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Biquaternion Fourier transform and its applications
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aSchool of Mathematical Science, Yangzhou University, Yangzhou 225002, China

Abstract. In this paper, based on the biquaternion algebra, we proposed three kinds of biquaternion
Fourier transforms (BiQFTs). These transforms are the extension of the complex Fourier transform. Then,
the relationships between the three kinds of transforms are obtained, and it is shown that the transform
can be computed by four complex Fourier transforms. Next, the inversion transforms and Plancherel
theorems of the BiQFTs are proved. Moreover, the convolution theorems of the BiQFTs are studied by new
convolution operators of the biquaternion. Finally, according to the convolution operator and convolution
theorem associated with the right-side BiQFT, the biquaternion linear time-invariant systems are analyzed,
and the biquaternion linear time-invariant systems for the right-side BiQFT is verified by the actual signal.

1. Introduction

Recently, biquaternions have become a hot topic of research. As a generalization of the quaternions
[3, 11, 17–19], biquaternions first discovered by Hamilton in 1853 [13]. Biquaternions are also known as
quaternions with complex components, or complex numbers with quaternion real and imaginary parts
and are another hypercomplex algebra [2, 12]. A biquaternion-valued signal [20], which is a quaternion
with complex components signal, includes a scalar, pseudoscalar, vector and a bivector part. Based on
biquaternions, Said et al. [20] studied the extension of the Fourier transform to discretized biquaternion-
valued signals, and proposed the discrete forms of the biquaternion Fourier transforms (BiQFTs). Recently,
Srivastava [21] introduced several integral transformations and obtained related results. Bi et al. [2]
proposed the biquaternion Z transform, and using the transform to solve a class of biquaternion recurrence
relations. The BiQFTs are different from other developed techniques[7, 8]. Felsberg [8] give a Clifford
Fourier transform for N-dimensional scalar-valued signals. Ebling and Scheuermann [7] defined a Clifford
Fourier transform (with bivector or pseudo-scalar exponential) to analyze vector-field images.

The BiQFTs are novel tools for harmonic analysis of biquaternion-valued signals, they have been at-
tracted more and more attention. But the basic theoretical research of the BiQFTs is not perfect, especially
some basic properties for the BiQFTs. This will also limit the applications in signal processing. In this pa-
per, we propose the BiQFTs by substituting the quaternion Fourier transform kernel with the biquaternion
Fourier transform kernel. According to the properties of biquaternion, the BiQFTs have three kinds forms:

2020 Mathematics Subject Classification. Primary 42B10; Secondary 44A35, 42C40, 46S05.
Keywords. Quaternion Fourier transforms, biquaternion, biquaternion Fourier transforms, convolution theorem, biquaternion

linear time-invariant system.
Received: 14 February 2024; Revised: 08 May 2024; Accepted: 09 May 2024
Communicated by Hari M. Srivastava
This work was supported by the National Natural Science Foundation of China (No.62301474) and the Natural Science Foundation

of Jiangsu Higher Education Institutions of China (No.23KJB110026).
Email address: wenbiaogao@163.com (Wen-Biao Gao)



W.-B. Gao / Filomat 38:28 (2024), 9851–9865 9852

two-side BiQFT (TBiQFT), left-side BiQFT (LBiQFT), and right-side BiQFT (RBiQFT). Applying these def-
initions, the relations between the three kinds of transforms are obtained. Then, based on the definitions
of the BiQFTs, the inversion formula and Plancherel theorem of the BiQFTs are analyzed. In addition,
the biquaternion convolution and correlation operators are defined, and the convolution and correlation
theorems of the BiQFTs are studied. Finally, as applications, according to the convolution operator and con-
volution theorem, the biquaternion linear time-invariant systems are analyzed, and they are implemented
by actual signals. Some potential applications are also presented. The study of this paper is helpful to
the study of Fourier transform from general Fourier transform to hypercomplex systems. Our proposed
the BiQFTs will be applied to signal processing and signals with double quaternion numerical samples.
This is quite different from previous work, where the components of the considered signal take values
in real numbers. The BiQFTs generalizes some interesting properties of the general Fourier transform to
biquaternion-valued signals. Moreover, it can generalize the concept of analytic signals to complex-valued
signals. This helps to investigate the concept of hyperanalytic signals.

The paper is organized as follows: Section 2 gives a brief introduction to some general definitions and
basic properties of biquaternions. We give the definition and study the properties of the BiQFTs in Section
3. Section 4 provides the convolution theorems associated with the BiQFTs. The correlation theorems of the
BiQFTs are obtained in Section 5. Section 6 studies the biquaternion linear time-invariant systems. Some
conclusions are drawn in Section 7.

2. Preliminary

2.1. Biquaternions
Biquaternions form an 8-dimensional algebra first discovered by Hamilton in 1853 [13]. In the following,

we present their definitions and useful properties.
A biquaternion q ∈HC can be written in the form [26]

q = q0 + q1i + q2j + q3k, (1)

where q0, q1, q2, q3 ∈ C are complex numbers, i, j,k are exactly the same in real quaternions [22]. If q0 = 0
then biquaternion q is known as pure biquaternion. The complex numbers are written by I2 = −1.

q is also possible to write a biquaternion in the following form [17]:

q = S(q) + V(q), (2)

where S(q) = q0 is the scalar part of q and V(q) = q1i + q2j + q3k is its vector part.
Moreover, the real and imaginary parts (with respect to I) of a biquaternion are respectively defined as

[20]:

R(q) = R(q0) +R(q1)i +R(q2)j +R(q3)k, (3)

I(q) = I(q0) + I(q1)i + I(q2)j + I(q3)k, (4)

whereR(q) and I(q) are (real) quaternions. R(qi) is the real part and I(qi) (i=0,1,2,3) is the imaginary part of
a complex number. So any biquaternion q ∈HC can be written as q = R(q) + II(q). The complex imaginary
unit I commutes with the quaternion imaginary units i, j,k, that is to say [17]

iI = Ii, jI = Ij,kI = Ik. (5)

There are two basic ways of conjugating a biquaternion [17]. Quaternion conjugation is related to the
imaginary units i, j,k and complex conjugation to I.

The quaternion conjugate of a biquaternion q ∈ HC is q = S(q) − V(q). The complex conjugate of a
biquaternion q ∈HC is defined as q∗ = q∗0 + q∗1i+ q∗2j+ q∗3k, and q∗0, q

∗

1, q
∗

2, q
∗

3 are the complex conjugates of the
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complex coefficients of q. Biquaternion conjugation is the combination of the two conjugations that have
just been defined. The biquaternion conjugate of q is defined as [20]

q̃ = q∗ = q∗ = q∗0 − q∗1i − q∗2j − q∗3k. (6)

Complex conjugation is multiplicative, i.e., (pq)∗ = p∗q∗, while quaternion conjugation and biquaternion
conjugation are involutive, that is, p̃q = q̃ p̃ [20].

The norm of a biquaternion q can be defined by ∥q∥ = qq = q2
0 + q2

1 + q2
2 + q2

3. If ∥q∥ = 1, then q is called
unit biquaternion. The modulus of a biquaternion q is |q| =

√
∥q∥. Biquaternions are not a normed algebra.

So the norm is not multiplicative, |pq| , |p||q| [22].
A biquaternion µ ∈ HC is a biquaternion root of -1 iff µ2 = −1. Any three mutually orthogonal roots

of can be used as a basis to decompose a biquaternion. Given any biquaternion root of -1, µ and any
biquaternion q = q0 + q1i + q2j + q3k, q can be rewritten as [20, 23]

q = (q′0 + q′1µ) + (q′2 + q′3µ)ν = q′0 + q′1µ + q′2ν + q′3ξ, (7)

where ν is a biquaternion root of -1 orthogonal to µ, µν = −νµ, ξ = µν, µ⊥ξ, ν⊥ξ and q′0, q
′

1, q
′

2, q
′

3 are
complex numbers. The relationship between (q0, q1, q2, q3) and (q′0, q

′

1, q
′

2, q
′

3) is equivalent to a change in
basis from (i, j,k) to (µ,ν, ξ) . Equation (7) allows the definition of a decomposition for any biquaternion q,
with respect to µ and ν, and Simp(q) = (q′0 + q′1µ) is simplex part, Perp(q) = (q′2 + q′3µ)ν is perplex part. So
q = Simp(q) + Perp(q). The exponential of a biquaternion q is defined by eq = Σn∈N

qn

n! [20].
A biquaternion-valued function f (x, y) is given by [9]

f (x, y) = f0(x, y) + f1(x, y)i + f2(x, y)j + f3(x, y)k
= Simp( f ) + Perp( f )
= S( f ) + V( f )
= R( f ) + II( f ),

(8)

where f0, f1, f2, f3 are complex-valued signals, Simp( f ) = ( f ′0 + f ′1µ), Perp( f ) = ( f ′2 + f ′3µ)ν = f ′2ν + f ′3ξ. These
signals can represent a variety of physical quantities (such as dipoles and magnetic rings for recording
electromagnetic signals) captured on sensors at the same location [20]. The significance of the biquaternion
signal itself have been given in [10].

For any biquaternion-valued signal f (x, y) over L2
(
R2,HC

)
, the L2

−norm of f is defined by

∥ f ∥L2(R2,HC) =

(∫
∞

−∞

∫
∞

−∞

| f (x, y)|2dxdy
) 1

2

.

Now we introduce an inner product of biquaternion functions f , 1 defined on L2
(
R2,HC

)
given by

( f , 1)L2(R2,HC) =

∫
∞

−∞

∫
∞

−∞

f (x, y)1(x, y)dxdy.

3. Biquaternion Fourier transform

As a generalized transform of the QFT [1, 4–6, 14, 15, 24, 25], the study of the BiQFTs is not sufficient.
Especially the basic properties of the BiQFTs haven’t been studied yet, In the following, we will study some
properties of BiQFTs, which also provide theoretical support for their applications. There are three types
of BiQFTs:

Definition 3.1. (TBiQFT) The TBiQFT of signal f ∈ L2
(
R2,HC

)
is defined by

FT
B( f )(ω, υ) =

∫
∞

−∞

∫
∞

−∞

e−µωx f (x, y)e−νυydxdy, (9)

where µ and ν in the TBiQFT are two pure unit biquaternions that are orthogonal to each other.
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Definition 3.2. (LBiQFT) The LBiQFT of signal f ∈ L2
(
R2,HC

)
is defined by

FL
B( f )(ω, υ) =

∫
∞

−∞

∫
∞

−∞

e−µ(ωx+υy) f (x, y)dxdy. (10)

Definition 3.3. (RBiQFT) The RBiQFT of signal f ∈ L2
(
R2,HC

)
is defined by

FR
B( f )(ω, υ) =

∫
∞

−∞

∫
∞

−∞

f (x, y)e−µ(ωx+υy)dxdy. (11)

Note that to every different chosen there corresponds a different transform.

3.1. Relationship between LBiQFT and RBiQFT
Theorem 3.4. The LBiQFT and RBiQFT are related by the following equation

FR
B{ f }(ω, υ) = FL

B{Simp( f )}(ω, υ) + FL
B{Perp( f )}(−ω,−υ). (12)

Proof. According to the equation (24), we obtain

f (x, y)e−µ(ωx+υy) = (Simp( f ) + Perp( f ))e−µ(ωx+υy)

= e−µ(ωx+υy)Simp( f ) + e−µ(−ωx−υy)Perp( f ).
(13)

Integrating both sides with respect to dxdy, we have

FR
B{ f }(ω, υ) = FL

B{Simp( f )}(ω, υ) + FL
B{Perp( f )}(−ω,−υ). (14)

If ω = −ω and υ = −υ, then the following relation can be obtained

FR
B{ f }(ω, υ) = FL

B{ f }(ω, υ). (15)

3.2. Relationship between TBiQFT and LBiQFT
As we all know that

e−µωxe−µυy f (x, y) = (cos(ωx) − µ sin(ωx))(cos(υy) − µ sin(υy)) f (x, y)
= cos(ωx) cos(υy) f (x, y) − µ cos(ωx) sin(υy) f (x, y)
− µ sin(ωx) cos(υy) f (x, y) − sin(ωx) sin(υy) f (x, y),

(16)

then, the LBiQFT can be split into even and odd parts

FL
B{ f }(ω, υ) = FL

B,ee{ f }(ω, υ) − FL
B,eo{ f }(ω, υ) − FL

B,oe{ f }(ω, υ) − FL
B,oo{ f }(ω, υ), (17)

where the even and odd parts of the LBiQFT are written by

FL
B,ee{ f }(ω, υ) =

∫
∞

−∞

∫
∞

−∞

cos(ωx) cos(υy) f (x, y)dxdy = Cf
xCf

y(ω, υ), (18)

FL
B,eo{ f }(ω, υ) = µ

∫
∞

−∞

∫
∞

−∞

cos(ωx) sin(υy) f (x, y)dxdy = µCf
xSf

y(ω, υ), (19)

FL
B,oe{ f }(ω, υ) = µ

∫
∞

−∞

∫
∞

−∞

sin(ωx) cos(υy) f (x, y)dxdy = µSf
xCf

y(ω, υ), (20)

FL
B,oo{ f }(ω, υ) =

∫
∞

−∞

∫
∞

−∞

sin(ωx) sin(υy) f (x, y)dxdy = Sf
xSf

y(ω, υ), (21)

where S f
xS f

y is the sine transforms of f (x, y) in the x and y directions; S f
xC f

y indicates the sine transform of
f (x, y) in the x direction and cosine transform of f (x, y) in the y direction, and so on.
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Theorem 3.5. The TBiQFT and LBiQFT are related by the following equation

FT
B{ f }(ω, υ) = FL

B{ f }(ω, υ) + µCf
xSf

y(ω, υ) − Cf
xSf

y(ω, υ)ν + µSf
xSf

y(ω, υ)ν + Sf
xSf

y(ω, υ). (22)

Proof. The proof process is similar to Theorem 3.4.

Figure 1 (a) illustrates the implementation blocks of the TBiQFT by the left-side BiQFT.

3.3. Relationship between TBiQFT and RBiQFT

Applying the method of the Theorem 3.5, the relationship between TBiQFT and RBiQFT can be obtained.

Theorem 3.6. The TBiQFT and RBiQFT are related by the following equation

FT
B{ f }(ω, υ) = FR

B{ f }(ω, υ) + Cf
xSf

y(ω, υ)µ − Cf
xSf

y(ω, υ)ν + Sf
xSf

y(ω, υ) + µSf
xSf

y(ω, υ)ν

+

∫
∞

−∞

∫
∞

−∞

2µV( f (x, y)) sin(ωx) cos(υy)dxdy,
(23)

where V( f (x, y)) = f1(x, y)i + f2(x, y)j + f3(x, y)k.

(a) (b)

Figure 1: Block diagrams for the TBiQFT implemented via: (a) the LBiQFT; (b) the RBiQFT.

Figure 1 (b) illustrates the implementation blocks of the TBiQFT by the RBiQFT.
The relationships between these three transforms are very important in fast algorithms for calculating

the BiQFTs [20]. For example, if we want to compute the LBiQFT and RBiQFT, we can first compute the
LBiQFT and then use (12) to obtain the implementation of the RBiQFT. We can compute the LBiQFT with
three steps as follows

(1) According to (24), decompose the input signal as follows

f (x, y) = fa(x, y) + fb(x, y) + fc(x, y) + fd(x, y). (24)

where fa = R( f ′0) +R( f ′1)µ, fb = I(I( f ′0) + I( f ′1)µ), fc = (R( f ′2) +R( f ′3)µ)ν, fd = I(I( f ′2) + I( f ′3)µ)ν.
(2) Then, calculate the follow formulas

FL
a,B( fa)(ω, υ) =

∫
∞

−∞

∫
∞

−∞

e−µ(ωx+υy) fa(x, y)dxdy, (25)

FL
b,B( fb)(ω, υ) =

∫
∞

−∞

∫
∞

−∞

e−µ(ωx+υy) fb(x, y)dxdy, (26)
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FL
c,B( fc)(ω, υ) =

∫
∞

−∞

∫
∞

−∞

e−µ(ωx+υy) fc(x, y)dxdy, (27)

FL
d,B( fd)(ω, υ) =

∫
∞

−∞

∫
∞

−∞

e−µ(ωx+υy) fd(x, y)dxdy. (28)

(3) Calculate the transform result of the left-side BiQFT by

FL
B( f )(ω, υ) = FL

a,B( fa)(ω, υ) + FL
b,B( fb)(ω, υ) + FL

c,B( fc)(ω, υ) + FL
d,B( fd)(ω, υ). (29)

The algorithm of the LBiQFT decomposed the LBiQFT into four complex FTs.
From (12), the RBiQFT can be represented in terms of the LBiQFT provided the signal is split into

simplex and perplex components, and the formula FL
B{Perp( f )}(−ω,−υ) may be regarded as the algorithm

for the LBiQFT of the perplex part with negated (ω, υ). So we can calculate the RBiQFT easily.

3.4. Inversion transforms of the BiQFTs

Next, we obtain the inversion transforms associate with the BiQFTs.

Theorem 3.7. [Inversion transform of the RBiQFT] Let f ∈ L2
(
R2,HC

)
. Then we have the inversion formula of the

RBiQFT,

f (x, y) =
∫
∞

−∞

∫
∞

−∞

FR
B{ f }(ω, υ)e

µ(ωx+υy)dωdυ. (30)

Proof. Based on the definition of the RBiQFT, we have∫
∞

−∞

∫
∞

−∞

FR
B{ f }(ω, υ)e

µ(ωx+υy)dωdυ

=

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

f (x′, y′)e−µ(ωx′+υy′)dx′dy′eµ(ωx+υy)dωdυ

=

∫
∞

−∞

∫
∞

−∞

f (x′, y′)
∫
∞

−∞

eµ(x−x′)ωdω
∫
∞

−∞

eν(y−y′)υdυdx′dy′

= f (x, y).

(31)

According to the same method, we obtain the inversion transforms of the LBiQFT and TBiQFT.

Theorem 3.8 (Inversion transform of the LBiQFT). Let f ∈ L2
(
R2,HC

)
. Then we have the inversion transform

of the LBiQFT,

f (x, y) =
∫
∞

−∞

∫
∞

−∞

eµ(ωx+υy)FL
B{ f }(ω, υ)dωdυ. (32)

Theorem 3.9 (Inversion transform of the TBiQFT). Let f ∈ L2
(
R2,HC

)
. Then we have the inversion transform

of the TBiQFT,

f (x, y) =
∫
∞

−∞

∫
∞

−∞

eµωxFT
B{ f }(ω, υ)e

νυydωdυ. (33)
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3.5. Plancherel theorems of the BiQFTs

Firstly, let us prove Plancherel theorem of RBiQFT as follows:

Theorem 3.10 (Plancherel theorem of the RBiQFT). Let f , 1 ∈ L2
(
R2,HC

)
. Then we have

(FR
B{ f }(ω, υ),F

R
B{1}(ω, υ)) = ( f , 1). (34)

Proof. Applying the Theorem 3.7 and the definition of the RBiQFT, we obtain

(FR
B{ f }(ω, υ),F

R
B{1}(ω, υ))

=

∫
∞

−∞

∫
∞

−∞

FR
B{ f }(ω, υ)F

R
B{1}(ω, υ)dωdυ

=

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

FR
B{ f }(ω, υ)e

µ(ωx+υy)dωdυg(x,y)dxdy

=

∫
∞

−∞

∫
∞

−∞

f (x, y)1(x, y)dxdy

= ( f , 1).

(35)

Corollary 3.11. If f = 1, then∫
∞

−∞

∫
∞

−∞

|FR
B{ f }(ω, υ)|

2dωdυ = ∥f∥2
L2(R2,HC)

. (36)

Similarly, Plancherel theorems of the LBiQFT and TBiQFT can be obtained.

Theorem 3.12 (Plancherel theorem of the LBiQFT). Let f ∈ L2
(
R2,HC

)
. Then we have the inversion formula

of the LBiQFT,

(FL
B{ f }(ω, υ),F

L
B{1}(ω, υ)) = ( f , 1). (37)

Corollary 3.13. If f = 1, then∫
∞

−∞

∫
∞

−∞

|FL
B{ f }(ω, υ)|

2dωdυ = ∥f∥2
L2(R2,HC)

. (38)

Theorem 3.14 (Plancherel theorem of the TBiQFT). Let f ∈ L2
(
R2,R

)
. Then we have the inversion formula of

the TBiQFT,

(FT
B{ f }(ω, υ),F

T
B{1}(ω, υ)) = ( f , 1). (39)

Corollary 3.15. If f = 1, then∫
∞

−∞

∫
∞

−∞

|FT
B{ f }(ω, υ)|

2dωdυ = ∥f∥2
L2(R2,HC)

. (40)

The Plancherel theorem is important since it deals with the power of a signal in the spatial and frequency
domains.
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4. Convolution theorem

According to the convolution with quaternion or hypercomplex mask coefficients, Sangwine [? ]
designed the color edge detection filter. Then the author [? ] extended the classical grayscale edge
detecting filters attributed.

In this section, the convolution theorems of the BiQFTs are exploted.

Definition 4.1. Let f , 1 ∈ L2
(
R2,HC

)
, the convolution operator of the BiQFTs as follows:

h(x, y) = ( f ∗B 1)(x, y) =
∫
∞

−∞

∫
∞

−∞

f (τ, η)1(x − τ, y − η)dτdη. (41)

According to the convolution operator of the BiQFTs, we have the following convolution theorems of
the BiQFTs.

Theorem 4.2 (Convolution theorem of the RBiQFT). Assume f , 1 ∈ L2
(
R2,HC

)
, then the RBiQFT of the con-

volution of f and 1 are provided by

FR
B{h}(ω, υ) = FR

B( f )(ω, υ)FR
B(Simp(1))(ω, υ) + FR

B( f )(−ω,−υ)FR
B(Perp(1))(ω, υ). (42)

Proof. According to the definition of the RBiQFT, we have

FR
B{h}(ω, υ) =

∫
∞

−∞

∫
∞

−∞

( f ∗B 1)(x, y)e−µ(xω+yυ)dxdy

=

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

f (τ, η)1(x − τ, y − η)e−µ(xω+yυ)dxdydτdη.

Let ϵ = x − τ, ρ = y − η, then the above formula becomes that

FR
B{h}(ω, υ) =

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

f (τ, η)1(ϵ, ρ)e−µ((ϵ+τ)ω+(ρ+η)υ)dτdηdϵdρ

=

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

f (τ, η)Simp(1)(ϵ, ρ)e−µ((ϵ+τ)ω+(ρ+η)υ)dτdηdϵdρ

+

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

f (τ, η)Perp(1)(ϵ, ρ)e−µ((ϵ+τ)ω+(ρ+η)υ)dτdηdϵdρ

= FR
B( f )(ω, υ)FR

B(Simp(1))(ω, υ) + FR
B( f )(−ω,−υ)FR

B(Perp(1))(ω, υ).

In the case where f (x, y) is the even function, then by the definition of the RBiQFT, we have

FR
B( f ∗B 1)(ω, υ) = FR

B( f )(ω, υ)FR
B(1)(ω, υ). (43)

Hence, when f (x, y) is even, the convolution operation of two biquaternion-valued functions in the time
domain is equivalent to the product operation in the frequency domain.

When f (x, y) is the odd function, then

FR
B( f ∗B 1)(ω, υ) = FR

B( f )(ω, υ)FR
B(1′)(ω, υ). (44)

where 1′(x, y) = Simp(1) − Perp(1).
In general, if f (x, y) is neither even nor odd, based on (43) and (44), we can conclude that the relation

between the inputs and the output of the convolution for the RBiQFT in the frequency domain can be
written as

FR
B( f ∗B 1)(ω, υ) = FR

e,B( f )(ω, υ)FR
B(1)(ω, υ) + FR

o,B( f )(ω, υ)FR
B(1′)(ω, υ), (45)
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where FR
e,B( f )(ω, υ) and FR

o,B( f )(ω, υ) are the even and odd parts of the RBiQFT FR
B( f )(ω, υ)

FR
e,B( f )(ω, υ) =

[
FR

B( f )(ω, υ) + FR
B( f )(−ω,−υ)

]
2

, (46)

FR
o,B( f )(ω, υ) =

[
FR

B( f )(ω, υ) − FR
B( f )(−ω,−υ)

]
2

. (47)

Based on the definitions of the LBiQFT and TBiQFT, we also obtain their convolution theorems.

Theorem 4.3 (Convolution theorem of the LBiQFT). Assume the functions f , 1 ∈ L2
(
R2,HC

)
, then the LBiQFT

of the convolution of f and 1 are provided by

FL
B{h}(ω, υ) = FR

B(Simp( f ))(ω, υ)FR
B(1)(ω, υ) + FR

B(Perp( f ))(ω, υ)FR
B(1)(−ω,−υ). (48)

In the case where 1(x, y) is the even function, then according to the definition of the LBiQFT,

FL
B( f ∗B 1)(ω, υ) = FL

B( f )(ω, υ)FL
B(1)(ω, υ). (49)

Hence, when 1(x, y) is even, the convolution operation of two biquaternion-valued functions in the time
domain is equivalent to the product operation in the frequency domain.

When 1(x, y) is the odd function, then

FL
B( f ∗B 1)(ω, υ) = FL

B( f ′)(ω, υ)FL
B(1)(ω, υ), (50)

where f ′(x, y) = Simp( f ) − Perp( f ).
In general, if 1(x, y) is neither even nor odd, we can conclude that the relation between the inputs and

the output of the convolution for the LBiQFT in the frequency domain can be written as

FL
B( f ∗B 1)(ω, υ) = FL

B( f )(ω, υ)FL
e,B(1)(ω, υ) + FL

B( f ′)(ω, υ)FL
o,B(1)(ω, υ), (51)

where FL
e,B(1)(ω, υ) and FL

o,B(1)(ω, υ) are the even and odd parts of the LBiQFT FL
B(1)(ω, υ)

FL
e,B(1)(ω, υ) =

[
FL

B(1)(ω, υ) + FL
B(1)(ω, υ)

]
2

; FL
o,B(1)(ω, υ) =

[
FL

B(1)(ω, υ) − FL
B(1)(ω, υ)

]
2

. (52)

According to (48), if f (x, y) and 1(x, y) are even or odd, then h(x, y) is even, and if f (x, y) is even and
1(x, y) is odd (or f (x, y) is odd and 1(x, y) is even), then h(x, y) is odd. So we obtain

FL
e,B{h}(ω, υ) = FL

e,B{ f }(ω, υ)F
L
e,B(1)(ω, υ) + FL

o,B{ f
′
}(ω, υ)FL

o,B(1)(ω, υ),

FL
o,B{h}(ω, υ) = FL

o,B{ f }(ω, υ)F
L
e,B(1)(ω, υ) + FL

e,B{ f
′
}(ω, υ)FL

o,B(1)(ω, υ).

Theorem 4.4 (Convolution theorem of the TBiQFT). Assume the functions f , 1 ∈ L2
(
R2,HC

)
, 1 = Simp(1)+

Perp(1), Simp(1) = 1′0 + 1
′

1µ, Perp( f ) = (1′2 + 1
′

3µ)ν = 1′2ν + 1
′

3ξ and 1′0, 1
′

1, 1
′

2, 1
′

3 are complex-valued signals, then
the TBiQFT of the convolution of f and 1 are provided by

FT
B{h}(ω, υ) = FSimp( f )

1,01 + FSimp( f )
1,23 + FPerp( f )

1,01 + FPerp( f )
1,01 , (53)

where

FSimp( f )
1,01 = FT

B,ωe{Simp( f )}(ω, υ)FT
B{1
′

0}(ω, υ) + FT
B,ωe{Simp( f )}(ω, υ)FT

B{1
′

1}(ω,−υ) · µ

− FT
B,ωo{Simp( f )}(ω, υ)FT

B{1
′

0}(ω, υ) · ν − FT
B,ωo{Simp( f )}(ω, υ)FT

B{1
′

1}(ω,−υ) · ξ,
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FSimp( f )
1,23 = FT

B,ωo{Simp( f )}(ω, υ)FT
B{1
′

2}(ω, υ) + FT
B,ωo{Simp( f )}(ω, υ)FT

B{1
′

3}(ω,−υ) · µ

+ FT
B,ωe{Simp( f )}(ω, υ)FT

B{1
′

2}(ω, υ) · ν + FT
B,ωe{Simp( f )}(ω, υ)FT

B{1
′

3}(ω,−υ) · ξ,

FPerp( f )
1,01 = FT

B,ωe{Perp( f )}(ω, υ)FT
B{1
′

0}(−ω, υ) + FT
B,ωe{Perp( f )}(ω, υ)FT

B{1
′

1}(−ω,−υ) · µ

− FT
B,ωo{Perp( f )}(ω, υ)FT

B{1
′

0}(−ω, υ) · ν − FT
B,ωo{Perp( f )}(ω, υ)FT

B{1
′

1}(−ω,−υ) · ξ,

FPerp( f )
1,23 = FT

B,ωo{Perp( f )}(ω, υ)FT
B{1
′

2}(−ω, υ) + FT
B,ωo{Perp( f )}(ω, υ)FT

B{1
′

3}(−ω,−υ) · µ

+ FT
B,ωe{Perp( f )}(ω, υ)FT

B{1
′

2}(−ω, υ) · ν + FT
B,ωe{Perp( f )}(ω, υ)FT

B{1
′

3}(−ω,−υ) · ξ,

and

FT
B,ωe{Simp( f )}(ω, υ) =

∫
∞

−∞

∫
∞

−∞

e−µτωSimp( f )(τ, η) cos(υη)dτdη,

FT
B,ωo{Simp( f )}(ω, υ) =

∫
∞

−∞

∫
∞

−∞

e−µτωSimp( f )(τ, η) sin(υη)dτdη,

FT
B,ωe{Perp( f )}(ω, υ) =

∫
∞

−∞

∫
∞

−∞

e−µτωPerp( f )(τ, η) cos(υη)dτdη,

FT
B,ωo{Perp( f )}(ω, υ) =

∫
∞

−∞

∫
∞

−∞

e−µτωPerp( f )(τ, η) sin(υη)dτdη.

Proof. From the definition of the TBiQFT, we obtain

FT
B{h}(ω, υ) =

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−µxω f (τ, η)1(x − τ, y − η)dτdηe−νyυdxdy.

Making a substitution, let ϵ = x − τ, ρ = y − η, then put them into the above formula becomes that

FT
B{h}(ω, υ) =

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−µ(ϵ+τ)ω f (τ, η)1(ϵ, ρ)e−ν(ρ+η)υdϵdρdτdη

=

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−µ(ϵ+τ)ω
[
Simp( f )(τ, η)Simp(1)(ϵ, ρ)

+ Simp( f )(τ, η)Perp(1)(ϵ, ρ) + Perp( f )(τ, η)Simp(1)(ϵ, ρ)

+ Perp( f )(τ, η)Perp(1)(ϵ, ρ)
]
e−ν(ρ+η)υdϵdρdτdη.

(54)

Based on the following fact

e−µωϵe−νυη = cos(υη)e−µωϵ − e−µωϵν sin(υη), (55)

then, the formula (54) can be broken down into the following four formulas∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−µ(ϵ+τ)ωSimp( f )(τ, η)Simp(1)(ϵ, ρ)e−ν(ρ+η)υdϵdρdτdη

= FT
B,ωe{Simp( f )}(ω, υ)FT

B{1
′

0}(ω, υ) − FT
B,ωo{Simp( f )}(ω, υ)FT

B{1
′

0}(ω, υ) · ν

+ FT
B,ωe{Simp( f )}(ω, υ)FT

B{1
′

1}(ω,−υ) · µ − FT
B,ωo{Simp( f )}(ω, υ)FT

B{1
′

1}(ω,−υ) · ξ,
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∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−µ(ϵ+τ)ωSimp( f )(τ, η)Perp(1)(ϵ, ρ)e−ν(ρ+η)υdϵdρdτdη

= FT
B,ωe{Simp( f )}(ω, υ)FT

B{1
′

2}(ω, υ) · ν + FT
B,ωo{Simp( f )}(ω, υ)FT

B{1
′

2}(ω, υ)

+ FT
B,ωe{Simp( f )}(ω, υ)FT

B{1
′

3}(ω,−υ) · ξ + FT
B,ωo{Simp( f )}(ω, υ)FT

B{1
′

3}(ω,−υ) · µ,

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−µ(ϵ+τ)ωPerp( f )(τ, η)Simp(1)(ϵ, ρ)e−ν(ρ+η)υdϵdρdτdη

= FT
B,ωe{Perp( f )}(ω, υ)FT

B{1
′

0}(−ω, υ) − FT
B,ωo{Perp( f )}(ω, υ)FT

B{1
′

0}(−ω, υ) · ν

+ FT
B,ωe{Perp( f )}(ω, υ)FT

B{1
′

1}(−ω,−υ) · µ − FT
B,ωo{Perp( f )}(ω, υ)FT

B{1
′

1}(−ω,−υ) · ξ,

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−µ(ϵ+τ)ωPerp( f )(τ, η)Perp(1)(ϵ, ρ)e−ν(ρ+η)υdϵdρdτdη

= FT
B,ωe{Perp( f )}(ω, υ)FT

B{1
′

2}(−ω, υ) · ν + FT
B,ωo{Perp( f )}(ω, υ)FT

B{1
′

2}(−ω, υ)

+ FT
B,ωe{Perp( f )}(ω, υ)FT

B{1
′

3}(−ω,−υ) · ξ + FT
B,ωo{Perp( f )}(ω, υ)FT

B{1
′

3}(−ω,−υ) · µ.

We find that the convolution theorem of the TBiQFT is more complicated than others. It can only be
analyzed under very specific conditions.

5. Correlation theorem

In this section, the correlation theorems of the BiQFTs are derived. First, we present the definition of
correlation operator for the BiQFTs.

Definition 5.1. Let f , 1 ∈ L2
(
R2,HC

)
, the correlation operator of the RBiQFT as follows:

( f ⋆B 1)(x, y) =
∫
∞

−∞

∫
∞

−∞

f (x + τ, y + η)1̃(τ, η)dτdη. (56)

Then, we have the following correlation theorems of the BiQFTs.

Theorem 5.2 (Correlation theorem of the RBiQFT). Assume the functions f , 1 ∈ L2
(
R2,HC

)
, then the RBiQFT

of the correlation of f and 1 are provided by

FR
B{ f ⋆B 1}(ω, υ) = FR

B( f )(ω, υ)FR
B( ˜Simp(1))(−ω,−υ) + FR

B( f )(−ω,−υ)FR
B( ˜Perp(1))(−ω,−υ). (57)

Proof. According to the correlation operator of the BiQFTs, we obtain

FR
B{ f ⋆B 1}(ω, υ) =

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

f (x + τ, y + η)1̃(τ, η)e−µ(xω+yυ)dτdηdxdy. (58)

Let ε = x + τ, ζ = y + η, then the above formula becomes that

FR
B{ f ⋆B 1}(ω, υ) =

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

f (ε, ζ)1̃(τ, η)e−µ((ε−τ)ω+(ζ−η)υ)dτdηdεdζ

= FR
B( f )(ω, υ)FR

B( ˜Simp(1))(−ω,−υ) + FR
B( f )(−ω,−υ)FR

B( ˜Perp(1))(−ω,−υ).
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In general, if f (x, y) is neither even nor odd, we obtain

FR
B{ f ⋆B 1}(ω, υ) = FR

e,B( f )(ω, υ)FR
B(1̃)(ω, υ) + FR

o,B( f )(ω, υ)FR
B{
˜Simp(1) − ˜Perp(1)}(ω, υ). (59)

From this result, the correlation in the time domain corresponds to the product operation in the frequency
domain. This is helpful to color image processing [16].

Similarly, we can also obtain the following correlation theorems.

Theorem 5.3 (Correlation theorem of the LBiQFT). Assume the functions f , 1 ∈ L2
(
R2,HC

)
, then the LBiQFT

of the correlation of f and 1 are provided by

FL
B{ f ⋆B 1}(ω, υ) = FL

B( ˜Simp( f ))(−ω,−υ)FL
B(1)(ω, υ) + FL

B( ˜Perp( f ))(−ω,−υ)FL
B(1)(−ω,−υ). (60)

Theorem 5.4 (Correlation theorem of the TBiQFT). Assume the functions f , 1 ∈ L2
(
R2,HC

)
, 1̃ = ˜Simp(1) +

˜Perp(1), ˜Simp(1) = (1′0)∗ + (1′1)∗µ∗, ˜Perp( f ) = (1′2)∗ν∗ + (1′3)∗ξ∗, then the TBiQFT of the correlation of f and 1 are
provided by

FT
B{ f ⋆B 1}(ω, υ) = FSimp( f )

1,01∗ + FSimp( f )
1,23∗ + FPerp( f )

1,01∗ + FPerp( f )
1,01∗ , (61)

where

FSimp( f )
1,01∗ = FT

B,ωe{Simp( f )}(ω, υ)FT
B{(1

′

0)∗}(ω, υ) + FT
B,ωe{Simp( f )}(ω, υ)FT

B{(1
′

1)∗}(ω,−υ) · µ∗

− FT
B,ωo{Simp( f )}(ω, υ)FT

B{1
′

0}(ω, υ) · ν − FT
B,ωo{Simp( f )}(ω, υ)FT

B{1
′

1}(ω,−υ) · νµ
∗,

FSimp( f )
1,23∗ = −FT

B,ωo{Simp( f )}(ω, υ)FT
B{(1

′

2)∗}(ω, υ) + FT
B,ωo{Simp( f )}(ω, υ)FT

B{(1
′

3)∗}(ω,−υ) · νξ∗

+ FT
B,ωe{Simp( f )}(ω, υ)FT

B{(1
′

2)∗}(ω, υ) · ν∗

+ FT
B,ωe{Simp( f )}(ω, υ)FT

B{(1
′

3)∗}(ω,−υ) · ξ∗,

FPerp( f )
1,01∗ = FT

B,ωe{Perp( f )}(ω, υ)FT
B{(1

′

0)∗}(−ω, υ) + FT
B,ωe{Perp( f )}(ω, υ)FT

B{(1
′

1)∗}(−ω,−υ) · µ∗

− FT
B,ωo{Perp( f )}(ω, υ)FT

B{(1
′

0)∗}(−ω, υ) · ν

+ FT
B,ωo{Perp( f )}(ω, υ)FT

B{(1
′

1)∗}(−ω,−υ) · νµ∗,

FPerp( f )
1,23∗ = −FT

B,ωo{Perp( f )}(ω, υ)FT
B{(1

′

2)∗}(−ω, υ) + FT
B,ωo{Perp( f )}(ω, υ)FT

B{(1
′

3)∗}(−ω,−υ) · νξ∗

+ FT
B,ωe{Perp( f )}(ω, υ)FT

B{(1
′

2)∗}(−ω, υ) · ν∗

+ FT
B,ωe{Perp( f )}(ω, υ)FT

B{(1
′

3)∗}(−ω,−υ) · ξ∗.

6. Applications

In this section, based on the relations between the convolution and the RBiQFT, the usages of the BiQFTs
in the analysis of BiQLTI systems are explored.

Next, we limit the transform considered to the case of the RBiQFT. The BiQLTI in two variables can be
represented in terms of a convolution operator, which relates the output of the system to its input as

h(x, y) =
∫
∞

−∞

∫
∞

−∞

f (τ, η)1(x − τ, y − η)dτdη, (62)



W.-B. Gao / Filomat 38:28 (2024), 9851–9865 9863

where f (x, y) is the input, h(x, y) is the output, and 1(x, y) is the impulse response.
Next, we will discuss how to use the RBiQFT to analyze the combination of BiQLTI systems. Case 1,

when the BiQLTI systems are combined in parallel, the relation between the input and the output can be
expressed as

hn(x, y) = f (x, y) ∗B 1n(x, y), (63)

where 1n(x, y) =
∑M

m=1 1m(x, y). In the frequency domain, based on (42), we obtain the following relation

FR
B{hn}(ω, υ) =

[
FR

B( f )(ω, υ) FR
B( f )(−ω,−υ)

] ΣM
m

F
R
B{Simp(1m)}(ω, υ)

FR
B{Perp(1m)}(ω, υ)


 . (64)

Case 2, when the BiQLTI systems are combined in series, the relation between the input and the output can
be expressed as

hM(x, y) = f (x, y) ∗B 11(x, y) ∗B 12(x, y) ∗B · · · ∗B 1M−1(x, y) ∗B 1M(x, y). (65)

Then, in the frequency domain, we obtain the following relation

FR
B{hM}(ω, υ) =

[
FR

e,B( f )(ω, υ) FR
o,B( f )(ω, υ)

] 
FR

e,B{11}(ω, υ) FR
o,B{11}(ω, υ)

FR
o,B{1

′

1}(ω, υ) FR
e,B{1

′

1}(ω, υ)


· · ·


FR

e,B{1M−1}(ω, υ) FR,
o,B{1M−1}(ω, υ)

FR
o,B{1

′

M−1}(ω, υ) FR
e,B{1

′

M−1}(ω, υ)

 ·
F

R
B{1M}(ω, υ)

FR
B{1
′

M}(ω, υ)

 .
(66)

Figure 2: Combination of BiQLTI system: In parallel and series.

To obtain some insight into the BiQLTI systems corresponding to the above contents, let us give an
example.

Example

Applying (64) and (66), we can use the RBiQFT to represent many different combinations of BiQLTI
systems. For example, for the BiQLTI systems combined as Figure 2:

Let the input signal f (x, y) is Gaussian signal, defined by f (x, y) = e−µ(x2+xy). Hence, from (46) and (47),
we obtain

FR
e,B{ f }(ω, υ) = FR

B{ f }(ω, υ); FR
o,B{ f }(ω, υ) = 0. (67)
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Let the input signal 11(x, y) is defined by 11(x, y) = e−I( 1
4 x2+y2)µ + e−I(x2+y2)ν. According to the definition

of the RBiQFT, we have

FR
B{11}(ω, υ) = −2πIeI(ω2+υ2)µ − πIeI( ω

2+υ2
4 )ν; FR

B{1
′

1}(ω, υ) = −2πIeI(ω2+υ2)µ + πIeI( ω
2+υ2

4 )ν,

and

FR
B{11}(−ω,−υ) = FR

B{11}(ω, υ); FR
B{1
′

1}(−ω,−υ) = FR
B{1
′

1}(ω, υ),

Hence, from (46) and (47), we obtain

FR
e,B{11}(ω, υ) = FR

B{11}(ω, υ); FR
o,B{11}(ω, υ) = 0,

and

FR
e,B{1

′

1}(ω, υ) = FR
B{1
′

1}(ω, υ); FR
o,B{1

′

1}(ω, υ) = 0.

Let the input signal 12(x, y) is the Dirac-delta signal 12(x, y) = δ(x)δ(y), then, according to the definition
of the RBiQFT, we have

FR
B{12}(ω, υ) = FR

B{1
′

2}(ω, υ) = 1. (68)

Let the input signal 13(x, y) is defined by 13(x, y) = e−µ( 1
2 x2+2xy+1). According to the definition of the

RBiQFT, we have

FR
B{Simp(13)}(ω, υ) = πe−µ( υ

2
−4ωυ
8 +1); FR

B{Perp(13)}(ω, υ) = 0.

Let the input signal 14(x, y) is defined by 14(x, y) = eµa(x+y), a ∈ R. According to the definition of the
RBiQFT, we have

FR
B{Simp(14)}(ω, υ) = 4π2δ(ω − a)δ(υ − a); FR

B{Perp(14)}(ω, υ) = 0.

According to the Figure 2, we can obtain the RBiQFT of the output signal h4

FR
B{h4}(ω, υ) =

[
FR

B(J)(ω, υ) FR
B(J)(−ω,−υ)

] F
R
B{Simp(13)}(ω, υ) + FR

B{Simp(14)}(ω, υ)

FR
B{Perp(13)}(ω, υ) + FR

B{Perp(14)}(ω, υ)

 ,
where

FR
B{J}(ω, υ) =

[
FR

e,B( f )(ω, υ) FR
o,B( f )(ω, υ)

] 
FR

e,B{11}(ω, υ) FR
o,B{11}(ω, υ)

FR
o,B{1

′

1}(ω, υ) FR
e,B{1

′

1}(ω, υ)


F

R
B{12}(ω, υ)

FR
B{1
′

2}(ω, υ)

 .
Then,

FR
B{J}(ω, υ) = FR

B{J}(−ω,−υ) = −2π2Ie−µ(υ2
−ωυ)(2eI(ω2+υ2)µ + eI( ω

2+υ2
4 )ν);

F
R
B{Simp(13)}(ω, υ) + FR

B{Simp(14)}(ω, υ)

FR
B{Perp(13)}(ω, υ) + FR

B{Perp(14)}(ω, υ)

 =
πe−µ( υ

2
−4ωυ
8 +1) + 4π2δ(ω − a)δ(υ − a)

0

 ,
Hence, in the frequency domain, we obtain the following result

FR
B{h4}(ω, υ) = −2π3Ie−µ(υ2

−ωυ)(2eI(ω2+υ2)µ + eI( ω
2+υ2

4 )ν)(e−µ( υ
2
−4ωυ
8 +1) + 4πδ(ω − a)δ(υ − a)).
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7. Conclusions

In this paper, from the biquaternion algebra, we proposed a new transform tool-the BiQFTs. There
are three types of BiQFTs: TBiQFT, LBiQFT and RBiQFT. The relationships between the three BiQFTs
are explored, and then the effective algorithms of the BiQFTs are introduced. Some general properties
of the BiQFTs are proved. In addition, the convolution and correlation theorems associated with the
BiQFT are studied. These conclusions provides theoretical support for filter design. Finally, based on
the convolution operator and convolution theorem of the RBiQFT, the biquaternion linear time-invariant
systems are analyzed. The research of this paper enriches the theoretical system of the BiQFT, and also
provides a theoretical basis for the application of the BiQFT in signal processing.

Conflict of interests:

The authors declare that they have no conflict of interest.

References

[1] E. Bayro-Corrochano, N. Trujillo, M. Naranjo, Quaternion Fourier descriptors for preprocessing and recognition of spoken words
using images of spatiotemporal representations, J. Math. Imaging Vis. 28(2) (2007) 179-190.

[2] W. Bi, Z. F. Cai, K. I. Kou, Biquaternion Z Transform, arXiv:2108.02975. 2021.
[3] R. Bujack, H. De Bie, N. De Schepper, G. Scheuermann, Convolution products for hypercomplex Fourier transforms, J. Math.

Imaging Vis. 48 (3) (2014) 606–624.
[4] D. Cheng, K. I. Kou, Generalized sampling expansions associated with quaternion Fourier transform, Math. Meth. Appl. Sci.

41(11) (2018) 4021-4032.
[5] L. P. Chen, K. I. Kou, M. S. Liu, Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform,

J. Math. Anal. Appl. 423 (1) (2015) 681-700.
[6] H. De Bie, N. De Schepper, T. A. Ell, K. Rubrecht, S. J. Sangwine, Connecting spatial and frequency domains for the quaternion

Fourier transform, Signal Process. 90 (3) (2010) 933-945.
[7] J. Ebling, G. Scheuermann, Clifford Fourier transform on vector fields, IEEE Trans. Vis. Comput. Graphics. 11 (2005) 469–479.
[8] M. Felsberg, G. Sommer, The monogenic signal, IEEE Trans. Signal Process. 49 (2001) 3136–3144.
[9] W. B. Gao, B. Z. Li, Theories and applications associated with biquaternion linear canonical transform, Math. Methods Appl. Sci.

46(12) (2023) 13124–13141.
[10] W. B. Gao, B. Z. Li, Uncertainty principles for the biquaternion offset linear canonical transform, J. Pseudo-Differ. Oper. Appl.

15(22) (2024) 1-19.
[11] W. B. Gao, B. Z. Li, Uncertainty principle for the two-sided quaternion windowed linear canonical transform, Circuits Syst. Signal

Process. 41(3) (2022) 1324-1348.
[12] W. B. Gao, B. Z. Li, Octonion short-time Fourier transform for time-frequency representation and its applications, IEEE Trans.

Signal Process. 69 (2021) 6386-6398.
[13] W. R. Hamilton, On the geometrical interpretation of some results obtained by calculation with biquaternions, Proc. Roy. Irish

Acad. 5 (1853) 388-390.
[14] D. Lhamu, S. K. Singh, The quaternion Fourier and wavelet transforms on spaces of functions and distributions, Res. Math. Sci.

7(3) (2020) 1-10.
[15] P. Lian, Quaternion and fractional Fourier transform in higher dimension, Appl. Math. Comput. 289 (2020) 1-13.
[16] S. C. Pei, J. J. Ding, J. H. Chang, Color pattern recognition by quaternion correlation, Proc. ICIP., 2001.
[17] H. M. Srivastava, F. A. Shah, A. A.Teali, Short-time special affine Fourier transform for quaternion-valued functions, Rev. Real

Acad. Cienc. Exactas Fı́s. Natur. Ser. A Mat. 116(2) (2022) 1-20.
[18] H. M. Srivastava, M. M. Jamei, R. M. Aktas, Analytical solutions of some general classes of differential and integral equations by

using the Laplace and Fourier transforms, Filomat. 34(9) (2020) 2869-2876.
[19] H. M. Srivastava, S. K. Upadhyay, K. Khatterwani, A family of pseudo-differential operators on the Schwartz space associated

with the fractional Fourier transform, Russian J. Math. Phys. 24 (2017) 534-543.
[20] S. Said, N. Le Bihan, S. J. Sangwine, Fast complexified quaternion Fourier transform, IEEE Trans. Signal Process. 56(4) (2008)

1522-1531.
[21] H. M. Srivastava, Some general families of integral transformations and related results, Appl. Math. Comput. Sci. 6 (2022), 27-41.
[22] S. J. Sangwine, T. A. Ell, N. Le Bihan, Fundamental representations and algebraic properties of biquaternions or complexified

quaternions, Adv. Appl. Clifford Algebr. 21(3) (2011) 607-636.
[23] S. J. Sangwine, Biquaternion (complexified quaternion) roots of -1, Adv. Appl. Clifford Alg. 16(1) (2006) 63-68.
[24] H. M. Srivastava, W. Z. Lone, F.A. Shah, A.I. Zayed, Discrete quadratic-phase Fourier transform: theory and convolution

structures, Entropy. 24(2) (2022) 1-14.
[25] S. J. Sangwine, T. A. Ell, Hypercomplex Fourier transforms of color images, IEEE Trans. Image Process. 16(1) (2007) 22-35.
[26] J. P. Ward, Quaternions and Cayley Numbers: Algebra and Applications, Kluwer, Dordrecht, 1997.


	Introduction
	Preliminary
	Biquaternions

	Biquaternion Fourier transform
	Relationship between LBiQFT and RBiQFT
	Relationship between TBiQFT and LBiQFT
	Relationship between TBiQFT and RBiQFT
	Inversion transforms of the BiQFTs
	Plancherel theorems of the BiQFTs

	Convolution theorem
	Correlation theorem
	Applications
	Conclusions

