ρ) as in (2.6).
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For a weighted shift Wα(x) with α(x) :
√

x, (
√

u,
√

v,
√

w)∧ (x < u < v < w), it is well-known the following
formula:

h+2 = min
{

u,
u2v2w + uv2 (w − u) K + uv (w − v) K2

u3v + uv (w − u) K + (u2 + vw − 2uv) K2

}
, (3.1)

where h+2 =
(
sup{x > 0 : Wα(x) is positive quadratically hyponormal}

)1/2
([9, Theorem 4.3]).

We now consider the weight sequence α(a, b, ρ) induced by a triplet (a, b, ρ) with a < b ≤ 1 and 0 < ρ < 1,
it holds from Lemma 2.2 that K = 1

a (a + b)2. Hence we can obtain the formula h+2 in (3.1) for α(a, b, ρ) as
follows:

h+2 = min

ρa +
(
1 − ρ

)
b,

a
∑7

l=0 φl
(
ρ
) ( b

a

)l

∑7
l=0 ψl

(
ρ
) ( b

a

)l

 , (3.2)

where

φ0
(
ρ
)
= ρ2,

φ1
(
ρ
)
= ρ

(
2ρ + 1

) (
1 − ρ

)
,

φ2
(
ρ
)
= ρ

(
1 − ρ

) (
3 − 2ρ

)
,

φ3
(
ρ
)
= b3ρ

(
1 − 3ρ

) (
1 − ρ

)
,

φ4
(
ρ
)
= −ρ

(
1 − ρ

) (
5 − 2ρ

)
,

φ5
(
ρ
)
= −2ρ

(
1 − ρ

)2 ,
φ6

(
ρ
)
=

(
1 − ρ

) (
ρ + 1

)
,

φ7
(
ρ
)
= ρ

(
1 − ρ

) (
2 − ρ

)
,

and



ψ0
(
ρ
)
= ρ

(
1 − ρ + ρ3

)
,

ψ1
(
ρ
)
= ρ

(
1 − ρ

) (
3ρ2 + 3 − ρ

)
,

ψ2
(
ρ
)
= ρ2 (

1 − ρ
) (

3 − 2ρ
)
,

ψ3
(
ρ
)
= −ρ

(
1 − ρ

) (
5 − 4ρ + 2ρ2

)
,

ψ4
(
ρ
)
= −3ρ2 (

1 − ρ
) (

2 − ρ
)
,

ψ5
(
ρ
)
=

(
ρ + ρ2 + 1

) (
1 − ρ

)2 ,
ψ6

(
ρ
)
= 2ρ

(
1 − ρ

)
,

ψ7
(
ρ
)
= ρ2 (

1 − ρ
)
.

We also recall that for a weighted shift Wα(x) with α(x) :
√

x, (
√

u,
√

v,
√

w)∧, Jung-Park proved the
following([19, Theorem 4.6]):

the quadratic hyponormality and positive quadratic hyponormality of Wα(x) are equivalent to each other.

Then we can obtain the following result for the recursively generated weighted shifts Wα(x;a,b,ρ).

Proposition 3.1. Let a weight sequence α(x; a, b, ρ) be given as in (2.6) and let Wα(x;a,b,ρ) be the corresponding
weighted shift. Then the followings are equivalent:
(i) Wα(x;a,b,ρ) is quadratically hyponormal;
(ii) 0 < x ≤ h+2 .

Example 3.2. (Continued Example 2.4) Let Wα(x; 1
2 ,

2
3 ,

1
3 ) be a weighted shift with a sequence α(x; 1

2 ,
2
3 ,

1
3 ). Applying to

(3.2), we get h+2 = min
{

11
18 ,

295 465
468 742

}
, so h+2 =

11
18 ≈ 0.61111. Hence from Proposition 3.1, Wα(x; 1

2 ,
2
3 ,

1
3 ) is quadratically

hyponormal if and only if 0 < x ≤ 11
18 .

For a triplet (a, b, ρ) with 0 < a < b ≤ 1 and 0 < ρ < 1, without loss of generality, we may assume that
b = 1. In fact we can take a = a′

b′ and b = b′
b′ for the triplet (a′, b′, ρ) with a′ < b′ ≤ 1. Hence we consider (a, 1, ρ)

instead of (a, b, ρ) for our convenience. Now we define a backward extension weight sequence α(x; a, 1, ρ)
of α(a, 1, ρ) with 0 < a, ρ < 1 as follows:

α(x; a, 1, ρ) :
√

x,

√
ρan + 1 − ρ
ρan−1 + 1 − ρ

(n ≥ 1). (3.3)
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Proposition 3.3. Let Wα(x;a,1,ρ) be the weighted shift with a weight α(x; a, 1, ρ) in (3.3). Then the following assertions
are equivalent:
(i) Wα(x;a,1,ρ) is quadratically hyponormal;

(ii) 0 < x ≤ h+2 = min
{
1 − ω,

a(η3ω3+η2ω2
−η1ω+a)

ζ4ω4−ζ3ω3−ζ2ω2−ζ1ω+a2

}
, where ω = (1 − a)ρ,


η3 = (a + 1)

(
2a2 + 2a + 1

)
,

η2 = a5 + 3a4
− 7a2

− 7a − 3,
η1 = 4a3 + 7a2 + 3a + 1,

and


ζ4 = a2 (a + 1) ,
ζ3 = 4a3 + 7a2 + 3a + 1,
ζ2 = a5 + 6a4 + 8a3 + a2

− 1,
ζ1 = a

(
a5 + 4a4 + 4a3

− a2
− a − 2

)
.

Proof. To prove this result, we apply the weight sequence α(x; a, 1, ρ) to Proposition 3.1. By substituting
b = 1 into the formula in (3.2), we can obtain the same formula h+2 in the result. □

In particular, if we consider the case ρ = 1
2 in the weight sequence α(a, 1, ρ), then from Proposition 3.3

the following result holds.

Corollary 3.4. Let Wα(x;a,1,1/2) be the weighted shift with α(x; a, 1, 1/2) as follows:

α
(
x; a, 1,

1
2

)
:
√

x,

√
an + 1

an−1 + 1
(n ≥ 1).

Then the following assertions are equivalent:
(i) Wα(x;a,1,1/2) is quadratically hyponormal;
(ii) 0 < x ≤ h+2 , where

h+2 =

 2a(2a5+2a3
−5a2+3)

(a+1)(5a4−2a3−5a2+2a+2) if a ≤ c0,
a+1

2 if c0 < a,

for some c0 ∈ (0, 1).

Proof. For the sequence α(x; a, 1, 1
2 ) with 0 < a, ρ < 1, it follows from (3.2) that 1 − ω = a+1

2 and

h+2 = min

a + 1
2

,
2a

(
2a5 + 2a3

− 5a2 + 3
)

(a + 1) (5a4 − 2a3 − 5a2 + 2a + 2)

 .
Since

2a
(
2a5 + 2a3

− 5a2 + 3
)

(a + 1) (5a4 − 2a3 − 5a2 + 2a + 2)
−

a + 1
2
=

(a − 1)2
(
3a4
− 2a3 + 5a2 + 2a − 2

)
2(a + 1) (5a4 − 2a3 − 5a2 + 2a + 2)

,

we consider a function f (a) on (0, 1) as

f (a) =
3a4
− 2a3 + 5a2 + 2a − 2

5a4 − 2a3 − 5a2 + 2a + 2
.

From simple computations,

f ′(a) =
4(a − 1)(a5

− 19a4
− 17a3

− a2
− 2a − 2)

(5a4 − 2a3 − 5a2 + 2a + 2)2 .

For 0 < a < 1, it is clear that a5
− 19a4

− 17a3
− a2
− 2a − 2 < 0, which implies f ′(a) > 0, i.e. f (a) is increasing

function on (0, 1). Since f (0) < 0, the equation f (a) = 0 has a unique positive solution c0 ≈ 0.472 5249 on
(0, 1). Hence we have completed the proof. □
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Example 3.5. For the case a = 1/3 and ρ = 1/2 in α(a, 1, ρ), we consider a weighted shift Wα(x;1/3,1,1/2) with the
weight sequence α (x; 1/3, 1, 1/2) as follows:

α
(
x;

1
3
, 1,

1
2

)
:
√

x,

√
2
3
,

√
5
6
,

√
14
15
,

√
41
42
, · · · .

Since a = 1/3 < c0, from Corollary 3.4, it holds h+2 =
307
510 ≈ 0.601 96. Hence it holds that Wα(x;1/3,1,1/2) is quadratically

hyponormal⇔ 0 < x ≤ 307
510 .

Now to show more simple formula for h+2 , we consider a backward extension weight sequenceα(x; a, 1, a),
i.e. ρ = a. From (3.3), the sequence α(x; a, 1, a) with 0 < a < 1 is defined by

α(x; a, 1, a) :
√

x,

√
an+1 − a + 1
an − a + 1

(n ≥ 1). (3.4)

Then we can have the following result.

Corollary 3.6. Let α(x; a, 1, a) be a weight sequence as in (3.4) and let Wα(x;a,1,a) be the corresponding weighted shift.
Then the following assertions are equivalent:
(i) Wα(x;a,1,a) is quadratically hyponormal;
(ii) 0 < x ≤ h+2 , where

h+2 =
{

a8
−3a7+a6+3a5

−6a4+a3+2a2+3a−3
−a9+3a8−5a7+6a6+3a5−19a4+12a3+4a−4 , if a ≤ c1,

a2
− a + 1, if c1 < a,

for some c1 ∈ (0, 1).

Proof. Using the similar computations in the proof of Corollary 3.4 for α(x; a, 1, a), we can obtain

h+2 = min
{

a2
− a + 1,

a8
− 3a7 + a6 + 3a5

− 6a4 + a3 + 2a2 + 3a − 3
−a9 + 3a8 − 5a7 + 6a6 + 3a5 − 19a4 + 12a3 + 4a − 4

}
.

Also we have

a8
− 3a7 + a6 + 3a5

− 6a4 + a3 + 2a2 + 3a − 3
−a9 + 3a8 − 5a7 + 6a6 + 3a5 − 19a4 + 12a3 + 4a − 4

−

(
a2
− a + 1

)
=

(a − 1)3
(
−a8 + a7

− 3a6 + 5a4
− 5a3 + a2

− 2a + 1
)

a9 − 3a8 + 5a7 − 6a6 − 3a5 + 19a4 − 12a3 − 4a + 4
≡ (a − 1)31(a).

For 0 < a < 1, it is obvious from some computations that 1′(a) is always negative, which implies that the
function 1(a) is decreasing on (0, 1). Since 1(0) > 0 and 1(1) < 0, the equation 1(a) = 0 has a unique positive
solution c1 ≈ 0.461 028 on (0, 1). Hence we have completed the proof. □

Example 3.7. For the case a = 1/2 in α(a, 1, a), we consider a weighted shift Wα(x;1/2,1,1/2) with the sequence
α (x; 1/2, 1, 1/2) as follows:

α
(
x;

1
2
, 1,

1
2

)
:
√

x,

√
3
4
,

√
5
6
,

√
9
10
,

√
17
18
, · · · .

Since c1 < a, by Corollary 3.6 we have h+2 = a2
− a + 1 = 3

4 . Hence Wα(x;1/2,1,1/2) is quadratically hyponormal ⇔
0 < x ≤ 3

4 .
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4. Main results

In this section we discuss with Problem 1.2. To obtain an affirmative answer about Problem 1.2,
it is worthwhile to consider a weighted shift Wβ with a weight sequence β : 1, 1, β2, β3, · · · satisfying
1 < β2 < β3 < · · · . For this purpose, we deal with a recursive weight sequence α(a, 1, ρ) with two atoms
{a, 1} and density ρ (0 < a, ρ < 1) introduced in Section 2. Now for our convenience and without loss of
generality, we may consider new two atoms as follows:

a
ρa + 1 − ρ

and
1

ρa + 1 − ρ
(0 < a, ρ < 1). (4.1)

Then the associated two coefficients ψ0 and ψ1 of the quadratic generating function for two atoms as in (4.1)
become

ψ0 = −
a

(ρa + 1 − ρ)2 and ψ1 =
a + 1

ρa + 1 − ρ
. (4.2)

Hence according to the usual methods in Section 2, we can have a recursively generated weight sequence
β(a, ρ), that is

β(a, ρ) : 1,

√
ρa2 + 1 − ρ(
ρa + 1 − ρ

)2 ,

√
ρan+1 + 1 − ρ(

ρa + 1 − ρ
) (
ρan + 1 − ρ

) (n ≥ 2). (4.3)

We now consider the main weight sequence β(1; a, ρ) = {βn}
∞

n=0, a backward extension of β(a, ρ) in (4.3) with
first two equal weights as follows:

β(1; a, ρ) : 1, 1,

√
ρan + 1 − ρ(

ρa + 1 − ρ
) (
ρan−1 + 1 − ρ

) (n ≥ 2) (4.4)

and denote Wβ(1;a,ρ) for the weighted shift with β(1; a, ρ). Then we can obtain the fundamental lemma.

Lemma 4.1. Let a weight sequence β(1; a, ρ) be given as in (4.4). Set

Qk :=
Mk
−Nk√

ψ2
1 + 4ψ0

1 −
(
−

M2

ψ0

)k

1 + M2

ψ0

 ,
where

M :=
ψ1 +

√
ψ2

1 + 4ψ0

2
, N :=

ψ1 −

√
ψ2

1 + 4ψ0

2
.

Then

Qk =

(∑k
i=1 ai−1

)2

(a(ρa + 1 − ρ))k−1
. (4.5)

Proof. It follows from (4.2) that√
ψ2

1 + 4ψ0 =
1 − a

ρa + 1 − ρ
, M =

1
ρa + 1 − ρ

, N =
a

ρa + 1 − ρ
.
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Since 0 < a < 1, a
ρa+1−ρ <

1
ρa+1−ρ . It follows from Lemma 2.2 that L2 = 1

ρa+1−ρ = M, which implies M2

ψ0
= − 1

a .
Also for all k ≥ 2,

Mk
−Nk√

ψ2
1 + 4ψ0

=
ρa + 1 − ρ

1 − a

(
1

(ρa + 1 − ρ)k
−

ak

(ρa + 1 − ρ)k

)
=

(ρa + 1 − ρ)(1 − ak)
(1 − a)(ρa + 1 − ρ)k

. (4.6)

To obtain the formula of Qk, using the third formula in (4.6), it holds that for all k ≥ 2

Qk =
(ρa + 1 − ρ)(1 − ak)
(1 − a)(ρa + 1 − ρ)k

·

1 −
(

1
a

)k

1 − 1
a

=
(ρa + 1 − ρ)(1 − ak)
(1 − a)(ρa + 1 − ρ)k

·
a(1 − ak)
(1 − a)ak

=
(1 − ak)2

ak−1(1 − a)2(ρa + 1 − ρ)k−1

=

(
1 + a + a2 + · · · + ak−1

)2

(
a
(
aρ + 1 − ρ

))k−1
.

Hence the proof is completed. □

For the recursive sequence β(1; a, ρ) with first two equal weights as in (4.4), applying to the formula [23,
Proposition 3.3] via some computations for formulas in (2.5), we can obtain the following result.

Proposition 4.2. For 0 < a, ρ < 1, let β(1; a, ρ) be given as in (4.4) and let Wβ(1;a,ρ) be the associated weighted shift.
Suppose k ≥ 2. Then Wβ(1;a,ρ) is semi-weakly k-hyponormal if and only if Θk(a, ρ) ≥ 1, where

Θk :=
β2

kβ
2
k+1 · · · β

2
2k−1(β2

1β
2
2 · · · β

2
k +Qk) −Qkβ2

1β
2
2 · · · β

2
k−1β

4
k

β2
1β

2
2 · · · β

2
k−1(β2

1β
2
2 · · · β

2
k +Qk − 2β2

kQk) +Qkβ2
kβ

2
k+1 · · · β

2
2k−1

.

From Lemma 4.1 and Proposition 4.2, we obtain the main theorem of the paper.

Theorem 4.3. For 0 < a, ρ < 1, let β(1; a, ρ) be given as in (4.4) and let Wβ(1;a,ρ) be the associated weighted shift.
Suppose k ≥ 2. Then Wβ(1;a,ρ) is semi-weakly k-hyponormal if and only if hk(a, ρ) ≥ 0, where

hk(a, ρ) =
(
ak
− 1

)2
ρ2 +

(
2ak
− ak−1

− 1
)
ρ + ak−1. (4.7)

Proof. We first note the formula of Θk in Proposition 4.2 for the weight sequence β(1; a, ρ) as following:

Θk =
β2

k+1β
2
k+2 · · · β

2
2k(β2

2 · · · β
2
k+1 +Qk) −Qkβ2

2 · · · β
2
kβ

4
k+1

β2
2 · · · β

2
k(β2

2 · · · β
2
k+1 +Qk − 2β2

k+1Qk) +Qkβ2
k+1β

2
k+2 · · · β

2
2k

. (4.8)

From the definition of the weight sequence β(1; a, ρ),

β2
i =

ρai + 1 − ρ(
ρa + 1 − ρ

) (
ρai−1 + 1 − ρ

) (i ≥ 1),

which implies that for any n, ℓ ≥ 1

β2
nβ

2
n+1 · · · β

2
n+ℓ−1 =

ρan+ℓ−1 + 1 − ρ(
ρa + 1 − ρ

)ℓ (ρan−1 + 1 − ρ
) . (4.9)
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Applying the formulas Qk in Lemma 4.1 and (4.9) to (4.8), we can obtain

Θk =
θk

ξk
,

where

θk =
ρa2k + 1 − ρ(

ρa + 1 − ρ
)k (ρak + 1 − ρ

)  ρak+1 + 1 − ρ(
ρa + 1 − ρ

)k+1
+Qk

 − Qk(ρak+1 + 1 − ρ)2(
ρa + 1 − ρ

)k+2 (
ρak + 1 − ρ

)
and

ξk =
ρak + 1 − ρ(
ρa + 1 − ρ

)k

 ρak+1 + 1 − ρ(
ρa + 1 − ρ

)k+1
+Qk −

2(ρak+1 + 1 − ρ)Qk(
ρa + 1 − ρ

) (
ρak + 1 − ρ

)  + Qk(ρa2k + 1 − ρ)(
ρa + 1 − ρ

)k (ρak + 1 − ρ
) .

It follows from some computations that θk > 0 and ξk > 0 for all k ≥ 2.
Hence Θk ≥ 1⇔ θk − ξk ≥ 0 (k ≥ 2). Using Qk in (4.5) and hk(a, ρ) in (4.7), we have

θk − ξk =
ρ(1 − ρ)(ak

− 1)2(
ρak + 1 − ρ

) (
ρa + 1 − ρ

)2k+1

(
−ρ(1 − ρ)(ak

− 1)2

ak−1
+ akρ + 1 − ρ

)
=

ρ(1 − ρ)(ak
− 1)2ak−1(

ρak + 1 − ρ
) (
ρa + 1 − ρ

)2k+1
hk(a, ρ).

Since 0 < a, ρ < 1, it holds that Θk ≥ 1⇔ hk(a, ρ) ≥ 0, which completes the proof. □

Set for k ≥ 2,

RH k := {
(
a, ρ

)
: hk(a, ρ) ≥ 0, 0 < a, ρ < 1}.

From Theorem 4.3, we can describe regions of RH k for each k ≥ 2 in Figure 1, which provide distinctions
and implications of semi-weak k-hyponormalities of weighted shift Wβ(1;a,ρ) with 0 < a, ρ < 1.

Figure 1: Regions of semi-weak k-hyponormality of Wβ(1;a,ρ).
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For more simplicity of characterization of semi-weak k-hyponormality of Wβ(1;a,ρ), we consider the
projection of the set RH k onto the diagonal set {(a, ρ) : 0 < a, ρ < 1, ρ = a}, that is, we take the recursive
weight sequence β(1; a, a) (0 < a < 1) as follows:

β(1; a, a) : 1, 1,

√
a3 − a + 1

(a2 − a + 1)2 ,

√
a4 − a + 1

(a2 − a + 1) (a3 − a + 1)
, · · · . (4.10)

Using Theorem 4.3, we can obtain the following assertion.

Proposition 4.4. For 0 < a < 1, let Wβ(1;a,a) be the weighted shift with β(1; a, a) as in (4.10). Suppose k ≥ 2. Then
Wβ(1;a,a) is semi-weakly k-hyponormal if and only if sk(a) ≥ 0, where

sk(a) =

a2k+1
− 2ak+1 + 2ak

− ak−1 + ak−2 + a − 1 for k ≥ 3,
a2(a3

− 2a + 2) for k = 2.
(4.11)

In particular, Wβ(1;a,a) is quadratically hyponormal if and only if 0 < a < 1.

Proof. Substituting ρ = a to hk(a, ρ) in (4.7), we have hk(a, a) = ask(a). From Theorem 4.3, we obtain the first
result.

Next to show the range of the quadratic hyponormality for Wβ(1;a,a), we consider the function s2(a) as in
(4.11). For our convenience, put

t(a) = a3
− 2a + 2.

It follows from simple computations that t(a) has the positive local minimum at a =
√

2
3 , which implies

s2(a) > 0 for all 0 < a < 1. Hence we have completed the proof. □

Let a weight sequence β(1; a, a) be as in (4.10) and let Wβ(1;a,a) be the corresponding weighted shift. We
now consider the following set

sWH k := {a ∈ (0, 1) : Wβ(1;a,a) is semi-weakly k-hyponormal} for k ≥ 2.

From Proposition 4.4 it is obvious that sWH2 = (0, 1).

Theorem 4.5. Suppose that k ≥ 3 and 0 < a < 1. Let Wβ(1;a,a) be the weighted shift with β(1; a, a) as in (4.10).
Denote rk for a positive zero of the function sk(a) as in (4.11). Then the following assertions hold:
(i) {rk}

∞

k=3 is a strictly increasing sequence in (0, 1);
(ii) sWH k = [rk, 1) for 3 ≤ k < ∞;
(iii) sWH k \ sWH k+1 = [rk, rk+1) and (0, 1) ⊋ sWH3 ⊋ · · · ⊋ sWH k ⊋ sWH k+1 ⊋ · · · .

Proof. Consider the function sn(a) for n ≥ 3 in Proposition 4.4,

sn(a) = a2n+1
− 2an+1 + 2an

− an−1 + an−2 + a − 1.

Then for all n ≥ 3, the continuous function sn(a) passes through two fixed points (0,−1) and (1, 1), which
induces that there exists a zero rn ∈ (0, 1) of the equation sn(a) = 0. Also from simple computations, we
have

s′n(a) = (2n + 1)a2n
− 2(n + 1)an + 2nan−1

− (n − 1)an−2 + (n − 2)an−3 + 1,

s′′n (a) = an−4
(
2(2n + 1)nan+3

− 2(n + 1)na3 + 2(n − 1)na2
− (n − 1)(n − 2)a + (n − 2)(n − 3)

)
.
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For n ≥ 3, it holds that s′′n (a) > 0 for 0 < a < 1, which induces that the function s′n(a) is increasing on (0, 1).
By s′n(0) > 0, s′n(a) > 0 for 0 < a < 1. So the function sn(a) is strictly increasing on (0, 1), which guarantees
that there exists a unique positive root rn ∈ (0, 1) satisfying sn(rn) = 0 for each n ≥ 3. For the positive zero rn
(3 ≤ n < ∞), from some computations we can obtain that

sn+1(rn) = rn sn(rn) + (rn − 1)
(
r2(n+1)

n − rn + 1
)
, n ≥ 3. (4.12)

Since the function sn(a) is increasing on (0, 1), the value of sn+1(rn) in (4.12) turns out to be negative, i.e.
sn+1(rn) < 0, which implies rn ⪇ rn+1 (n ≥ 3). Then by mathematical induction, the following inequalities
hold:

0 < r3 ⪇ r4 ⪇ · · · ⪇ rn ⪇ rn+1 ⪇ · · · < 1. (4.13)

Hence the sequence {rn}
∞

n=3 is a strictly increasing sequence in the interval (0, 1). Also by conditions of the
sn(a) and uniqueness of the positive root rn for all n ≥ 3 and 0 < a < 1, we can obtain that rn = inf sWHn
and the set sWHn is a connected interval, that is,

sWHn = [rn, 1) for 3 ≤ n < ∞.

Therefore by (4.13), we have completed the proofs. □

Finally, we close this note providing mutually disjoint approximate values for rk for useful finite numbers
of k = 3, 4, 5.

Corollary 4.6. Let Wβ(1;a,a) be the weighted shift. Then the following assertions hold:
(i) Wβ(1;a,a) is quadratically but not semi-cubically hyponormal⇔ 0 < a < r3(≈ 0.574);
(ii) Wβ(1;a,a) is semi-cubically but not semi-quartically hyponormal⇔ r3 ≤ a < r4(≈ 0.682);
(iii) Wβ(1;a,a) is semi-quartically but not semi-quintically hyponormal⇔ r4 ≤ a < r5(≈ 0.741).
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