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Convergence of densities of spatial averages of the linear stochastic
heat equation

Wanying Zhang?, Yong Zhang?**, Jingyu Li®

“School of Mathematics, Jilin University, Changchun 130012, China

Abstract. Let {u(t, x)},.ocge denote the solution to the linear (fractional) stochastic heat equation. We
establish convergence rates with respect to the uniform distance between the density of spatial averages
of the solution and the density of the standard normal distribution in some different scenarios. We first
consider the case when 1, = 1 and the stochastic fractional heat equation is driven by a space-time white
noise. When a = 2 (parabolic Anderson model, PAM for short), and the stochastic heat equation is driven
by colored noise in space, we present the rates of convergence respectively for uy = 1, d > 1 and 1y = 6,

d = 1 under the additional condition f(R?) < co. Our results are obtained by using a combination of the
Malliavin calculus and Stein’s method for normal approximations.

1. Introduction
Consider the following stochastic (fractional) heat equation:

du(t,x)=v- (—(—A)%)u(t, x) + u(t, x)n(t,x) for (t,x) € (0, +oo)><]Rd, 1
subject to  u(0,x) = up(x), 1)

where v is a positive constant, —(—~A)? denotes the fractional Laplace operator (see [21]) and 1 denotes a
centered, generalized Gaussian random field such that

Cov[n(t, x),n(s, y)l = 6ot —=s)f(x—y) foralls,t>0andx,y € RY, (2)
for a non-zero, nonnegative-definite, tempered Borel measure f on R?.

We are interested in the rates of convergence of the uniform norm of densities in the following three
cases:

Casel(d=1):ae(1,2],v=1,uy=1and f(x) = Oo(x) for all x € R.
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Case2(d>1):a=20v=1uy=1, f(RY) < coand f(R?) < oo,
Case3 (d=1):a=2,0=1 uy =0, f(R) <o and f(R) < co.

Following from Walsh [7], we can interpret (1) in the following mild form:
Incase 1,

ult,x) =1+ f Golt —s,x —y)u(s, y)n(ds,dy) fort>0and x € R, 3)
0,5)xR

where G, denotes the Green kernel defined through its Fourier transform G;(t\,-)(x) = ¢t

In case 2,

ult,x) =1+ f Pe-s(x — y)u(s, y)n(ds,dy) fort>0and x € RY, 4)
(0,HXR
where p;(x) denotes the heat kernel that satisfies p;(x) = ﬁe‘”zi
In case 3,
Ut,x) =1+ f Doyt (y - %x) U(s, y)n(ds,dy) fort>0andx € R, 5)
(0,HXR

where U(t, x) := u(t, x)/pi(x) (see [2, 15]).

The existence and uniqueness problems for the solution to (1) have been studied extensively [2, 17,
19, 22, 23]. In the present setting, we must ensure that the Fourier transform f satisfies the integrability
condition:

1 fdy)
= oo forall .
YO = Gy fm Brpyp < forallp>0 (©)

Clearly, (6) holds in the cases mentioned above.
For any fixed t > 0 and N > 0, we introduce the centered and normalized spatial averages:
Incase 1,

Fni:= L (f (u(t, x) — 1)dx), where alz\” := Var (f u(t, x)dx). (7)
ON1 \J[oN] ’ [0,N]
In case 2,
1 2
Fno = — (u(t,x) — 1)dx|), where oy, := Var u(t, x)dx|. (8)
ON2 \J[o,N]4 ’ [N}
In case 3,
Fns = L (f (U, x) - 1)dx), where 012\13 := Var (f utt, x)dx). 9)
ON3 \J[o,N] ' [ON]

There are many arguments for a quantitative central limit theorem (CLT for short) for spatial averages
of the solution to (1). The CLT using techniques of the Malliavin-Stein method was first established by
Huang et al [8] with @ =2, g =1 and f = . Later, Chen et al derived the case that 4 > 1 in [13] and [14]
under the condition f(IR?) < co. As for the delta initial condition, Chen et al [15] proved the CLT for the
PAM when 1 is a space-time white noise. After that, Khoshnevisan et al [2] extended the result to cover
the scenario where 1) is colored in space. Recently, Assaad et al [22] studied the case of stochastic fractional

DThe Fourier transform of f is denoted by £, that is, f(y) = f]Rd e™¥ f(dx). In general, f is a nonnegative definite measure.
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heat equation with the initial condition uy = 1. Other related limit theorems and their variations have been
explored in [3, 5,9, 11, 12, 28]. In our current context, the convergence rates for the total variation distance?
are precisely expressed as follows:

C
drv (Fy1,N(0,1)) < —\/Z_f\] forallN > 1, (10)
drv (Fa, N0, 1)) < —S— forall N'> 1 (11)
TV \IN,2, ’ = = 1,

(VN

and

drv (Fn3,N(0,1)) < — forall N >e. (12)

Ci+/logN
VN
The above results describe the convergence rates for total variation distance between the spatial average

and the standard normal random variable. When the density functions of the two random variables

exist, the convergence rate for total variation distance is equal to the convergence rate described in the

LY(RR, dx) difference of the corresponding density functions. Motivated by this insight, we aim to explore

the convergence rates in the L*(IR) difference of two density functions.

The analysis of upper bounds for the uniform norm of densities, using Malliavin calculus techniques,
was first introduced by Hu et al [27]. Recently, Kuzgun and Nualart [24] extended their results and
established upper bounds for the uniform distance of densities between the spatial averages of the solution
to the stochastic heat equation in two different cases and the standard normal random variable. Specifically,
they deduced the convergence rates with respect to the nonlinear stochastic heat equation and the PAM
under the condition g = 1, f = 6p and ug = 0, f = 0, respectively. Later, Kuzgun and Nualart [25] derived
the convergence rates when 1y = 1 and f is given by the Riesz kernel(f(dx) = |x|*dx, € (0,d A 2)).

In the three cases of interest in this paper, the convergence rates for the uniform distance of densities
have not been studied. Therefore, we present the following results:

Theorem 1.1. In case 1, let Fn1 be the spatial average defined in (7). Then, for all N > 1,
G
sup | fry, (¥) = o)l < —, (13)
5 S R
where fr,, and ¢ denote the densities of Fx 1 and N(0, 1), respectively.

It can be seen that (1) becomes the PAM when a = 2. Therefore, Theorem 1.1 serves as an extension of the
linear case in [24, Theorem 1.1]. The previous theorem is established for f = §¢. In the following, we shift
our focus to the case that 7 is colored in space.

Theorem 1.2. In case 2, let Fy be the spatial average defined in (8). Then, forall N > 1,
G

su I Nz(x) - (X)| < ’, (14)
R i) = 9000 < g
where fry, and ¢ denote the densities of Fyp and N(0, 1), respectively.
Theorem 1.3. In case 3, let Fx 3 be the spatial average defined in (9). Fix p > 21. Then, forall N > e,
Ci(4/logN)P
su | N3(x) - (.X')| S— (15)
= S W

where fr,, and ¢ denote the densities of F 3 and N(0, 1), respectively.

2The total variation distance between two random variables X and Y is defined as dv(X,Y) = SUPRegR) [P(X € B) - P(Y € B)|,
where B(R) is the collection of all Borel sets in R.
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Following the method in [24] (see Lemma 2.1), the estimates on p-norm of the second Malliavin derivative
and ||(D,F)7!|ls are crucial components in discussing convergence rates. It is essential to note that, when
dealing with ||(D,F)~!|ls, we must ensure that E [Ju(t, x)| 7] < oo for any fixed (t,x) € (0, +c0) X R%. In our
settings, the non-negativity of u(t, x) is guaranteed almost surely thanks to the comparison principle or
Feynman-Kac formula; see, for example, [10, 17, 18]. Therefore, we use E [(u(t, x)) 7] instead of E [|u(t, x)|7].
For the case of d = 1, f = 0o, Chen et al [20] have proved that E[(u(t,x)) 7] < co based on small-ball
probability estimate. When 7 is colored in space, small-ball probability estimate was provided by Chen
and Huang [17]. However, the negative moment of the solution exists only when f(IR?) < co. (see Lemma
2.3 part (4) and Lemma 2.4 part (4)).

Remark 1.4. The collection of meastires under the condition f(RY) < oo is massive. For example, f is given by a
Gaussian kernel (f(dx) = py(x)dx and f(dx) = e ™*/2dx) or a Cauchy kernel (f(dx) = [H‘;Zl(l + |Jc]-|2)]_1 dx and
f(dx) = [10., e Fild).

Remark 1.5. Unfortunately, the multidimensional situation of case 3 has not been investigated so far. It has been
proved in [2, Theorem 1.3] that the convergence rate for CLT in terms of total variation is N~'/2, implying a
corresponding convergence rate of ||1 — DyFnll in Lemma 2.1 as N~12. However, the control of lI(DoFn) 4 la by N
for any a < 1/2 remains elusive through our current methodology. This is an issue for future research to explore.

The organization of this paper is as follows. In Section 3, we derive moment estimates of the second
Malliavin derivative of u(t, x). Notably, we obtain a more general result for the nonlinear stochastic fractional
heat equation in case 1. Section 4 is devoted to analyzing the negative moments of D,F. Furthermore, we
prove the convergence rates on uniform distance in Theorems 1.1-1.3 in Section 5, based on Malliavin-Stein
method and Fourier analysis. Finally, in the Appendix, we introduce some technical lemmas used along
the paper.

Throughout this paper, we write ||Z]|, instead of (E|Z]P)VP for any Z € L7 and we denote the generic
nonnegative constant by C, which can take different values and depend on different variables.

2. Preliminaries

2.1. The BDG inequality

For every continuous L?(Q)-martingale {M};>0, we have the following Burkholder-Davis-Gundy (BDG
for short) inequality:
E(IMi[f) < ZfE((M)}?) forallt>0and k> 2,

where {z;}>2 are the optimal constants. Moreover, the method in [1] and [6] together implies that

z> =1, and supizlimz—kzz,

k2 Yk koo vk
which means z is bounded from above by the multiples of Vk, uniformly for all k > 2.

2.2. Malliavin calculus and Stein’s method

Let Hy be the reproducing kernel Hilbert space spanned by all real-valued functions on R?, with respect
to the scalar product (¢, ) := (P, P * f >L2(1Rd)/ and let H = L*(R, xHj). The Gaussian random field {W(h)} ez
formed by such Wiener integrals

W= [ s s,y 16)

defines an isonormal Gaussian process on the Hilbert space H. On the basis of this, we can develop the
Malliavin calculus (see, for instance, [4]).
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Let S denote the space of simple random variables of the form
F=f(W(h),..., W(ha)),

where f € C;"(]Rd), that is, f is a smooth function and all its partial derivatives have at most polynomial

growth at infinity, and h, ..., h, € H. Then the Malliavin derivative DF is defined as H-valued random
variable

d
d
DF=)" % (W(n), ..., W(ha)) hi. (17)

=1
For any p > 1 and k > 1, we denote the completion of S by D" with respect to the norm

1/p

k
IFll, = [EDFPT+ Y E[IDFIL, ]|
j=1

where D/ denotes the j-th iterated Malliavin derivative and ® denotes the tensor product. Similarly, we
can introduce the spaces ID¥(V) for some real separable Hilbert space V. The adjoint operator § of the
derivative D is characterized by the duality formula

E[F5(v)] = E[(DEF, v)4(],

which is valid for any F € ID'2. An important property of 6 is that any predictable and square integrable
random field v belongs to the domain of 6 and 6(v) coincides with the Walsh integral, that is,

o(v) = jﬂ; » v(s, x)n(ds, dx).

For an H-valued random variable v and F € D!, define
D,F := (DF, v)y. (18)

The following lemma, which characterizes the uniform distance of densities, plays an important role in
proving Theorems 1.1-1.3.

Lemma 2.1. [24, Theorem 3.2] Assume that v € DY°(H), F = 6(v) € ID*® with E(F) = 0 and E(F?) = 1, and
I(DyF)~Y|s < oo. Then F admits a density fr(x) and the following inequality holds true,
sup | fp(x) — p(x)| < (IIFII4II(DvF)_1II4 + 2) 11 = DoFllz + [I(DoF) M I511Do(DoF)lla, (19)
xeR
where ¢(x) denotes the density of N(O, 1).

2.3. Some properties of u(t, x)

We first introduce some properties of the moments and Malliavin derivative of u(t, x) in the following
three lemmas.

Lemma 2.2. Let u(t, x) be the solution to (1) in case 1, we have
(1) [22, Theorem 2.1] The process u(t) := {u(t, x)}xer is stationary. Moreover, for any p > 1 and any T > 0,

sup E[Ju(t, x)IF] < oco.
te(0,T],xeR

(2) [22, Propositions 5.1-5.2] For almost all 0 <s <t <T,x,y € R,

t
Dy, yu(t, x) = Ga(t —s,x — y)u(s, y) + f fR Ga(t = 1,x — 2)D; yu(r, z)n(dr, dz). (20)
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Moreover, for all p > 2,

IDs yua(t, 2)lly < Crp(t =) % GE (¢t =5, x = y).
(3) [20, Theorem 1.5] Fix (t,x) € R* X R, forall p > 0,
E ([u(t, x)]'?) < oo.

Lemma 2.3. Let u(t, x) be the solution to (1) in case 2, we have
(1) [16, Theorem 1.1] The random field u(t) = {u(t, x)}cgre is stationary.
(2) [13, Lemma 4.2] For almost all0 <s <t < T, x,y € R,

t
Doyt %) = pros(x — y)uls, y) + f f Pios(x = 2)Dsu(r, 2(dr, d). 1)
s R4

Moreover, for all p > 2,

sup  E[fu(t, x)I] < co and ||Ds yu(t, x)|l, < Crppi-s(x — y).
te(0,T],xeR4

(3) [14, Proposition 3.4] Forall0 <r <s <t x,y,z € R? and foreveryp > 2,
IDrzDs,yua(t, )llp < Coppr-s(x = y)ps—+(y — 2).

(4) Fix (t,x) e R* x RY, forall p > 0,
E ([u(t, x)]7) < oo.

Proof. (4). From [17, Theorem 1.6], since f(RY) < co, we have that, for any fixed (¢, x) € (0, +o0) x R?, there
exists a finite constant A = A;, > 0 such that for all ¢ > 0 small enough,

P(u(t, x) < €) < Aexp(—Allog¢|(log|log e)?). (22)

According to [20, Lemma A.1], it suffices to show that, for all p > 0, there exists some finite constant C, > 0
such that

P(u(t, x) < &) < Cpe?. (23)

For any p > 0, choose C, = A V exp(p exp(+/p/A)). Then, for any 0 < ¢ < exp(—exp(+/p/A)),

P(u(t,x) < €) < Aexp(-Allog ¢l(log | log £])*) < Cye?, (24)
and for any € > exp(—exp(+/p/A)),
P(u(t,x) < €) <1 < exp(pexp(/p/A))e’ < CpeP. (25)

Combining (24) and (25), we prove the result. [J

Lemma 2.4. Let u(t, x) be the solution to (1) in case 3, U(t, x) = u(t, x)/p:(x), we have
(1) [2, Theorem 1.1] The random field U(t) := {u(t, x)}xer is stationary. Moreover, for any p > 2 and any T > 0,

sup E[|U(t, x)IP] < co.
te(0,T],xeR

(2) [2, Proposition 4.1] Forall0 <r <s <t x,y,z€ R,

t
D, U(t, x) = pses (y - ix) UG, y) + f fpv(tr) (z — ;x) D;,, U(r, z)n(dr, dz). (26)
t s R t
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(3) [26, Corallary 1.2] Suppose that 0 < r; <rj < tforall 1 <i < j<kandz € R for1 <i<k, let DX _U(t,x)
denote the k-th iterated Malliavin derivative of U(t, x), i.e., DX _ U(t,x) = Dy, 4, ... Dy, U(t, x), then for all p > 2,

Tk/Zk

T, 187
”Drk Zk U(t, x)”]!? Ctl’ [Hp'"l(yrml rm) ( Zm — r = Zm+1) p'k' k) ( Zk — ?x)

"m+1 m+1

(4) Fix (t,x) e R* X R, forall p > 0,
E ([u(t, x)]77) < oo, hence, E ([U(t, x)]F) < co.
Proof. (4). The argument is the same as the proof of Lemma 2.3 part (4). O

The following lemma describes the asymptotic behavior of the variance functions and upper bounds
for the moment of spatial averages.

Lemma 2.5. Let Fy; and 0 . (i=1,2,3.) be as defined in (7)-(9). Then, we have
(1) For any p > 2, supy5, ”FNznp Ci (i =1,2), and supy,, [Fnally < Ct.
2

(2) [22, Theorem 5.6] limy o M=y,
(3) [14, Proposition 5.2] limy_,c N—f = f]Rd Covlu(t,x), u(t,0)]dx < co.
(4) [2, Theorems 5.1-5.2] limy—c0 7727 Nlog ~ = tf(R).

Proof. (1). The upper bounds of the moments follow easily from the BDG inequality; see, for instance, [15,
Lemma 2.4]. O

3. Second Malliavin derivative
This section aims to estimate the moment bounds of the second Malliavin derivative of u(t,x). The

estimates for cases 2 and 3 can be found in Lemmas 2.3-2.4. Therefore, we will only prove the result for
case 1. Now, consider the more general setting,

{ Au(t, x) = —(=A)2u(t, x) + o(u(t, x))n(t,x) for (t,x) € (0, +o0)xR, @)

subjectto  u(0,x) =1,
where o denotes the Lipschitz function satisfying o(1) # 0. In order to obtain the following result, we
further assume that ¢ is twice continuously differentiable, ¢’ is bounded and |o” (x)| < C(1 + |x|"") for some

m > 0.

Proposition 3.1. Lef u(t, x) denote the solution to (27). Then, u(t,x) € ﬁpzlez"’ and for almost all 0 < r <s <,
¥,z € R, we have

D,.Ds,yu(t, x) =Gu(t — s, x — y)o’ (u(s, y)) D, .u(s, y)
+ f Galt 1,2 — £)0" (u(t, E)D,at(t, E)Dsyu(r, E(dlz, dé)
[s,£]xIR
+ f Ga(t - TX— g)al(u('rr CE))Dr,zDs,yu(T/ é)n(dT/ dé)
[s,t]1XR
Moreover, forall 0 <r <s<t<Tandx,y,z€ R,

DD, yuct, x)“; < CrpK2, (%), (28)
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where
K2, (t,2) = (=) Galt = 5,x = )5 = 1) 7 Gals — 1,y — 2)
+ ft f]R [(t=6)6 —1)(6 - s)]_% Ga(t = 0,x —w)Go(0 —1,w — 2)Go(0 — 5, w — y)dOdw.
s
In particular, if o(x) = x, then
DDyt 9|, < Crtt = 5% Git—s,x—)(s—1)EGis -1, - 2). (29)

Proof. First, we define the Picard iteration for the solution to (27). Let uo(t,x) = 1, and for n € IN,
Ups1(t,x) =1+ f Ga(t —s,x = y)o(u(s,y))n(ds,dy) fort>0and x € R. (30)
(0,f))xR

Applying the properties of the divergence operator [4, Proposition 1.3.8], we deduce, for almost all (s, y) €
(0,t) X R, that

Ds,yun+l(t/ x) :Ga(t -5 X— ]/)U(”n(s/ ]/)) + f Ga(t - T,X— 6)6’(1/[”(’[, E))Ds,yun(T/ E)n(d’r/ dé)r (31)

[s,t]XIR

and for almost all s > ¢, Ds ,u,+1(t, x) = 0. Using the properties of the divergence operator again, we obtain,
foralmostall0 <r<s<tandy,z€e R,

Dr,zDs,yurHl(tr x) = Ga(t -5X— y)U'(un(S, y))Dr,zun(sr y)
+ f Ga(t = 7,x = £)0” (un(T, £)) Dy 211n (T, E)Ds 1ty (T, E)n(dr, dE)
[s,t]xIR

+ [ | Galt — 7, x = )0’ (un(s, y))D;..Ds yu, (1, E)n(d, dE). (32)
s,t]XIR

Moreover, applying the BDG inequality, Minkowski inequality and Lemma 2.2 (Lemma 2.2 still holds for
the nonlinear case, see [22]), we have, for almost all (¢,x) € [0, T] X R,

2
|Dr2Ds i (t, x)”p < CrpGi(t—s,x—y)s—1) 7 Gals =1,y — 2)
t
+ CT,pf f G2(t =T, % = E)T = 1) 5 GalT = 1,E = 2)(T = )7 Galt — 5, & — y)d&dt
s R
t
2
+Crp f f G2(t — T,x = &) |Dy2Ds yttn(x, 5)||p dédr. (33)
s JR
To simplify the expression, we define the measure on [s, t] X R such that

J(dt, d&) :=(t — )" Go(T — 1, — 2)05,(d7, dE)
+(T =1 75Go(T = 1,E = 2)(T — 5) * Gul(T — 5, & — y)dTdé.

Then, we can rewrite the inequality (33) as follows:

t t
|Dr.2Ds i (t, x)1|§ <Cr, f f Ga(t — 7,x — &)J(dt,d&) + Crp f f GA(t = T,x = &) | Dy2Ds ytn(x, g)||; dé&dr.
s R s R
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2
Notice that ||Dr,ZDs,yu1(t, x)Hp = 0, then we perform n — 1 iterations to obtain that

t
2
”Dr,zDs,yunH(t/x)”p < CT,p f f G(Z,t(f — 51, X — }/1)] (dSl,dyl)
s R

n—1 t 51 Sk
+ch%;1fff ff fci(t—sl,x—yl)Gﬁ(ﬁ—Szfyl—yz)“‘
k=1 s YRJs IR s VR

X G2 (s = Sks1, Yk — Yae1)] (dSkr1, dyksr) dyedsy - - - dyadsy.

Let K2(t, x) be defined by K*(t,x) = K2, (t,x) := f Jot = 1) Galt = T,x = £)J(dr, dE). Using Lemma A.1
part (1) we can write

t
”DrzDsy”nH(t x)“ <CTpK (t,x) +ch+1f ff51f...f5kf
s R Js R 5 R

k
X H S]+1 E Ga(sj = sj+1,Yj — Yj+1)] (dsks1, dyre1) dyrdsy - - - dyadsy,
j=0

where so = t and yy = x. Then, apply the semigroup property of the Green kernel to find that

n-1 Sk
||Dr,zDs,yun+1(fr x)||; < CT,pKz(t,xHZC"“ f f fk f f
k=1

X [(t = 51)(51 = 52) -+~ (5K = 5541)] 7% Gt = 541, % — Yis1)] (dsgsr, dyisn) dsg -+ dsy
n—1

= Cr, K2(t, x)+Z

X f [(A-r) (=12 nl 7™ d”k"'drl]
O<rg<-<rp<ri<l

(a- 1)k

k+1
< CrpK2(t,x) +Zc’;+1T r(-3 f f (t- — 1,2 - £)J(dr, dé)
= r(k+1)(

C]ﬁlff(f—sku) TG ot = Sk1, X = Yra1)J(dSir1, dyis1)

(a=1)k

k+1
C +ch+1T ri-z) — D) Galt - 1, x — £)J(dr, dE)
Tp o (k+1 ’ ’

k=1

< CT,pK (t/ x)/

where in the second inequality, we use the following identity:

F(l B %)kﬂ

_1
| (A=) =)o drodr = _ (34
0<rp<-<ry<ri<1 F((k + 1) (1 - 5))
Hence, we obtain the moment estimate
sup DDy yitu(t, )y < Cr,pKZ, o, (2, %). (35)

nelN

In particular, if o(x) = x, the second part of (32) vanishes. According to the preceding arguments, we have

sup ID,-De yttn(t, X)lly < Crp(t — ) FGA(E— 5,2 — y)(s — 1) HGL(s — 1,y — 2).
nelN
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Moreover, using Minkowski inequality and Lemma A.2 we derive that
P
(1D (t, )1 ] < (f f ID12Ds y1tu(t, 2)||° dydzdrd )
supE w0, . | < su 2 Ds yun(t, x ydzdrds
nelll\T3 " HeH nelN [0,t]2 JIR? e P

14
t S 3
<Crp (2 f f f K%Z,S,y(t,x)dzdydrds) < 0. (36)
0 Jo JR?

Finally, since u,(t, x) converges to u(t, x) in LF(Q) for p > 2 (see in the proof of [22, Theorem 2.1]), we deduce
that u(t, x) € ﬂpzlez"’ by [4, Lemma 1.5.3]. Following an approximation argument similar to the proof of
Theorem 6.4 in [16], we prove the results. [

4. Negative moments

In this section, we will give estimates for the negative moments of D,F in this section. The following
lemmas play an important role in proving Theorems 1.1-1.3.

Proposition 4.1. (Case 1). Let Fn, denote the spatial average defined in (7). Then, for any p > 2,
supE [|DUN/1FN,1|_p] < 0o, (37)
N1

Proposition 4.2. (Case 2). Let Fn» denote the spatial average defined in (8). Then, for any p > 2,
sup E[ Doy, Fna| 7] < 0. (38)
N>1 '

Proposition 4.3. (Case 3). Let Fy 3 denote the spatial average defined in (9) Then, for any p > 2,y > 5p,
sup E [|Doy,Fns| " | < Ciypy(log N (39)
Nxe

For the sake of simplicity, we put (3)-(5) together and recast the mild solution in cases 1-3 as
ut,x) =1+ f G(t —s,x — y)ii(s, y)n(ds,dy) fort>0and x € R, (40)

(0,t)xIR?

where u(t, x), (~}(t —s5,x — y) and 1 depend on the situation of cases 1-3. Similarly, (7)-(9) can be recast as

Fy := = (f (u(t,x) - 1) dx), where 0%, := Var (f u(t, x)dx). (41)
ON \J[oN¥ [N

Substituting (40) into (41), we have

Fy = = (f f G(t —s,x — y)ii(s, y)n(ds, dy)dx)
ON \J[O,N]* J(0,)xR¢

¢ 1 _ ~
= L f]Rd on (f[o,N]d G(t —s,x = yu(s, y)dx) n(ds, dy) = 6 (vn),

1 —
on(s, y) = l[o,t](s)& L)N]d G(t —s,x — y)u(s, y)dx. (42)

where
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Consider the Malliavin derivative of Fy,

1 —
Ds Fn = — Ds u(t, x)dx.
, on Jonp

Since u(t,x) > 0 and Ds,yﬁ(t, x) > 0 for almostall 0 <s < tand x,y € R? (see [14, Theorem 3.2] for case 2,
others can be obtained similarly), together with (42), we have

t
D, Fy = f fm on(s, ¥ + y')Ds, Fndy f(dy')ds
0 JRr

1 t
= —2f dsf dyf(dy')f dx;dx,
O'N 0 R24 [O,N]Zd

X Dy yi(t, x1)G(t = 5, %2 = (y + ¥ ))uls, y + i) (43)

1 (! _ ~ —
> — f dsf dyf(dy’)f dx1dx; D u(t, x1)G(t —s,x2 — (v + y)uls, y +y'),
GN t R4 [O,N]Zd

wheret, :==t—¢% forany0 <a <land 0 < & < % Recall (20), (21) and (26), thanks to a stochastic Fubini
argument, we obtain

1 [t _ ~ _
= [as [ avian) [ dndaDu 0G0 -5 - 0 v+ )
O'N to R4 [O,N]Zd

=Il + 12,
where
1 t

Li=— f dsf dyf(dy’) dxydxy

o N VYt R2d [0,N]2

X G(t—s,x, — y)a(t —s,% — (y+ Y )uls, yuls,y+y), (44)

I :=i2 n(dr, dz) f ds f dyf(dy’) dx;dx,

o N [ta t]IXIRY to R [O,N]

X Gt =121 = 2)G(t = 5,2 = (y + Y Wills, Y + ¥ )Dsy i, 2). (45)
Hence, by Chebyshev’s inequality, for any g > 2, we have

P(DZJNFN < E) <P(h+L<¢e)<P(; <2e)+P (] > ¢)
< QRETE[ILIT] + e TE[L)]. (46)

Now we begin to prove Propositions 4.1-4.3 by estimating E [|I;|™] and E [|L»|7].

Proof. [Proof of Proposition 4.1] In case 1, we define

on(s, y) = f Golt —s,x — y)dx.
[O,N]



W. Zhang et al. / Filomat 38:28 (2024), 9813-9833 9824

Recall the definition of I; in (44), thanks to Jensen’s inequality we have

-q
1 t
— f f DX (s, y)u*(s, y)dyds }
ON1 Vi IR

¢ -
¢ - % (s, y)u(s, y)dyds
(f Ml(s,N)ds) E S Je % :
b 0N ft M;(s,N)ds

¢ -4-1 f
S( f Ml(SfN>d5) zL f f O%y(s, )E [ (s, )] dyds,
to UNll t. JR

Mi(s,N) = ZL f O, y)dy. (47)
On1 VYR

E[ILI™] = E[

where

From Lemma 2.2 part (1) and part (3),

sup E[ ~2(s, y)]— sup E[ sO)]<th<oo
s€[t/2,t] s€[t/2,t]

Hence, we derive that

E[ILI7] < Ciy (ft M;(s, N)ds)_q. (48)
|24
For every real number N > 0, define the following functions:
In() = N1 \o(x), In(x) = In(-x) forx € R”. (49)
Then, we obtain that the Fourier transform of Iy *TN is 274 H’jzl 1_2325])\212] ), Note that in this setting, the

functions Iy * Iy and G,(t, ®) belong to L%(R). By the semigroup property of G, and Parseval’s identity, we
have that forany N > 1,

1
Mi(s,N) = —— f Ga(2(t = ), x2 — x1)dx1dx2
aN,l [0,N]2

2

1\2]— i (In * In) (90Ga(2(t = 5), )dx

N1
2
_ N f 1- cos(Nz)e 292 g,
o r  (Nz)?
1- 2(t — s)z“
_ N f COSZ ( At =s)z" Nj)z )dz (50)
Nl
1—-cosz 2(t — s)z°
> ex dz > C,, 51
7'(0’]2\]’1 [1,2] Z2 p( N« ) f ( )

where we use Lemma 2.5 part (2) in the last inequality. Then, from (48) and (51), we conclude that

t q
E[IL17] < Cy, ( f ds) < Cppe™™. (52)
tll
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Now, we estimate the term E[|[;|7]. Recall the definition of I, in (45), we apply the BDG inequality and
Minkowski inequality to find that

t r 2
ftlfm(%jt: jﬂ;qu(s,y)qu(r,z)u(s,y)Dsryu(r,z)dyds] dzdr

1 t
4—f drf dsldszf dy1dy2dzn(s1, y1)Pn(s2, Y2)Px (1, 2)
O-er ty [ta,r]? R3

|

1 t
SCq(GT f dr f dsyds; f dy1dy2dzn(s1, y1)Pn(s2, Y2)dx (1, 2)
N1 Via [ta,1T? R3

1
2

E[LI] < C,E

= C,E

X u(s1, y1)u(s2, Y2)Ds, y, u(7, 2) Ds, ;, u(r, 2)

x ||u(sll ]/1)”(52/ yZ)DS1,y1 u(r/ Z)DSZ,yzu(r/ Z)”% )
1 [ 2
<Ciq|—— | dr dsidsy | dyidyadzdn(sy, y1)Pn(sz, y2) Py (7 2)
O_N, 1 ta [ta,r] 2 R3

X (r—51) % G2(r —s1,2 — Y1)(r — 52) % G2 (r — 59,2 — yz)) , (53)

where we use Lemma 2.2 part (1) and part (2) in the last inequality. Notice that ¢n(s, y) < 1 by Lemma A.1
part (3). Thanks to Lemma A.1 part (4), we obtain that forany N > 1,

1 1
o f $%(,2) [ | onlsi y)r = sy %G (r = 51,2 - y)dyrdyadz
N1 VR

i=1,2

1 1 1
< f $%(,2) [ [ =505 Gir = 51,2 - y)dyndyadz
On1 VR

=12
1- 2(t = r)z®
<= [[Raas- S [Lo o HD s <, o4
On1 IR moy, JR  Z N
where the equality holds by (50), and we use f]R 1=es2dz = 7w and Lemma 2.5 part (2) in the last inequality.
Then, substituting (54) into (53), we conclude that
. 3
E[ILI7] < Cy, ( f dr f dsldsz) <Cpye?. (55)
ta [tarP?

Choose a = 4/5. (46), (52) and (55) together imply that

supP(DleFNJ < s) < Ct,qeg. (56)

N1 '

Therefore, we finally get

supE [(DvN’lFN,l)_p] = sup foo pe PP (DZ,NJFNJ < s) de
0

N=1 N=1
1
<1+ Cthpf e P15 de < oo, (57)
0

for all ¢ > 5p. This proves our result. [
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Proof. [Proof of Proposition 4.2] In case 2, recall the definition of I; in (44), thanks to Jensen’s inequality, we
have

E[IL]™] f dsf dyf(dy’) dxdx,
NZ [0 N]Zd
-q
X Pr-s(x1 = YIpe-s(xa — (y + y")uls, y)uls, y +y') ]
f -1
< (f M;(s, N)ds) f dsf dyf(dy’) dx1dx;
to ty R [0,N]¥
1 , _ _ ,
X ——pi-s(¥1 = Y)pe-s(x2 = (y + Y DE[u™(s, y)u~(s, y + y)],
N2
where
1
M, N = = [ dufar) [ dndupe - ppete - 04 1) (59)
O N2 R24 [0, N]zd

Thanks to Holder’s inequality, Lemma 2.3 part (1) and part (4), we can see that

[T

sup E[u™(s,y)u™(s,y+y')] < sup [E( (s, y)) ( _zq(s,y+y’))]

s€[t/2,t] s€[t/2,t]

< sup E[u(5,0)] < Ciy < oo, (59)
se[t/2,t]

This, together with Lemma A.3 part (1), concludes that

t - t -q
E [|Il|_q] < Ct,q ( MZ(S, N)ds) < Ct,q (f dS) < Ct,qg_aq, (60)
ta ta

forany N > 1. As for E[|[,]7], recall (45), using the BDG inequality and Minkowski inequality, we can write

t
E[ILI"1 <G fdrf dsldszf dylf(dy{)dyzf(dy’z)dzf(dz’)f dx;dx]dxodx)
ta [ta,T? R [0,N]#

1 / ’ ’ / ’
X GTPt—r(xl = 2)per(xX] = (2 + 2))p=s, (x2 = (Y1 + Y))IPt—s, (x5 — (Y2 + )
N2

1
2
X llu(sr, y1 + yy)ulsa, ya + yo)Ds, g, (1, 2) Dy, u(r, 2 + Z’)II;)

t
< Cig (f drf dsldszf dylf(dyi)dyzf(dy’z)dzf(dz’)f dx;dx]dxodx)
ta [ta T? R64 [0,N]+

1 4 /7 / 4 4
X GTPt—r(xl = 2)pr—r(x] = (2 + 2))Ppr-s; (2 = (Y1 + Y))Pt=5, (x5 — (V2 + Y))

N,2
X Pros,(Z = y1)pr-s,(z + 2’ = yz)) , (61)

where we use Lemma 2.3 part (2) in the last inequality. Then, we proceed in the following order: integrating
in y1, ¥, and using the semigroup property of the heat kernel; integrating x,, x; on IR?, to obtain that for
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any N > 1,

1 t
E[ILI"] < C (Tf drf dsldszf f(dyi)f(dyé)dzf(dz’)f dx;dx]
GN,Z [ [ta,1T? R [O/N]M

9
2

X pr—r(X1 = 2)prr(x] — (2 + Z’)))

1
2

20 ]Rd 2 t 2
scm(ﬂ f Mz(r,N)er <Cppe?, (62)
ON2 ta

where we use Lemma A.3 part (2) and Lemma 2.5 part (3) in the last inequality. Choose a = 4/5. Similar to
the argument in (57), from (46), (60) and (62), we finally prove the result. [

Proof. [Proof of Proposition 4.3] In case 3, we first estimate the term E[|[;|™]. Similar to the proof of
Proposition 4.2, we apply Jensen’s inequality, Lemma 2.4 part (1) and part (4) to see that

¢ -q
E[ILI™] < Cyy (f Ms(s, N)ds) , (63)
ta
where
1 s s
M;3(s,N) := z—f dyf(dy’)f dxydxop se-s (Y — —x1)psi-0 (Y + Y — =x2). (64)
GN,3 R2 [O,N]Z t t t t

From Lemma A .4 part (1), we conclude that

fo\d
E[IL™] < Ci4(log N)* (f ds) < Crge*(log N)1, (65)
ty

for any N > e. Next, recall (45), Lemma 2.4 part (1) and part (3). By the BDG inequality and Minkowski
inequality,

t
E[|L]] < Ci4 (f drf i dsldszf dy1 f(dyy)dy. f(dys)dzf(dz’) dxqdx]dxpdx;
ty [ta,7] R6 [O,N]*

1 r , T, , S
N3
4 S / S S ’ :
Xp i) (yz + Y, — ?zx2)psl<,_,51) (y1 - %z)psz(m) (yz - 72(2 +z ))) . (66)
Then, we use the same arguments in proving (62) and apply the following identity in integrating x,, x/:
p(0x) = 07py 2 (x), forallx e Rand t,0 > 0. (67)
As a consequence, for any N > e,
R 2 t 3
1 : 3
E[IL|"] £ Ciq (f(z ) f M;(r, N)drf —dsids; | < Ct,quq, (68)
ONg3 ta [ta, 112 5152

where the last inequality holds by f, > /2 and Lemma A.4 part (2). Choose a = 4/5. Combining (46), (65)
and (68), we finally get

1
E [(DUNJFN&) ”] <1+Cy, (logN)'p f e 5de < Cy, (Iog N)', 69)
0

for all g > 5p and N > e. This proves the result. [
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5. Proofs of Theorems 1.1-1.3
In this section, we will establish upper bounds for the uniform distance of densities and prove Theorems

1.1-1.3 by analyzing the behavior of ||D,, (Dy, En)ll2.
In cases 1-3, recall (43) that

1 t
DoyEy = — fo ds fR _ dvfdy) L N]ﬂdxldxz
N N

X Dy it x1)G(t — 5, % = (y + ¥ ))uls, y + ). (70)

Applying the Malliavin derivative operator, we have

1 ~
D, .(DyFN) = _Zf dsf dyf(dy’)f dx1dxoG(t =5, %0 — (Y + )
GN 0 R2 [O,N]Zd
X (Ds,y;[(t/ xl)Dr,zZ[(s/ y + ]/,) + FTI(S/ y + y,)Dr,zDs,y;I(t/ xl)) .

Recall (42), we obtain

Dy (Do FN) = fdrf dsf dzf(dz’ )dyf(dy)f dxidxodxs

X G(t—s,xz -(y+y ))G(t —r,x3— (z+2)u(r,z +2)
X (Ds,yﬁ(tr xl)Dr,z?I(S/ y + y’) + 2;[(5/ y + yl)Dr,zDs,yI[(tr xl)) . (71)

Now we begin to prove Theorems 1.1-1.3.

Proof. [Proof of Theorem 1.1.] In case 1, according to the proof of [22, Theorem 2.3], it is easy to see that

C
|1 = Doy, Fna|, < \/—;\_] (72)

Recall Lemma 2.1 and Lemma 2.5 part (1), it remains to estimate the term ||D,,, (Do, Fn,1)ll2. According to
Holder’s inequality, Proposition 3.1, Lemma 2.2 part (1) and part (2), we have

140, 2) (D e, 20)D a5, ) + 2065, y)Dy Dyt 1)
< Ct—s) FGi(t =511 - y)s— 1) EGi(s -1,y —2). (73)

Hence, recall (71), thanks to Minkowski inequality,

WM%AM<—fmf@fMy dndud

X Galt =5, %2 = Y)Galt = 1,%3 = 2)(t = ) HGI(E —5,%1 = Y)(s — 1) FGE(s — 1,y — 2).

Then, we proceed in the following order: integrating x3 on IR by using Lemma A.1 part (3); integrating x;
and z on R by using Lemma A.1 part (4); integrating y on IR, to obtain that for any N > 1,

WM%AW<—fwf@fwﬁ—— (74)

where the last inequality holds by Lemma 2.5 part (2). This proves Theorem 1.1. [
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Proof. [Proof of Theorem 1.2.] In case 2, from the proof of [14, Theorem 2.5], we have
Ct
(VN

Thanks to Lemma 2.1 and Lemma 2.5 part (1), we estimate the term ||D,,,(Dy,,Fnp)ll2 in the following.
According to Holder’s inequality, Lemma 2.3 part (2) and part (3), we have

It = Doy Pzl <

(75)

1402+ 2) (Dot 100D,y + ) + 2065,y + y)DDiutt, 2|,

< Cipr—s(x1 = Yps—r (Y + Y — 2) + Cipr—s(x1 = Y)ps—(y — 2). (76)
Then, recall (71), we have
1Dy, (Doy, Fn2)ll2 < Png + P, (77)

where

t t
Dyy = < f dr f ds f dzf(dz)dy f(dy) f dxydxads
ON,Z 0 r R4d [O,N]34
X Pt—s(x2 - (y + y/))pt—r(xi% —(z+ Z,))Pffs(xl - y)psfr(]/ + ]/’ —-2),

t t
Dyp = = f dr f ds f dzf(dz)dy f(dy) f dx;dxadxs
GN,Z 0 r R4d [0,N]34
X pt—s(x2 - (y + y/))pt—r(x3 - (Z + Z,))Pt—s(xl - y)ps—r(y - Z)'

Next, for both @y ; and Py, we first integrate in z and use the semigroup property of the heat kernel, then
integrate x3 on R? to obtain that fori=1,2,

C f t
s < < f dr f ds f £(d2)dyf(dy) f dxidxaprs (2 — (7 + Y )prsCrr — 1)
GN,Z 0 r R34 [O,N]Zd

~ th(]Rd) t t o
= —GN,z f(; dr j: M>(s, N)ds < ( \/N)d’ (78)

where Mj(s,N) is defined in (58), and we use Lemma A.3 part (2) and Lemma 2.5 part (3) in the last
inequality. Hence, recall (77), we finish the proof. [

Proof. [Proof of Theorem 1.3.]In case 3, it follows from the proof of [2, Theorem 1.3] that
Ci+/logN
VW

Since Lemma 2.4 part (1) and part (3) hold, we repeat the computation in the proof of Theorem 1.2 to find
that

||1 - DvN,sFN,3||2 < (79)

1Dy 5 (Doy, Fna)llz £ Wi + Wi, (80)

where

‘ ¢
Y1 = %f drf dsf dzf(dz’)dyf(dy’)f dx1dxodxsp s (y +y - Exz)
On3 V0 r R* [ON ' t

, T s r ,
xpy(f%) (z+z - Exg)p@ (y— Exl)P@ (Z— ;(y+y )),

t t
Wna = %f drf dsf dzf(dz’)dyf(dy’)f dxidxodxspses (y +y - Exz)
On3 Jo r R4 [0,NT? 7 t

, T S r
XPren |Z+2Z — 2X3|Pses \Y — 7X1|Pren (Z — =Y.
3 t t t s S
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Since 1/s is not integrable on (0, t), we can not apply the same argument as Theorem 1.2 in the following
estimate. Therefore, we first integrate x; and x, on R for Wy ; and Wy,, respectively, by using (67). Then

for both Wy; and Wy, owing to the semigroup property and (67), we integrate in the variables y and z to
obtain that fori =1,2,

\yst— dr f =ds f £(dz)f(dy) f dxydx;

X Pl(r(s—1)/s)(s2 [r2)+s(t—5)/](2 [s2)+r(t—7) (Z' - -(xz - xl))

C R
ff( )f f dsff(dz f dxidtspin (z ——(xz—xl))
[ONT?
_ Cthf(]R T r
= SO [ [ S [ sl B ) ()
CN R 2 t £ - lt—rzz
< t (_:]:( )) fldrf ldsfl—czosze_ﬁl\/;dz, (81)
ON,3 o7 r S R z

where the last inequality holds by the proof of Lemma A.4. Then, integrating in the variable s and making
a change of variable o = (t — r)/r yields

i < = 1o dodz

-GN 1_“’52( f e‘i”fzzd(log(lm))z) dz
0

20’?\7/3 R z2

_ GN [1-cosz (f tNie W (log(1 + a))2d0)
0

20?\[,3 R 72

N C:N 1-cosz f log(1 + o)
N,i =
0

where we integrate by parts in the second equality. Next, we make a change of variable 6 = tz>6/N? to
obtain that

— 0 2
wy, < SN [ 1zcosz f (10g(1+—6)) do|dz
GN,3 R Z 0 t

- CiN(log N)? - Ct+/logN
B W
where we use Lemma A.5 in the second inequality, and the last inequality holds by Lemma 2.5 part (4).

Finally, recall Lemma 2.1, we combine (79), (80), Proposition 4.3 and Lemma 2.5 part (1) to finish the
proof. [

(82)

Remark 5.1. Unlike the proof of nonlinear case [24, Proof of Theorem 1.1], when dealing with (71), we apply moment
inequalities of Malliavin derivative of the solutions directly rather than using the expansion of the Malliavin derivative
as in (20) and estimating the stochastic integral. The similar technique can also be used to simplify computations in
proving Theorem 1.2 in [24].

6. Appendix

First, We introduce some properties of the Green kernel G,(t, x) that could be found in [22].
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Lemma A.1. Let G,(t, x) denote the Green kernel defined in (3). Then,

(1) GA(t, x) < Ct 5 Gylt, x), for all (t,x) € R* X R.

(2) (Semigroup property.) f]R Ga(t,2)Gy(s,x —z)dz = Gu(t +5,%), for t,s > 0 and x € R.
3) fIR Go(t, x)dx = 1, for every t > 0.

4) fIR Ga%(t, x)dx = Cti,for every t > 0.

Lemma A.2. Let Kfzsy(t x) be defined in (28), then for any fixed 0 < r < s < t, we have

t S
f f f K%Z,S,y(t,x)dzdydrdssCt
0 Jo JR?
Proof.
fff Zsy(t x)dzdydrds

< f f (t—- s)’rlvGa(t -5,x=y)(s— r)’iGa(s — 1,y — z)dzdydrds
0 Jo Jr

+ftfsftf[(t‘9><9—r>(9—s)ri

X Ga(t = 0,x —w)Gy(0 — 1,w — 2)Go(0 — 5, w — y)dzdydwd Odrds
f f [(t=5s)(s=1)] drds+f f f [(t=0)O—-1) (B —-5)] = + dodrds
<C; < o0,
where we integrate y, z, w in order and use Lemma A.1 part (2) and part(3) in the equality. [

Lemma A.3. Let Mx(s, N) be defined in (58). Then,
(1) Ma(s,N) 2 Cy, forall t/2 <s <t,N > 1.
(2) Ma(s,N) < Cy, forall0 <s <t,N > 1.

Proof. Recall the definition of Iy, Iy in (49),

1
Mas,N) = - [ dyfar) [ dndupetn - ppeta - @+ )
ON,Z R2 [O,N]Zd

d —
= L jﬂ;d dx(IN*IN) (%) (Pz(t—s)*f) (%)

g
nNZ

) d q_ COS(NZ]) ot —s)lzl?
_—fdg (Nz))? 1

]

d 1—COSZ] (=)l A
=—fH N f(dz).

=1

(1). f(R?) < oo implies that f is abounded and continuous function, then for t/2 < s < t,choose0 <a < b < 1
such that inf,ef, ) f (z) > 0, we have

d
N 1—cosz _t=? »
2 ¢ Vv fledz= Gy,
TT CTN/z [a,b]? =1 ya

Mz(S, N) >
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where we use Lemma 2.5 part (3) in the last inequality.
(2). Notice that f(x) < f(0) = f(R%), then forall 0 < s < t,

Nr f(RY)
—ia <G
Tt GN,Z

Mz(S, N) <

O

Lemma A.4. Let M3(s, N) be defined in (64). Then,
(1) M3(s,N) > locﬁ,for allt/2<s<t,N>e.

(2) Ms(s,N) < Slo%,for all0<s<t N>e.

Proof. According to the proof of Lemma A.3, we have

N2 ~ s
Ms(s,N) = —— | dx (IN * IN) (x) (st(t—s)/t * f) (—x)
On3 YR t
_ Z\,2 f 1 — COS(NZS/t) e_s(t_s)“ZHZf:\(dZ)
mj%\,,3 R (Nzs/t)?
_ Ni f 1- CZOS z - f(A‘—S;\)]gZHZ f(t_z) .
sToy, JR 2 s

Then thanks to Lemma 2.5 part (4), by a similar argument in proving Lemma A.3, we prove the result. O

Lemma A.5. Forany N > ¢,

1-cosz( [T _, N20\\’ 2

Proof. Since
2
1+ M0 eyng 11 gN2(9+1)(1+1)(l+1),
tz2 t Z2 t z2
then, we have
2
log(l + %) < (210gN+ log(% + 1)) ‘ (1 +log(0 +1) + log(zl2 + 1))

Notice that

f 1-cosz f e (1+10g(0+ 1) + log 5 +1)) do)dz < o,
R 7 0 “

we finish the proof. [J
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