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Gadient Ricci soliton on Schwarzschild black hole and Ricci-Hessian
type space-time warped product
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Abstract. In this article, we study gradient Ricci soliton on generalized Schwarzschild black hole. Then
we discuss Ricci-Hessian type space-time warped product and obtain Bochner-Weitzenöck formula for
space-time. We also provide the existence results of gradient Ricci soliton space-time warped product.

1. Introduction and preliminaries

The Ricci flow on a Riemannian manifold (M, 1) is an one parameter family of the metric 1(t) which
satisfies the following equation,

∂1

∂t
= −2Rc, 1(0) = 10,

where Rc is the Ricci curvature tensor and 10 is the initial metric. R. Hamilton [19], introduced the concept
of Ricci flow in 1982. A self similar solution of Ricci flow is called Ricci soliton which can be described by
the following equation,

Rc +
1
2
LX1 = λ1,

where X is a vector field on M and λ is some real number. If we consider a smooth function ϕ on M such
that X = ∇ϕ, then the manifold is said to be gradient Ricci soliton and then the corresponding equation
becomes,

Rc + ∇2ϕ = λ1.

A gradient Ricci soliton is shrinking if λ > 0, steady if λ = 0 and expanding if λ < 0. Gradient Ricci soliton
is natural generalization of Einstein manifold. In the above expression if we take function ϕ, as a constant
function, then it becomes Einstein manifold. In 2020, H. Alodan proved the necessary and sufficient con-
dition for a submanifold of Euclidean space to become Ricci soliton. Nicolas Ginoux et. al. [16], studied
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and partially classified some manifold which satisfy ∇2 f = − f Rc,where f is non-zero smooth function and
Rc is Ricci curvature tensor. V. Borges and K. Tenenblat [23], discussed the behavior of Ricci soliton on
a warped product whenever the warping function depends on the fiber manifold. In 2011, G. Catino[9],
introduced the notion of generalized quasi-Einstein manifold and this notion generalizes the concepts of
Ricci soliton. S. Guler and S. A. Demirbag [22], investigated the relationshps between generalized quasi
Einstein warped product and Ricci-Hessian type manifold and obtained some rigidity condition. S. Desh-
mukh and H. Alsodais [21], characterized the trivial Ricci soliton and studied the role of energy function
in this characterization. In 2017, F.E.S. Feitosa et. al. [7, 8], proved that if a warped product is a gradient
Ricci soliton, then its base manifold is a Ricci-Hessian type manifold and the fiber manifold is an Einstein
manifold.

Mathematically, space-time is the union of space and time interpreted by product manifold of space with an
closed interval ofR. It was first introduced by Hermann Minkowski in 1908. In the currect scenerio, space-
time is torsionless, time-oriented Lorentzian manifold. Grisha Perelman [10], discussed the concept of
potentially infinite metric. Also, he discussed “Ricci flow as a gradient flow.” In 1920, Friedmann-Lemaitre
and Robertson-Walker introduced a space time assuming the space homogeneous and isotropic. Sun-Chin
Chu [1], gave the concept of space-time connection and modified Ricci flow for degenerate metrics. In
2002, B. Chow and Sun-Chin Chu [2], gave the space-time formulation for Ricci flow and linearized it.
Further they showed the variation of 2-parameter family of metrics. In 1916, Einstein presented his the-
ory of general relativity. In this theory, first time the existence of black hole was predicted. Then, German
physicist and astronomer Karl Schwarzschild obtained the first modern solution for general relativity theory.

In the coordinate (t, r, θ, ϕ), the Schwarzschild metric has form

ds2 = −
(
1 −

sr

r

)
c2dt2 +

(
1 −

sr

r

)−1
dr2 + r2

[
dθ2 + sin2 θdϕ2

]
,

where sr =
2GM

c2 represent Schwarzschild radius.

The generalisation of above leads us to Schwarzschild metric for n-dimension as follow:

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dω2
(n−2),

where f (r) = 1 −
m

r(n−3)
, m represent geometric mass.

In 2003, R. A. Konoplya [18], studied the characteristic (quasinormal) modes of a D-dimensional Schwarzschild
black hole. F. Darabi et. al. [5], showed that the entropy of generalized BTZ black hole can be described by
Cardy-Verlinde formula. They also discussed the thermodynamics of generalized BTZ black hole. In 2019,
J. P. d. Santo and B. Leandro [14], obtained all the solutions of reduced system of differential equations,
where classical Schwarzschild solution behaves like a particular solution.

Warped product is a product manifold of two Riemannian manifolds (B, 1B) and (F, 1F) along with a warping
function f which is a positive smooth function on the manifold B with the metric 1B+ f 21F. The manifold B is
called base and F is called fiber manifold. It is a generalization of Riemannian product. If warping function
f is constant, then warped product becomes Riemannian product. In 1908 Bishop and O’Neil [17], first
introduced warped product during constrcution of some examples of manifold with negative curvature.
Study of warped product is not limited to Riemannian manifold. Khalid Ali Khan et. al. [15], proved results
on the non-existence of warped product submanifolds of certain types in cosymplectic manifolds. Chenxu
He et. al. [4], discussed behaviour of the warped product when it is an Einstein manifold. Recently, J.
Melẽndez and M. Hernãndez [12] proved that the warping function of a warped product with non-negative
sectional curvature and parabolic base manifold is constant. In [4, 6, 24], author studied geometric flows
and some classifications on warped product.
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Let (M, 1) be a complete Riemannian manifold of dimension greater than two and let h : M → R be a
smooth function on M. Then k-Bakry-Emery Ricci tensor is given by

Rck
h = Rc +Hh

−
1
k

dh ⊗ dh, (1)

is an extenstion of Ricci curvature tensor, where k is a positive integer and λ is some real number. An
∞-Bakry-Emery Ricci tensor is known as Bakry-Emery Ricci tensor and is given by

Rch = Rc +Hh. (2)

The function h is called potential function. Yasemin Soylu [25], used k-Bakry-Emery Ricci tensor to prove
Myers-type compactness theorem.

Definition 1.1 (Ricci-Hessian type equation:). Let (M, 1) be a Riemannian manifold, with Ricci curvature tensor
Rc. Then, the following equation

Rc + α∇2ϕ = γ1, (3)

is called Ricci-Hessian type equation, where α, γ and ϕ are the smooth functions on M. The manifold on which this
equation is satisfied is called Ricci-Hessian type manifold.

If warped product B× f F is gradient Ricci soliton then the base manifold B satisfy the following Ricci-Hessian
type equation [7]:

Rc + ∇2ϕ = λ1 +
k
f
∇

2 f . (4)

Let (B × I) × f F with metric 1B + (R + N
2t )dt2 + f 21F be space-time warped product with potentially infinite

metric, where R is the scalar curvature of the manifold (B, 1B) and N is a large number such that (R+ N
2t ) > 0.

Let BIRc and Rc are the Ricci curvature tensors on B× I and B, respectively. Now, we consider the space-time
B × I satisfy the above Ricci-Hessian type equation (4). Let ∇̃ and ∇ be the connection on B × I and B
respectively. Then, we have

BIRc + ∇̃2ϕ = λ1 +
k
f
∇̃

2 f . (5)

Let (B × I, 1B + (R + N
2t )dt2) be n-dimensional space-time manifold. The Ricci-curvature tensors on B × I are

given by the lemma (1.2).

Lemma 1.2 ([3]). Let B × I be a space-time with metric g = 1B + (R + N
2t )dt2 and X,Y,Z ∈ Γ(B), ∂t(= ∂

∂t ) ∈ Γ(I).
Then

(i) BIRc(X,Y) =B Rc(X,Y) −
(HR(X,Y)

2(R + N
2t )
−

XRYR
4(R + N

2t )
2

)
,

(ii) BIRc(X, ∂t) = 0,

(iii) BIRc(∂t, ∂t) = −
1
2
∆R −

1
4(R + N

2t )
|∇R|2,

where BRc denote Ricci curvature of B.

So, the equation (5) becomes:

BRc −
( HR

2(R + N
2t )
−

dR ⊗ dR
4(R + N

2t )
2

)
−

1
2
∆R +

1
4(R + N

2t )
|∇R|2

 dt2 + ∇̃2ϕ

= λ1 +
k
f
∇̃

2 f .

(6)
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Equations (5) and (6) are equivalent.

The organization of this paper is as follow. In section 2, we write generalized Schwarzschild black hole in
the form of space-time warped product. Then, we find conditions under which generalized Schwarzschild
black hole become gradient Ricci soliton. We also show that if warping function reaches to maximum
and minimum value then generalized Schwarzschild black hole becomes Riemannian product space. In
section 3, we discuss space-time manifold when it satisfy Ricci-Hessian type equation. We also obtain the
Bochner-Weitzenböck formula for space-time manifold. Next, we discuss some results which insures the
existence or non existence of gradient Ricci-soliton space-time warped product. In section 4, we obtain the
components of Ricci curvature tensor of space time manifold B × I, when it satisfy a Ricci-Hessian type
equation and then approximate them upto O(N−1). Further, we compute Potentially gradient Ricci soliton
identities.

2. Generalized Schwarzschild Black hole

In [18], R. Konoplya defined the metric for Schwarzschild black hole as follows:

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dω2
n−2, (7)

where f (r) = (1− m
rn−3 ) and m is geometric mass. Now, assuming that f (r) > 0 let us consider a transformation

dν =
√

f (r)−1dr,

this gives,

ν =

∫ r

0

√
f (r)−1dr = F(r).

From this we have, r = F−1(ν), then we get

f (r) = 1 −
m

(F−1(ν))n−3 .

Then, equation (7) becomes

ds2 = dν2 +

(
m

(F−1(ν))n−3 − 1
)

dt2 +
(
F−1(ν)2

)
dω2

n−2.

The above expression looks like the metric of space-time warped product with potentialy infinte metric, i.e.
of the form

1 = 1B +
(
R +

N
2t

)
dt2 + f 21F.

After comparision, we get to know that dimension of the base manifold B is 1, so the scalar curvature R = 0.
Thus, metric of some space-time warped product with potentialy infinte metric with 1 dimensional base
becomes,

1 = dx2 +
(N

2t

)
dt2 + f 21F.

Here, we consider that the base manifold possesses Ricci flow, which means the geometric mass of the black
hole depends on t. Therefore, the comparison of the metrics gives us(

m
(F−1(ν))n−3 − 1

)
=

N
2t
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i.e.

m(t) =
( N

2t + 1)
(F(ν))n−3

Hence, whenever geometric mass of black hole m satisfies

m(t) =
( N

2t + 1)
(F(ν))n−3 ,

n-dimensional Schwarzschild black hole becomes a space-time warped product with potentially infinite
metric.

In this section, we discuss the property of generalized Schwarzschild black hole gradient Ricci soliton.
We represent generalized Schwarzschild black hole as a space-time warped product M̃ = (R × I) × f F with
the metric

ds2 = dx2 +

(
m

(F−1(x))n−3 − 1
)

dt2 + (F−1(x))2dω2
n−2. (8)

The components of the connections on generalized Schwarzschild black hole are given in the following
lemma.

Lemma 2.1. Let M̃ = (R × I) × f F be the Schwarzschild black hole with metric

ds2 = dx2 +

(
m

(F−1(x))n−3 − 1
)

dt2 + (F−1(x))2dω2
n−2. (9)

Then, for the vector fields X,Y ∈ Γ(R), T,T1,T2 ∈ Γ(I) and V,W ∈ Γ(F), we have

(i) DXY is lift of ∇XY on B,

(ii) DTX = DXT =
Xρ
2ρ

T,

(iii) DT1 T2 = −
∇ρ

2ρ
1(T1,T2) +I

∇T1 T2,

(iv) DXV = DVX =
X f

f
V,

(v) DVW = −
1(V,W)

f
∇ f +F

∇VW,

where ρ =
( m

(F−1(x))n−3 − 1
)

and f (x) = F−1(x).

Let (M, 1) be a Riemannian manifold and D is the Levi-Civita connection, then the Riemannian curvature
tensor is given by

RXYZ = −DXDYZ +DYDXZ +D[X,Y]Z. (10)

Let ei be the orthogonal basis for tangent space of the manifold (M, 1), then the Ricci curvature tensor

Rc(X,Y) =
n∑

i=1

1(RXei Y, ei). (11)

Now, the components of Ricci curvature tensor on generalized Schwarzschild black hole is given by
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Lemma 2.2. Let M̃ = (R × I) × f F be the Schwarzschild black hole with metric

ds2 = dx2 +

(
m

(F−1(x))n−3 − 1
)

dt2 + (F−1(x))2dω2
n−2. (12)

Then, the components of Ricci curvature tensor on Schwarzschild black hole are:

(i) Rc(X,Y) = −
1

2ρ
Hρ(X,Y) +

1
4ρ2 dρ ⊗ dρ(X,Y) −

(n − 2)
f

H f (X,Y),

(ii) Rc(T1,T2) =
( 1

4ρ2

(∂ρ
∂x

)2

−
1

2ρ
∂2ρ

∂x2 −
(n − 2)

2ρ f
∂ f
∂x
∂ρ

∂x

)
1(T1,T2),

(iii) Rc(X,V) = 0,

(iv) Rc(V,W) = FRc(V,W) −
( 1

f
∂2 f
∂x2 +

1
2ρ f

∂ f
∂x
∂ρ

∂x
+

(n − 3)
f 2

(∂ f
∂x

)2)
1(V,W), where ρ =

( m
(F−1(x))n−3 − 1

)
and

f (x) = F−1(x).

Note: To prove these Lemma 2.1 and Lemma 2.2, the readers are refered to see [3].

In [20], Richard Hamilton proved that if (M, 1,∇ϕ, λ) is gradient Ricci soliton. Then, one has

2λϕ − |∇ϕ|2 + ∆ϕ = c. (13)

In the discussion of Schwarzschild black hole gradient Ricci soliton, first we prove the above result for
Schwarzschild black hole.

Proposition 2.3. Let M̃ = (R × I) × f F be generalized Schwarzschild black hole with the metric

ds2 = dx2 +

(
m

(F−1(x))n−3 − 1
)

dt2 + (F−1(x))2dω2
n−2. (14)

If ϕ be smooth function on R × I so that the Schwarzschild black hole is gradient Ricci soliton, then we have

2λϕ −
(∂ϕ
∂x

)2

−
1
ρ

(∂ϕ
∂t

)2

+
∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t
+

1
ρ

∂2ϕ

∂t2 +
(n − 2)

f
∂ f
∂x
∂ϕ

∂x
= c. (15)

Proof. For a smooth function ϕ, we have

|∇ϕ|2 =
(∂ϕ
∂x

)2

+
1
ρ

(∂ϕ
∂t

)2

(16)

and

∆ϕ =
∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t
+

1
ρ

∂2ϕ

∂t2 +
(n − 2)

f
∂ f
∂x
∂ϕ

∂x
. (17)

Using equations (16) and (17) into equation (13), we get the required result.
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Proposition 2.4. Let the generalized Schwarzschild black hole with the metric

ds2 = dx2 +

(
m

(F−1(x))n−3 − 1
)

dt2 + (F−1(x))2dω2
n−2 (18)

be a gradient Ricci soliton with potential function ϕ. Then

(i) −
1
2
∂2ρ

∂x2 +
1

4ρ2

(∂ρ
∂x

)2

+
∂2ϕ

∂x2 = λ +
(n − 2)

f
∂2 f
∂x2 .

(ii)
1

4ρ2

(∂ρ
∂x

)2

−
1

2ρ
∂2ρ

∂x2 −
(n − 2)

2ρ f
∂ f
∂x
∂ρ

∂x
+

1
2ρ
∂ϕ

∂x
∂ρ

∂x
+

1
ρ

∂2ϕ

∂t2 −
1

2ρ2

∂ϕ

∂t
∂ρ

∂t
= λ.

(iii) FRc = µdω2
n−2, where µ is given by following equation:

µ =
(
λ f 2 + f

∂2 f
∂x2 +

f
2ρ
∂ f
∂x
∂ρ

∂x
+ (n − 3)

(∂ f
∂x

)2

− f
∂ϕ

∂x
∂ρ

∂x

)
, (19)

along with ρ =
(

m
(F−1(x))n−3 − 1

)
and f = F−1.

Proof. If Schwarzschild black hole is a gradient Ricci soliton with potential funtion ϕ, then we have

Rc + ∇2ϕ = λ1, (20)

where λ is some constant and Rc is Ricci curvature tensor on Schwarzschild black hole. For the vector fields
X,Y corresponding to metric dx2, we have

−
1

2ρ
Hρ(X,Y) +

1
4ρ2 dρ ⊗ dρ(X,Y) −

(n − 2)
f

H f (X,Y) + ∇2ϕ(X,Y) = λ1(X,Y) (21)

or equivalently,

−
1
2
∂2ρ

∂x2 +
1

4ρ2

(∂ρ
∂x

)2

−
(n − 2)

f
∂2 f
∂x2 +

∂2ϕ

∂x2 = λ. ∵ 1(∂x, ∂x) = 1. (22)

Now, for the vector fields T1,T2 corresponding to the time space with metric dt2, we have

∇
2ϕ(T1,T2) =

( 1
2ρ
∂ϕ

∂x
∂ρ

∂x
+

1
ρ

∂2ϕ

∂t2 −
1

2ρ2

∂ϕ

∂t
∂ρ

∂t

)
1(T1,T2). (23)

Using this value of Hessian of ϕ and part (ii) of the lemma (2.2) , the equation (20) becomes:

( 1
4ρ2

(∂ρ
∂x

)2

−
1

2ρ
∂2ρ

∂x2 +
n − 2
2ρ f

∂ f
∂x
∂ρ

∂x

)
1(T1,T2) +

( 1
2ρ
∂ϕ

∂x
∂ρ

∂x
+

1
ρ

∂2ϕ

∂t2 −
1

2ρ2

∂ϕ

∂t
∂ρ

∂t

)
1(T1,T2) = λ1(T1,T2). (24)
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Simplifying and rearranging the above equation, we achieve

1
4ρ2

(∂ρ
∂x

)2

−
1

2ρ
∂2ρ

∂x2 +
n − 2
2ρ f

∂ f
∂x
∂ρ

∂x
+

1
2ρ
∂ϕ

∂x
∂ρ

∂x
+

1
ρ

∂2ϕ

∂t2 −
1

2ρ2

∂ϕ

∂t
∂ρ

∂t
= λ. (25)

Further, for the vector fields V,W corresponding to the metric dω2
n−2, the Hessian of potential function ϕ is

as follows

∇
2ϕ(V,W) = 1(DV∇ϕ,w) = f

∂ϕ

∂x
∂ f
∂x

dω2
n−2. (26)

Now, using part (iv) of lemma (2.2) and hessian of ϕ, ∇2ϕ(V,W), also using the fact 1(V,W) = f 2dω2
n−2 into

the equation (20), we have

ωRc(V,W) −
( 1

f
∂2 f
∂x2 +

1
2ρ f

∂ f
∂x
∂ρ

∂x
+

(n − 3)
f 2

(∂ f
∂x

)2)
f 2dω2

n−2 + f
∂ϕ

∂x
∂ρ

∂x
dω2

n−2 = λ f 2dω2
n−2.

(27)

Rearranging the terms in above equation, we obtain

ωRc(V,W) =
(
λ f 2 + f

∂2 f
∂x2 +

f
2ρ
∂ f
∂x
∂ρ

∂x
+ (n − 3)

(∂ f
∂x

)2

− f
∂ϕ

∂x
∂ f
∂x

)
dω2

n−2.

(28)

Hence the proof.

In next proposition, we prove that µ is constant. For this we will use following some well known results.

div∇2ϕ = Rc(∇ϕ, ·) + d(∆ϕ)

and
1
2

d|∇ϕ|2 = ∇2ϕ(∇ϕ, ·).

Proposition 2.5. Let the (R × I, dx2 + (
m

(F−1(x))n−3 − 1)dt2) be space-time manifold with two smooth functions f

and ϕ, where f > 0 be function of ‘x’ only and ϕ be function of ‘x’ and ‘t’ such that f and ϕ satisfies

2λϕ −
(∂ϕ
∂x

)2

−
1
ρ

(∂ϕ
∂t

)2

+
∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t
+

1
ρ

∂2ϕ

∂t2 +
(n − 2)

f
∂ f
∂x
∂ϕ

∂x
= c, (29)

−
1
2
∂2ρ

∂x2 +
1

4ρ2

(∂ρ
∂x

)2

−
(n − 2)

f
∂2 f
∂x2 +

∂2ϕ

∂x2 = λ (30)

and

1
4ρ2

(∂ρ
∂x

)2

−
1

2ρ
∂2ρ

∂x2 −
(n − 2)

2ρ f
∂ f
∂x
∂ρ

∂x
+

1
2ρ
∂ϕ

∂x
∂ρ

∂x
+

1
ρ

∂2ϕ

∂t2 −
1

2ρ2

∂ϕ

∂t
∂ρ

∂t
= λ. (31)
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Then, µ given by the equation (47), is constant.

Proof. On the space-time
(
R × I, dx2 + (

m
(F−1(x))n−3 − 1)dt2

)
, we have

∆ϕ = trace(∇2ϕ) =
∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t
+

1
ρ

∂2ϕ

∂t2 (32)

and

∆ f = trace(∇2 f ) =
∂2 f
∂x2 +

1
2ρ
∂ f
∂x
∂ρ

∂x
. (33)

We can write equations (30) and (31) in combined form as follows:

Rc + ∇2ϕ = λ1 +
(n − 2)

f
∇

2 f . (34)

Taking trace of above equation, we get

S =2λ +
(n − 2)

f
∆ f − ∆ϕ

=2λ +
(n − 2)

f

(∂2 f
∂x2 +

1
2ρ
∂ f
∂x
∂ρ

∂x

)
−

(∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t
+

1
ρ

∂2ϕ

∂t2

)
.

(35)

Thus,

dS = −
(n − 2)

f 2

(∂2 f
∂x2 +

1
2ρ
∂ f
∂x
∂ρ

∂x

)
d f +

(n − 2)
f

d
(∂2 f
∂x2 +

1
2ρ
∂ f
∂x
∂ρ

∂x

)
− d

(∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t
+

1
ρ

∂2ϕ

∂t2

)
.

(36)

Now, taking the divergence of both side of the equation (34), we get

divRc = 0 + (n − 2)
{ 1

f
div(∇2 f ) −

1
f 2∇

2 f (∇ f , ·)
}
− div(∇2ϕ)

=
(n − 2)

f

(
Rc(∇ f , ·) + d(∆ f )

)
−

k
2 f 2 d(|∇ f |2) − Rc(∇ϕ, ·) − d(∆ϕ).

(37)

From equation (34), we have

Rc(∇ f , ·) = λd f +
(n − 2)

2 f
d
(∂ f
∂x

)2

− ∇
2ϕ(∇ f , ·) (38)

and

Rc(∇ϕ, ·) = λdϕ +
(n − 2)

f
∇

2 f (∇ϕ, ·) −
1
2

d
{(∂ϕ
∂x

)2

+
1
ρ

(∂ϕ
∂t

)2}
. (39)

Using equations (38) and (39) into the equation (37), we achieve

divRc =
(n − 2)

f

(
λd f +

k
2 f

d
(∂ f
∂x

)2

− ∇
2ϕ(∇ f , ·) + d

(∂2 f
∂x2 +

1
2ρ
∂ f
∂x
∂ρ

∂x

))
−

(n − 2)
2 f 2 d(|∇ f |2) − λdϕ

+
(n − 2)

f
∇

2 f (∇ϕ, ·) −
1
2

d
{(∂ϕ
∂x

)2

+
1
ρ

(∂ϕ
∂t

)2}
− d

(∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t
+

1
ρ

∂2ϕ

∂t2

)
.

(40)
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Since,

d(∇ϕ( f )) = d(
∂ϕ

∂x
∂ f
∂x

) = ∇2ϕ(∇ f , ·) + ∇2 f (∇ϕ, ·).

Thus, we get

divRc =
(n − 2)

f

{
λd f +

(n − 2)
2 f

d
(∂ f
∂x

)2

+ d
(∂2 f
∂x2 +

1
2ρ
∂ f
∂x
∂ρ

∂x

)}
−

(n − 2)
2 f 2 d(|∇ f |2) − λdϕ

−
1
2

d
{(∂ϕ
∂x

)2

+
1
ρ

(∂ϕ
∂t

)2}
− d

(∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t
+

1
ρ

∂2ϕ

∂t2

)
−

(n − 2)
f

d(
∂ϕ

∂x
∂ f
∂x

).
(41)

Then, using second contracted Bianchi identity

−
1
2

ds + divRc = 0,

we obtain

(n − 2)
2 f 2

(∂2 f
∂x2 −

1
2ρ
∂ f
∂x
∂ρ

∂x

)
d f +

(n − 2)
2 f

d
(∂2 f
∂x2 +

1
2ρ
∂ f
∂x
∂ρ

∂x

)
+

1
2

d
(∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t

+
1
ρ

∂2ϕ

∂t2

)
+

(n − 2)
f

{
λd f +

(n − 2)
2 f

d
(∂ f
∂x

)2

+ d
(∂2 f
∂x2 +

1
2ρ
∂ f
∂x
∂ρ

∂x

)}
−

(n − 2)
2 f 2 d(|∇ f |2) − λdϕ

−
1
2

d
{(∂ϕ
∂x

)2

+
1
ρ

(∂ϕ
∂t

)2}
−

(n − 2)
f

d(
∂ϕ

∂x
∂ f
∂x

) − d
(∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t
+

1
ρ

∂2ϕ

∂t2

)
= 0.

(42)

Multiplying whole equation by 2 f 2

(n−2) , we get

d
{(∂2 f
∂x2 −

1
2ρ
∂ f
∂x
∂ρ

∂x

)
+ λ f 2 + (n − 3)

(∂ f
∂x

)2}
−

f 2

(n − 2)
d
{∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t

+
1
ρ

∂2ϕ

∂t2 + 2λϕ −
(∂ϕ
∂x

)2

−
1
ρ

(∂ϕ
∂t

)2}
− 2 f d

(∂ϕ
∂x
∂ f
∂x

)
= 0.

(43)

Now, using the hypothesis (29), we have

f 2

(n − 2)
d
{∂2ϕ

∂x2 +
1

2ρ
∂ϕ

∂x
∂ρ

∂x
−

1
2ρ2

∂ϕ

∂t
∂ρ

∂t
+

1
ρ

∂2ϕ

∂t2 + 2λϕ −
(∂ϕ
∂x

)2

−
1
ρ

(∂ϕ
∂t

)2}
− f d

(∂ϕ
∂x
∂ f
∂x

)
= −

∂ϕ

∂x
∂ f
∂x

d f .
(44)

Thus, we obtain

d
(
λ f 2 + f

∂2 f
∂x2 +

f
2ρ
∂ f
∂x
∂ρ

∂x
+ (n − 3)

(∂ f
∂x

)2

− f
∂ϕ

∂x
∂ρ

∂x

)
= 0. (45)

Therefore, µ is constant.

Theorem 2.6. Let the Schwarzschild black hole (M̃, ds2) with metric

ds2 = dx2 +

(
m

(F−1(x))n−3 − 1
)

dt2 + (F−1(x))2dω2
n−2 (46)

be a expanding or steady gradient Ricci soliton with potential function ϕ. Also, if the dimension of Schwarzschild
black hole is atleast 4 and f = F−1 attains its maximum and minimum values, then Schwarzschild black hole is a
Riemannian product space, i.e. f is constant.
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Proof. By proposition (2.5), we have

µ =
(
λ f 2 + f

∂2 f
∂x2 +

f
2ρ
∂ f
∂x
∂ρ

∂x
+ (n − 3)

(∂ f
∂x

)2

− f
∂ϕ

∂x
∂ f
∂x

)
. (47)

is constant.
Let x1 and x2 be the points at which f attains its maximum and minimum values, respectively. Then

∂ f
∂x

∣∣∣∣∣
x1

= 0 =
∂ f
∂x

∣∣∣∣∣
x2

and
∂2 f
∂x2

∣∣∣∣∣
x1

≤ 0 ≤
∂2 f
∂x2

∣∣∣∣∣
x2

.

Since f > 0 and λ ≤ 0, because space is steady or expanding gradient Ricci soliton. Then we have

−λ f (x1)2
≥ −λ f (x2)2.

Combining these results with equation (47), we obtain

µ − λ f (x1)2 = f (x1)
∂2 f
∂x2 (x1)

and

µ − λ f (x2)2 = f (x2)
∂2 f
∂x2 (x2)

Thus, we have

0 ≥ f (x1)
∂2 f
∂x2 (x1) = µ − λ f (x1)2 = µ − λ f (x2)2 = f (x2)

∂2 f
∂x2 (x2) ≥ 0.

This leads us to the following
µ − λ f (x1)2 = 0 = µ − λ f (x2)2.

Now, we have two cases

Case 1:(λ < 0) In this case, we obtain

f (x1) = f (x2).

Hence f is constant.

Case 2:(λ = 0) In this case, µ = 0, so the equation (47) gives us

(
f
∂2 f
∂x2 +

f
2ρ
∂ f
∂x
∂ρ

∂x
+ (n − 3)

(∂ f
∂x

)2

− f
∂ϕ

∂x
∂ f
∂x

)
= 0. (48)

Then

f
(
∂2

∂x2 +
1

2ρ
∂ρ

∂x
∂
∂x
−
∂ϕ

∂x
∂
∂x

)
f = −(n − 3)

(∂ f
∂x

)2

.

The above expression can be rewrite as follows:

L f =
3 − n

f

(∂ f
∂x

)2

≤ 0,

where L :=
∂2

∂x2 +
1

2ρ
∂ρ

∂x
∂
∂x
−
∂ϕ

∂x
∂
∂x
.

Therefore using strong maximum principle, we conclude that f is constant. In both the cases, we ob-
tain that Schwarzschild black hole is a Riemannian product space.
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Next, we show that the compactness criterion of Schwarzschild black hole M̃ = (R × I) × f F when the base
R × I is compact.

Theorem 2.7. Let M̃ = (R × I) × f F be Schwarzschild black hole with metric

ds2 = dx2 +

(
m

(F−1(x))n−3 − 1
)

dt2 + (F−1(x))2dω2
n−2, (49)

and ϕ be smooth function onR× I so that (M̃, ds2,∇ϕ, λ) be shrinking gradient Ricci soliton. IfR× I is compact and
n ≥ 4, then Schwarzschild black hole M̃ is compact.

Proof. Let us assume that the Schwarzschild black hole is a gradient Ricci soliton with ∇2ϕ = λ1 +
k
f
∇

2 f

and FRc = µ1F, where µ is constant and given by

µ =
(
λ f 2 + f

∂2 f
∂x2 +

f
2ρ
∂ f
∂x
∂ρ

∂x
+ (n − 3)

(∂ f
∂x

)2

− f
∂ϕ

∂x
∂ f
∂x

)
. (50)

The equation (50) can be written as,

µ = λ f 2 + f L f +
n − 3

f 2

(∂ f
∂x

)2

, (51)

where L :=
∂2

∂x2 +
1

2ρ
∂ρ

∂x
∂
∂x
−
∂ϕ

∂x
∂
∂x
.

On integration of both side of equation (51), we obtain∫
B
µe−φdB =

∫
B
λ f 2e−φdB +

∫
B

f L f e−φdB +
∫

B

n − 3
f 2

(∂ f
∂x

)2

e−φdB. (52)

Therefore, we get

µvolϕB = λ
∫

B
f 2e−φdB + (n − 3)

∫
B

1
f 2

(∂ f
∂x

)2

e−φdB. (53)

Since λ > 0 and n ≥ 4, we conclude that µ > 0. Then, by Bonnet-Myers compactness theorem, the
fiber manifold corresponding to the metric dω2

n−2 is compact and hence the Schwarzschild black hole is
compact.

The next result is the necessary and sufficient condition on generalized Schwarzschild black hole to become
gradient Ricci soliton.

Theorem 2.8. Let
(
R × I, dx2 +

(
m

(F−1(x))n−3 − 1
)

dt2

)
be complete Riemannian space and f and ϕ be the smooth

functions on R and R × I respectively, satisfying the followings

(i) −
1
2
∂2ρ

∂x2 +
1

4ρ2

(∂ρ
∂x

)2

+
∂2ϕ

∂x2 = λ +
(n − 2)

f
∂2 f
∂x2 .

(ii)
1

4ρ2

(∂ρ
∂x

)2

−
1

2ρ
∂2ρ

∂x2 −
(n − 2)

2ρ f
∂ f
∂x
∂ρ

∂x
+

1
2ρ
∂ϕ

∂x
∂ρ

∂x
+

1
ρ

∂2ϕ

∂t2 −
1

2ρ2

∂ϕ

∂t
∂ρ

∂t
= λ,
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along with equation (15). Take a complete Riemannian manifold (F, dω2
n−2) such that FRc = µdω2

n−2, where µ,
given by equation (47), is constant. Then the Schwarzschild black hole (R × I) × f Fwith metric

ds2 = dx2 +

(
m

(F−1(x))n−3 − 1
)

dt2 + (F−1(x))2dω2
n−2, (54)

is gradient Ricci soliton.

Proof. We prove this theorem in three cases.

Case 1:(For X,Y ∈ Γ(R) )

For the vector fields X,Y ∈ Γ(R), the Hessian of ϕ is

∇
2ϕ(X,Y) =

∂2ϕ

∂x2 1(X,Y).

and the Hessian of f is

∇
2 f (X,Y) =

∂2 f
∂x2 1(X,Y).

Using these values and part (i) of lemma (2.2) into the hypothesis (i) of this theorem, we obtain

Rc(X,Y) + ∇2ϕ(X,Y) = λ1(X,Y). (55)

Hence, in this case, the gradient Ricci soliton equation is satisfied.

Case 2:(For T1,T2 ∈ Γ(I) )

In this case,

∇
2ϕ(T1,T2) =

( 1
2ρ
∂ϕ

∂x
∂ρ

∂x
+

1
ρ

∂2ϕ

∂t2 −
1

2ρ2

∂ϕ

∂t
∂ρ

∂t

)
1(T1,T2) (56)

and

∇
2 f (T1,T2) =

( 1
2ρ
∂ϕ

∂x
∂ρ

∂x

)
1(T1,T2). (57)

Again, by the hypothesis (ii) of this theorem and part (ii) of lemma (2.2), we have

Rc(T1,T2) + ∇2ϕ(T1,T2) = λ1(T1,T2). (58)

Thus, the gradient Ricci soliton equation is satisfied.

Case 3:(For V,W ∈ Γ(F) )

From part (iii) of the lemma (2.2), we have

Rc(V,W) =F Rc(V,W) −
( 1

f
∂2 f
∂x2 +

1
2ρ f

∂ f
∂x
∂ρ

∂x
+

(n − 3)
f 2

(∂ f
∂x

)2)
1(V,W). (59)

For this case, we have µ given by equation (47) satisfying

FRc = µdω2
n−2.
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Thus, the above equation reduces to

Rc(V,W) = µdω2
n−2(V,W) −

( 1
f
∂2 f
∂x2 +

1
2ρ f

∂ f
∂x
∂ρ

∂x
+

(n − 3)
f 2

(∂ f
∂x

)2)
1(V,W)

=
(
λ −

1
f
∂ f
∂x
∂ϕ

∂x

)
1(V,W).

(60)

For the vector fields V.W ∈ Γ(F), we have

∇
2ϕ(V,W) = 1(DV∇ϕ,w) = f

∂ϕ

∂x
∂ f
∂x

dω2
n−2 =

1
f
∂ f
∂x
∂ϕ

∂x
1(V,W). (61)

Using the above value, we obtain

Rc(V,W) + ∇2ϕ(V,W) = λ1(V,W). (62)

Therefore, the gradient Ricci soliton equation is again satisfied and hence the proof is complete.

3. Ricci-Hessian type space-time manifolds

Let (B × I, 1B + (R + N
2t )dt2) be space-time manifold with Levi-Civita connection ∇̃ and ∇ on B × I and B,

respectively. Then, for any smooth function h on B, we have

∇̃h = ∇h +
1

(R + N
2t )
∂h
∂t
∂
∂t
,

where ∇̃h and ∇h are the gradient of B × I and B, respetively. Hessian of the smooth function h on B is
denoted by ∇̃2h.
On space-time manifold B × I, the Bakry-Emery Ricci tensor is

Rch =
BI Rc + ∇̃2h. (63)

Using Lemma (1.2), the above equation becomes

Rch =
BRc −

(
∇

2R
2(R + N

2t )
−

dR ⊗ dR
4(R + N

2t )
2

)
+

−1
2
∆R −

1
4(R + N

2t )
|∇R|2

 dt2

+ ∇̃2h.

(64)

Then, k-Bakry-Emery Ricci tensor on space-time manifold is given by:

Rck
h =

BRc −
(
∇

2R
2(R + N

2t )
−

dR ⊗ dR
4(R + N

2t )
2

)
+

−1
2
∆R −

1
4(R + N

2t )
|∇R|2

 dt2

+ ∇̃2h −
1
k

dh ⊗ dh,

(65)

for some positve integer k. If we take f = e−h/k with 0 < k < ∞, the above equation reduces to:

Rck
h =

BRc −
(
∇

2R
2(R + N

2t )
−

dR ⊗ dR
4(R + N

2t )
2

)
+

−1
2
∆R −

1
4(R + N

2t )
|∇R|2

 dt2

−
k
f
∇̃

2 f ,

(66)
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k− quasi Einstein metric on a smooth manifold satisfies Rck
h = λ1. Therefore, for space-time k-quasi Einstein

metric satisfies:

BRc −
(
∇

2R
2(R + N

2t )
−

dR ⊗ dR
4(R + N

2t )
2

)
+

−1
2
∆R −

1
4(R + N

2t )
|∇R|2

 dt2 + ∇̃2h −
1
k

dh ⊗ dh = λ1.
(67)

Now, we consider a complete weighted space-time manifold (B × I, 1B + (R + N
2t )dt2, e−ψdvol), where ψ is a

smooth function so that ψ = ϕ − k ln f , with 0 < k < ∞. Hence, we have

Rcψ =B Rc −
(
∇

2R
2(R + N

2t )
−

dR ⊗ dR
4(R + N

2t )
2

)
+

−1
2
∆R −

1
4(R + N

2t )
|∇R|2

 dt2 + ∇̃2ϕ −
k
f
∇̃

2 f +
k
f 2 d f ⊗ d f .

(68)

We define a modified k-Bakry-Emery Ricci tensor for space-time by:

Rck
ϕ,h = Rck

h + ∇
2ϕ. (69)

If Riemannian metric for space-time 1B + (R + N
2t )dt2 satisfies

Rck
ϕ,h = λ1, (70)

then, this leads us to the following:

BRc −
(
∇

2R
2(R + N

2t )
−

dR ⊗ dR
4(R + N

2t )
2

)
+

−1
2
∆R −

1
4(R + N

2t )
|∇R|2

 dt2 + ∇̃2ϕ −
k
f
∇̃

2 f = λ1,
(71)

or equivalently

BIRc + ∇̃2ϕ −
k
f
∇̃

2 f = λ1. (72)

In [8], Feitosa et. al. showed that (72) can be reduced to a Ricci-Hessian type equation.

R. Hamilton [20], proved that if (M, 1, ϕ, λ) is gradient Ricci soliton then,

2λϕ − |∇ϕ|2 + ∆ϕ = c, (73)

for some constant c. For space-time manifold (B × I), we compute this equation and obtain in following
form:

2λϕ − |∇ϕ|2 −
1

(R + N
2t )

(
∂ϕ

∂t
)2 + ∆ϕ +

1
(R + N

2t )

∂2ϕ

∂t2 +
1

2(R + N
2t )

2

∂ϕ

∂t
N
2t2

+
∇ϕ(R)

2(R + N
2t )
+

k
f
∇ϕ( f ) +

k
f (R + N

2t )

∂ϕ

∂t
∂ f
∂t
= c,

(74)
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for some constant c. Also, for smooth functions ϕ and f > 0, we have

µ = λ f 2 + f∆ f +
f∇ f (R)

2(R + N
2t )
− f∇ϕ( f ) +

f

2(R + N
2t )

2

N
2t2

∂ f
∂t
+

f

(R + N
2t )

∂2 f
∂t2

−
f

(R + N
2t )

∂ f
∂t
∂ϕ

∂t
+ (k − 1)

|∇ f |2 +
1

(R + N
2t )

(
∂ f
∂t

)2

 . (75)

Therefore,

Proposition 3.1. Let M = (B×I)× f F with metric 1B+(R+ N
2t )dt2+ f 21F be gradient Ricci soliton space-time warped

product and ϕ be the potential function. Then, space-time manifold B× I holds equation (71) or equivalently (72) and
(74) and fiber manifold F is Einstein manifold with FRc = µ1F, where µ is given by equation (75). Conversely, let
B × I be complete Riemannian space-time manifold with two smooth function f > 0 and ϕ, which satisfies equations
(72) and (74) and constant µ given by (75). Let F be a complete Riemannian manifold such that FRc = µ1F. Then, we
can construct gradient Ricci solitn space-time warped product.

Let (M, 1) be a complete Riemannian manifold. Then, for any smooth function w ∈ C∞(M), the Bochner-
Weitzenböck formula is given by:

1
2
∆|∇w|2 = |∇2w|2 + 1(∇w,∇∆w) + Rc(∇w,∇w). (76)

For any smooth fuction ψ ∈ C∞(M), we say ∆ψw = ∆w − 1(∇ψ,∇w) be ψ− Laplacian. In [13], J. N. V. Gomes
et.al. mention the Bochner-Weitzenböck formula with respect to the ψ− Laplacian given by:

1
2
∆ψ|∇w|2 = |∇2w|2 + 1(∇w,∇∆w) + Rcψ(∇w,∇w). (77)

Here, if we combine equations (68) and (69), we obtain

Rcψ = Rcm
ϕh +

k
f 2 d f ⊗ d f . (78)

Then, we have

Lemma 3.2. For space-time manifold B × I, the Bochner-Weitzenböck formula becomes

1
2
∆̃ψ|∇̃w|2 = |∇̃2w|2 + 1(∇̃w, ∇̃∆̃w) + Rck

ϕh(∇̃w, ∇̃w) +
k
f 2

[
1(∇w,∇ψ)2 +

1
(R + N

2t )
2

(
∂w
∂t

)2(∂ψ
∂t

)2]
. (79)

Now, we consider that the space-time manifold B × I satisfy Ricci-Hessian type equation (5), which is a
necessary condition to construct a gradient Ricci soliton warped product and this implies that the equation
(74) is satisfied on B × I. Using equations (72), (74) and (75), we have the following lemma.

Lemma 3.3. Let B × I be a Ricci-Hessian type space time manifold which satisfies equation (74), then

∆̃ψ = nλ − S + k|∇ ln f |2 +
k

f 2(R + N
2t )

(∂ f
∂t

)2

, (80)
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∆̃ψϕ = c − 2λϕ, (81)

∆̃ψ ln f =
1
f 2 (µ − λ f 2), (82)

where, S is scalar curvature of B × I.

Now, lemma (3.2) and lemma (3.3) leads us to the following result.

Lemma 3.4. Let the space-time manifold B × I be Ricci-Hessian type manifold which satisfies equation (74). Then,
following holds

1.
1
2
∆̃ψ|∇̃ϕ|

2 = |∇̃2ϕ|2 − λ|∇ϕ|2 −
λ

(R + N
2t )

(∂ϕ
∂t

)2

+
k
f 2

[
1(∇ f ,∇ϕ)2 +

1
(R + N

2t )
2

(∂ f
∂t

)2(∂ϕ
∂t

)2]
. (83)

2.
1
2
∆̃ψ|∇̃ ln f |2 =|∇̃2 ln f |2 +

(
λ −

2µ
f 2

)(
|∇ ln f |2 +

1
f 2(R + N

2t )
2

(∂ f
∂t

)2)
+

k
f 2

(
1(∇ ln f ,∇ f ) +

1
f (R + N

2t )

(∂ f
∂t

)2)2

.

(84)

The following Lemma is an immediate consequence of the lemma (3.4) and well-known Kato’s inequality.

Lemma 3.5. Let B × I be space-time Ricci-Hessian type manifold satisfying (74). Then, following identities hold

|∇̃ϕ|∆̃ψ|∇̃ϕ| ≥ −λ
(
|∇ϕ|2 +

1
f (R + N

2t )

(∂ϕ
∂t

)2)
+

k
f 2

[
1(∇ f ,∇ϕ)2 +

1
(R + N

2t )
2

(∂ f
∂t

)2(∂ϕ
∂t

)2]
(85)

and

|∇̃ ln f |∆̃ψ|∇̃ ln f | ≥
(
λ −

2µ
f 2

)(
|∇ ln f |2 +

1
f 2(R + N

2t )

(∂ f
∂t

)2)
+

k
f 2

(
1(∇ ln f ,∇ f ) +

1
f (R + N

2t )

(∂ f
∂t

)2)2

. (86)

Proof. For a smooth function ϕ on B × I, we have

∇̃ϕ = ∇ϕ +
1

(R + N
2t )

∂ϕ

∂t
∂
∂t
. (87)

Also, we have the following result

1
2
∆̃ψ|∇̃ϕ|

2 = |∇̃ϕ|∆̃ψ|∇̃ϕ| + |∇̃|∇̃ϕ||
2. (88)

The Kato’s inequality for the smooth function ϕ is given by:

|∇̃
2ϕ|2 ≥ |∇̃|∇̃|ϕ|2. (89)
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Combining equations (88) and (89), we obtain

|∇̃ϕ|∆̃ψ|∇̃ϕ| ≥
1
2
∆̃ψ|∇̃ϕ|

2
− |∇̃

2ϕ|. (90)

Using part (1) of lemma (3.4), we get

|∇̃ϕ|∆̃ψ|∇̃ϕ| ≥
1
2
∆̃ψ|∇̃ϕ|

2
− |∇̃

2ϕ|

= −λ
(
|∇ϕ|2 +

1
f (R + N

2t )

(∂ϕ
∂t

)2)
+

k
f 2

[
1(∇ f ,∇ϕ)2

+
1

(R + N
2t )

2

(∂ f
∂t

)2(∂ϕ
∂t

)2]
.

(91)

For second part, if we replace ϕ by ln f in equation (90), then we get

|∇̃ ln f |∆̃ψ|∇̃ ln f | ≥
1
2
∆̃ψ|∇̃ ln f |2 − |∇̃2 ln f |.

(92)

Therefore, part (2) of the lemma (3.4) leads us to the following:

|∇̃ ln f |∆̃ψ|∇̃ ln f | ≥
(
λ −

2µ
f 2

)(
|∇ ln f |2 +

1
f 2(R + N

2t )

(∂ f
∂t

)2)
+

k
f 2

(
1(∇ ln f ,∇ f ) +

1
f (R + N

2t )

(∂ f
∂t

)2)2

.
(93)

Hence the proof.

4. Some results on space time warped product

Let M̃ = (B × I) × f F be space-time warped product with metric 1̃ = (1B + (R + N
2t )dt2) + f 21F. In the next

lemmas, we assume that the base manifold B × I satisfy the Ricci Hessian type equation (5). For fiber
manifold, we consider two different cases.

Case :1(Fiber manifold F possesses Ricci flow )

In this case we have

FRc =
1
f
∂ f
∂t
1.

Case :2
In the second case, we consider that the fiber manifold F satisfy

FRc = µ1F,

where µ is given by the equation (75).
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In both the cases, first we investigate whether the space-time warped product become potentially Ricci
flat i.e. all the components of the Ricci tensor are equal to zero O(N−1). Here, in the lemmas (4.1) and (4.3),
we establish that space-time warped product is not potentially Ricci flat. In the lemmas (4.2) and (4.4), we
discuss potentially gradient soliton for space-time warped product. Here we also show that space-time
warped product is not potentially gradient soliton in both the cases.

Lemma 4.1 (Space-time warped product Ricci curvature upto O(N−1)). Let B × I satisfies Ricci-Hessian type
equation, and (B × I) × f F is space-time warped product so that F possesses Ricci flow. Then the components of
space-time warped product Ricci curvature tensor are

(i) Ri j = λ1i j − (∇2ϕ)i j,

(ii) Ri0 = −
∂2ϕ

∂xi∂t
+O(N−1),

(iii) R00 = λ(R +
N
2t

) −
∂2ϕ

∂t2 +
1
2
∇R(ϕ) −

1
2t
+O(N−1),

(iv) Rαβ = −
(
∆ f
f
+

1
f
∂ f
∂t
− (k − 1)

|∇ f |2

f 2

)
1αβ +O(N−1).

Proof. Here, B × I satisfies Ricci-Hessian type equation,

BIRic + ∇2ϕ = λ1 +
k
f
∇

2 f .

Also for vector fields X,Y ∈ Γ(B × I), we have

Ric(X,Y) =BI Ric(X,Y) −
k
f
∇

2 f (X,Y).

Therefore, for X,Y ∈ Γ(B × I), we obtain

Ric(X,Y) = λ1(X,Y) − ∇2ϕ(X,Y). (94)

(i) For X = ∂
∂xi and Y = ∂

∂x j equation (94) becomes

Ri j = λ1i j − (∇2ϕ)i j.

(ii) Now, for X = ∂
∂xi and Y = ∂

∂t , we get

Ri0 = Rc(
∂

∂xi ,
∂
∂t

) = λ1io − ∇
2ϕ(

∂

∂xi ,
∂
∂t

). (95)

Since, we know that

∇
2ϕ(

∂

∂xi ,
∂
∂t

) =
∂2ϕ

∂xi∂t
− Γk

i0
∂ϕ

∂xk
− Γ0

i0

∂ϕ

∂t
. (96)

Using the values of Γk
i0 and Γ0

i0 and from equation (96), the equation (95) becomes

Ri0 = −
∂2ϕ

∂xi∂t
+

1
2(R + N

2t )
∂R
∂xi

∂ϕ

∂t
.
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Approximating upto order O(N−1), we obtain

Ri0 = −
∂2ϕ

∂xi∂t
+O(N−1).

(iii) In the same manner, for X = Y = ∂
∂t , we have

R00 = Rc(
∂
∂t
,
∂
∂t

) = λ100 − ∇
2ϕ(

∂
∂t
,
∂
∂t

). (97)

Since,

∇
2ϕ(

∂
∂t
,
∂
∂t

) =
∂2ϕ

∂t2 − Γ
k
00

∂ϕ

∂xk
− Γ0

00

∂ϕ

∂t
, (98)

then we have Γk
00 = −

1kj

2
∂R
∂x j and Γ0

00 = −
1

2(R+ N
2t )

(
N
2t2

)
, also we have 100 = R+ N

2t . Using these values in equation

(97), we have

R00 = λ(R +
N
2t

) −
∂2ϕ

∂t2 +
1kj

2
∂R
∂x j

∂ϕ

∂xk
+

1
2(R + N

2t )

( N
2t2

)
. (99)

Approximating upto order O(N−1), above equation reduces to

R00 = λ(R +
N
2t

) −
∂2ϕ

∂t2 +
1
2
∇R(ϕ) −

1
2t
+O(N−1). (100)

(iv) In space-time warped product M̃ = (B × I) f F, the Fiber space F possess Ricci flow. So, we have

FRc =
1
f
∂ f
∂t
1.

Also, for V,W ∈ Γ(F), we have

Rc(V,W) =F Rc(V,W) −
( ∆̃ f

f
− (k − 1)

|∇̃ f |2

f 2

)
1(V,W). (101)

Putting V = ∂
∂xα and W = ∂

∂xβ and using FRc = 1
f
∂ f
∂t 1, the equation (101) becomes

Rαβ = −
(
∆̃ f
f
+

1
f
∂ f
∂t
− (k − 1)

|∇̃ f |2

f 2

)
1αβ. (102)

Since, the gradient and Laplacian of a function on B × I has following property

|∇̃ f |2 = |∇ f |2 +O(N−1), (103)

and

∆̃ f = ∆ f +O(N−1). (104)

Thus, we obtain

Rαβ = −
(
∆ f
f
+

1
f
∂ f
∂t
− (k − 1)

|∇ f |2

f 2

)
1αβ +O(N−1). (105)

Again, approximating up to O(N−1), we obtain

Rαβ = −
(
∆ f
f
+

1
f
∂ f
∂t
− (k − 1)

|∇ f |2

f 2

)
1αβ +O(N−1).
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Lemma 4.2 (Potentially gradient Soliton). Let B × I satisfies Ricci-Hessian type equation, and (B × I) × f F is
space-time warped product so that F possess Ricci flow. Define h(t) so that

∂h
∂t
=

N
2t
. (106)

Then for any c, b ∈ R, b , c, we have

(i) Ri j + c∇i∇ jh = λ1i j − ∇
2ϕi j,

(ii) Ri0 + c∇i∇0h = −
∂2ϕ

∂xi∂t
−

c
2b
∂R
∂xi +O(N−1),

(iii) R00 + c∇0∇0h = λ(R +
N
2t

) −
∂2ϕ

∂t2 +
1
2
∇R(ϕ) −

1
2t
−

cR
2bt
− c

N
2t
+O(N−1),

(iv) Rαβ + c∇∇βh = −
(
∆ f
f
+

1
f
∂ f
∂t
− (k − 1)

|∇ f |2

f 2

)
1αβ +O(N−1).

Proof. To prove this lemma, we use lemma (4.1).

(i)Ri j + c∇i∇ jϕ = λ1i j − (∇2ϕ)i j + c∇i(
∂

∂x j h)

= λ1i j − (∇2ϕ)i j + 0

= λ1i j − (∇2ϕ)i j.

Thus, we have

Ri j + c∇i∇ jϕ = Ri j = λ1i j − (∇2ϕ)i j.

(ii)Ri0 + c∇i∇0ϕ = −
∂2ϕ

∂xi∂t
+O(N−1) − cΓ0

i0
∂
∂t
ϕ

= −
∂2ϕ

∂xi∂t
+O(N−1) − c

1
2(R + bN

2t )
∂R
∂xi

N
2t

= −
∂2ϕ

∂xi∂t
+O(N−1) − c

1
2
∂R
∂xi (R +

bN
2t

)−1 N
2t

= −
∂2ϕ

∂xi∂t
+O(N−1) −

c
2b
∂R
∂xi +O(N−1)

= −
∂2ϕ

∂xi∂t
−

c
2b
∂R
∂xi +O(N−1).
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(iii)R00 + c∇0∇0ϕ = λ(R +
N
2t

) −
∂2ϕ

∂t2 +
1
2
∇R(ϕ) −

1
2t
+O(N−1) − c

∂2

∂t2ϕ

− cΓ0
00
∂
∂t
ϕ

= λ(R +
N
2t

) −
∂2ϕ

∂t2 +
1
2
∇R(ϕ) −

1
2t
+O(N−1) − c(

−N
2t2 )

− c
1

2(R + bN
2t )

∂(R + bN
2t )

∂t
N
2t

= λ(R +
N
2t

) −
∂2ϕ

∂t2 +
1
2
∇R(ϕ) −

1
2t
+O(N−1) −

cR
2bt

+O(N−1) − c(
−N
2t2 )

= λ(R +
N
2t

) −
∂2ϕ

∂t2 +
1
2
∇R(ϕ) −

1
2t
−

cR
2bt

+O(N−1) − c(
−N
2t2 ).

(iv)Rαβ + c∇α∇βϕ = −
(
∆ f
f
+

1
f
∂ f
∂t
− (k − 1)

|∇ f |2

f 2

)
1αβ +O(N−1)

− cΓ0
αβ

∂
∂t
ϕ

= −

(
∆ f
f
+

1
f
∂ f
∂t
− (k − 1)

|∇ f |2

f 2

)
1αβ +O(N−1)

− c
1

f (R + N
2t )

∂ f
∂t
1αβ

N
2t
.

In next two lemmas, we consider that fiber manifold is an Einstein manifold satisfying FRc = µ1F.

Lemma 4.3. Let B × I satisfies Ricci-Hessian type equation and (B × I) × f F is space-time warped product so that
FRc = µ1F, where µ is given by equation (75). Then the components of space-time warped product Ricci curvature
tensor are

(i) Ri j = λ1i j − (∇2ϕ)i j,

(ii) Ri0 = −
∂2ϕ

∂xi∂t
+O(N−1),

(iii) R00 = λ(R +
N
2t

) −
∂2ϕ

∂t2 +
1
2
∇R(ϕ) −

1
2t
+O(N−1),

(iv) Rαβ = λ1αβ.

Proof. Since, B × I satisfies Ricci-Hessian type equation

BIRic + ∇2ϕ = λ1 +
k
f
∇

2 f
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and
FRc = µ1F.

Then, by proposition (3.1), space-time warped product (B×I)× f F becomes gradient Ricci soliton. Therefore,

Rc + ∇2ϕ = λ1.

Thus, proof of first three part of this lemma is same as that of lemma (4.1).
(iv) For the last part, we have

∇
2ϕαβ = 0.

Thus, we obtain
Rαβ = λ1αβ.

Lemma 4.4. Let B × I satisfies Ricci-Hessian type equation, and (B × I) × f F is space-time warped product so that
FRc = µ1F, where µ is given by (75). Define h(t) so that

∂h
∂t
=

N
2t
. (107)

Then for any c, b ∈ R, b , c, we have

(i) Ri j + c∇i∇ jh = λ1i j − ∇
2ϕi j,

(ii) Ri0 + c∇i∇0h = −
∂2ϕ

∂xi∂t
−

c
2b
∂R
∂xi +O(N−1),

(iii) R00 + c∇0∇0h = λ
(
R +

N
2t

)
−
∂2ϕ

∂t2 +
1
2
∇R(ϕ) −

1
2t
−

cR
2bt
− c

N
2t
+O(N−1),

(iv) Rαβ + c∇α∇βh = λ1αβ.

Proof. First three part of this lemma is same that of lemma (4.3), so we directly move to last part.
(iv) Since,

Rαβ = λ1αβ,

and
∇α∇βh = 0.

Therefore, we obtain
Rαβ + c∇α∇βh = λ1αβ.
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