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Abstract. In this paper, we introduce the concepts of one-sided x-idempotents, one-sided x-equal elements,
one-sided x-projections, and list some properties of them. Furthermore, we apply these elements to describe
generalized inverses in rings with involution.

1. Introduction

Throughout, all rings are associative and unital, the symbols Z, Z+, N(R), E(R) and Z(R) stand for the
ring of integers, the set of positive integers, the set of all nilpotent elements, the set of all idempotents
and the center of R, respectively. In the studies of ring theory, idempotents play an important role. For
example, the definitions of clean rings [21], left quasi-duo rings [23], quasi-normal rings [26] are related to
idempotents. Furthermore, idempotents are often used to describe rings satisfying given conditions. For
instances, in [24], based on the works [7] and [5], Wei defined the generalized weakly symmetric rings,
and use idempotents to describe generalized weakly symmetric rings. Then, Meng et al. in [11], [12]
and [13] used idempotents to study e-symmetric rings and weak e-symmetric rings, where e ∈ E(R). The
studies of properties of idempotents in rings appear in [8], [9] and [10]. For other studies of idempotents in
rings, one can refer [3], [4], [6], [25] and [29]. Motivated by the previous works, we give the definitions of
one-sided x-idempotents, one-sided x-equal elements and one-sided x-projections in this article and study
their properties. Moreover, we apply these elements to characterize EP and SEP elements in involution
rings.

An element e ∈ R is said to be anti-idempotent if e2 = −e. We call an element e ∈ E(R) left (resp. right)
minimal idempotent of R if Re (resp. eR) is a minimal left (resp. right) ideal of R. Denote the set of all left
(resp. right) minimal idempotents of R by MEl(R) (resp. MEr(R)). An idempotent e ∈ R is called left (resp.
right) semicentral if ae = eae (resp. ea = eae) for any a ∈ R. Moreover, if e is both left and right semicentral,
then e is a central idempotent. An element a ∈ R is said to be regular if there exists b ∈ R such that a = aba,
where b is called an inner inverse of a. The set of all regular elements of R is denoted by Rre1. In general, the

2020 Mathematics Subject Classification. Primary 16U90.
Keywords. idempotent, one-sided x-idempotent, one-sided x-equal element, one-sided x-projection, EP element, SEP element
Received: 22 December 2023; Revised: 15 June 2024; Accepted: 25 June 2024
Communicated by Dijana Mosić
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inner inverse of a is not unique, we denote the set of all inner inverses of a by a{1}, and a− stands for some
fixed inner inverse of a. We say that an element a ∈ R is group invertible if there exists a#

∈ R satisfying

a = aa#a, a# = a#aa#, aa# = a#a,

where a# is called the group inverse of a, and if a# exists, then it is unique [22].
A map ∗ : R→ R is said to be an involution of R if

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

A ring with an involution ∗ is an involution ring (or ∗-ring). We call an element a ∈ R Hermitian if a∗ = a
[14], and the set of all Hermitian elements of R is denoted by RHer. In particular, if e ∈ E(R) is Hermitian,
then e is called a projection, and we write Rproj for the set of all projections of R. Furthermore, if e ∈ Rproj is
central, then e is a central projection. An element a ∈ R is said to be a partial isometry if a = aa∗a [19], and
the set of all partial isometries of R is denoted by RPI. We call a+ the Moore-Penrose inverse (MP-inverse)
of a, if

a = aa+a, a+ = a+aa+, (aa+)∗ = aa+, (a+a)∗ = a+a.

a+ is unique if it exists [22]. Denote the set of all MP-invertible elements of R by R+. In particular, if
a ∈ R#

∩ R+ and a# = a+, then a is called EP [20]. REP stands for the set of all EP elements of R. Moreover,
a is said to be SEP if a ∈ R#

∩ R+ and a# = a+ = a∗ [14]. The set of all SEP elements of R is denoted by RSEP.
In recent years, the studies of characterizations of EP and SEP elements in involution rings are popular

[15–18, 27, 29]. a #O
l is called a left core inverse of a if aa #O

l a = a, a #O
l aa #O

l = a #O
l , a #O

l a2 = a and (aa #O
l )∗ = aa #O

l

[2]. a #O is said to be a core inverse of a if aa #O2
= a #O, a #Oa2 = a and (aa #O)∗ = aa #O [1]. It is noted that

a #O = aa #O2
= a #Oa2a #O2

= (a #Oa)(aa #O2
) = a #Oaa #O and a = a #Oa2 = aa #O2

a2 = (aa #O)(a #Oa2) = aa #Oa. In
this paper, we will first define the one-sided x-idempotents, one-sided x-equal elements and one-sided
x-projections, and then apply these elements to characterize EP and SEP elements.

The paper is organized as follows: In Section 2, we define one-sided x-idempotents and give some
results. In Section 3, we give the definition of one-sided x-equal elements, and study the properties of them.
In Section 4, we propose the concept of one-sided x-projections, and give some characterizations of them.
In Section 5, we apply these elements to describe EP and SEP elements in involution rings.

2. One-sided x-idempotent

Definition 2.1. Let x ∈ R. Then an element a ∈ R is called a left (resp. right) x-idempotent if a2 = xa (resp. a2 = ax).

Consider the non-commutative polynomial ring Z < x, y > /(x2
− yx, y2

− xy). It is easy to check that
x2 = yx , xy and y2 = xy, which implies that one-sided x-idempotent is not unique and a left x-idempotent
is not necessary a right x-idempotent. Furthermore, for the same element 0 , a ∈ R, a can both be a left
(resp. right) x-idempotent and a left (resp. right) y-idempotent with x , y.

Proposition 2.2. Let x ∈ R. Then
(1) x is a left and right x-idempotent.
(2) 0 , x ∈ N(R) if and only if there exists 0 ≤ n ∈ Z such that x is a left (right) (x + xn)-idempotent.
(3) x ∈ N(R) if and only if there exists some k ∈ Z+ such that xk is a left (right) 0-idempotent.
(4) x is anti-idempotent if and only if x is a left (right) (2x + 1)-idempotent.

Proof. (1) It is obvious.
(2)⇒ If 0 , x ∈ N(R), then there exists some n ∈ Z+ such that xn = 0. Thus, x2 = (x + xn−1)x.
⇐ Provided that 0 ≤ n ∈ Z such that x2 = (x + xn)x, then xn+1 = 0. It follows that x ∈ N(R).
(3)⇒ If xn = 0, then taking k = n, we have
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(xk)2 = x2n = 0 = 0xk.

⇐ Assume that (xk)2 = x2k = 0xk = 0, then x ∈ N(R).
(4)⇒ By x2 = −x, then (2x + 1)x = x(2x + 1) = 2x2 + x = 2x2

− x2 = x2.
⇐ If (2x + 1)x = x(2x + 1) = 2x2 + x = x2, then x2 = −x.

Proposition 2.3. Let e ∈ R. Then the following statements are equivalent:
(1) e ∈ E(R);
(2) e is a left 1-idempotent;
(3) e is a right 1-idempotent;
(4) e is a left (2e − 1)-idempotent;
(5) e is a right (2e − 1)-idempotent.

Proof. It follows from a straightforward verification.

Theorem 2.4. Let a, x ∈ R. Then a is a left (resp. right) x-idempotent if and only if x − a is a right (resp. left)
x-idempotent.

Proof. ⇒ By a2 = xa, we have (x − a)2 = x2
− xa − ax + a2 = x2

− ax = (x − a)x, which gives the desired result.
⇐ If (x − a)2 = x2

− xa − ax + a2 = (x − a)x = x2
− ax, then a2

− xa = 0, i.e., a2 = xa. It follows that a is a left
x-idempotent.

Theorem 2.5. Let e ∈ E(R). Then e is a left (resp. right) semicentral element if and only if xe (resp. ex) is a left (resp.
right) x-idempotent for each x ∈ R.

Proof. ⇒ If exe = xe, then for any x ∈ R, (xe)2 = x(exe) = x(xe). It follows that xe is a left x-idempotent.
⇐ Taking y, z ∈ R, then

(ye)2 = y2e, (ze)2 = z2e, ((y + z)e)2 = (y + z)2e.

Hence, yeze + zeye = yze + zye. Setting y = 1 − e, we obtain (1 − e)ze = 0. This shows that e is left
semicentral.

Corollary 2.6. Let e ∈ E(R). Then e is left (resp. right) semicentral if and only if x− xe (resp. x− ex) is a right (resp.
left) x-idempotent for every x ∈ R.

Proof. It follows from Theorems 2.4 and 2.5.

Theorem 2.7. Let e ∈ R. Then the following statements are equivalent:
(1) e ∈ E(R);
(2) e is a left (x + 1)-idempotent for each x ∈ l(e), where l(e) = {y ∈ R|ye = 0};
(3) e is a right (x + 1)-idempotent for every x ∈ r(e), where r(e) = {y ∈ R|ey = 0}.

Proof. (1)⇒(2) By e2 = e, for any x ∈ l(e), (x + 1)e = xe + e = e = e2.
(2)⇒(1) If x ∈ l(e), then e2 = (x + 1)e = e.
(1)⇔(3) The proof is similar.
Note that if e ∈ E(R), then (1− e)e = e(1− e) = 0. Thus, from Theorem 2.7 we infer the following corollary.

Corollary 2.8. Let e ∈ R. Then the following statements are equivalent:
(1) e ∈ E(R);
(2) e is a left (x(1 − e) + 1)-idempotent for every x ∈ R;
(3) e is a right ((1 − e)x + 1)-idempotent for each x ∈ R.
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Theorem 2.9. Let e, x ∈ R. Then the following statements are equivalent:
(1) e is a left x-idempotent;

(2)
(

e 0
0 y

)
is a left

(
x 0
0 y

)
-idempotent for each y ∈ R;

(3)
(

e y
0 0

)
is a left

(
x u
0 v

)
-idempotent for any y ∈ r(e − x), u, v ∈ R;

(4)
(

e y
0 e

)
is a left

(
x y
0 x

)
-idempotent for every y ∈ r(e − x).

Proof. (1)⇒(2) By e2 = xe,(
e 0
0 y

)2

=

(
e2 0
0 y2

)
=

(
xe 0
0 y2

)
=

(
x 0
0 y

) (
e 0
0 y

)
.

(2)⇒(3) By assumption, one has e2 = xe. By a straightforward computation,(
e y
0 0

)2

=

(
e2 ey
0 0

)
,

and (
x u
0 v

) (
e y
0 0

)
=

(
xe xy
0 0

)
.

Since y ∈ r(e − x), xy = ey. Thus
(

e2 ey
0 0

)
=

(
xe xy
0 0

)
. This gives the desired result.

(3)⇒(4) By hypothesis, e2 = xe. Moreover, ey = xy by y ∈ r(e − x). Thus,(
e y
0 e

)2

=

(
e2 ey + ye
0 e2

)
=

(
xe xy + ye
0 xe

)
=

(
x y
0 x

) (
e y
0 e

)
.

This proves (4).
(4)⇒(1) By assumption, we have e2 = xe. This shows (1).
Similarly, we have the following proposition.

Proposition 2.10. Let e, x ∈ R. Then the following statements are equivalent:
(1) e is a right x-idempotent;

(2)
(

e 0
0 y

)
is a right

(
x 0
0 y

)
-idempotent for every y ∈ R;

(3)
(

e 0
y 0

)
is a right

(
x 0
u v

)
-idempotent for any y ∈ l(e − x), u, v ∈ R;

(4)
(

e 0
y e

)
is a right

(
x 0
y x

)
-idempotent for each y ∈ l(e − x).

Notice that x is a left and right x-idempotent, and in this case, y ∈ l(0), r(0) for any y ∈ R. Hence, by
Theorem 2.9 and Proposition 2.10, we have the following corollary.

Corollary 2.11. Let x, y ∈ R. Then

(1)
(

x y
0 0

)
is a left

(
x u
0 v

)
-idempotent for any u, v ∈ R.

(2)
(

x 0
y 0

)
is a right

(
x 0
u v

)
-idempotent for any u, v ∈ R.
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Proposition 2.12. Let a, x ∈ R and a be a left x-idempotent. Then axa is a left ax2-idempotent.

Proof. Assume that a2 = xa, then (axa)2 = axa2xa = ax2axa = ax2(axa).
In general, the converse of Proposition 2.12 is not true. For example, in (Z4,+,×), we set a = [1] and

x = [0], then [0] is a left [0]-idempotent, however [1] is not a left [0]-idempotent. The following result states
when the converse of Proposition 2.12 holds.

Proposition 2.13. Let a, x ∈ R and axa be a left ax2-idempotent. Then a be a left x-idempotent if one of the following
statements holds:

(1) x = a#;
(2) x #O

l = a;

(3) a #O = x;
(4) x #O = a.

Proof. By hypothesis, axa2xa = ax2axa.
(1) If x = a#, then aa#a2a#a = a2a#a = a2 and a(a#)2aa#a = a(a#)2a = a#a. Then a2 = a#a = xa by assumption.

(2) By x #O
l = a, one has xax = x, axa = a and ax2 = x. Thus axa2xa = (axa)(axa) = a2 and ax2axa = xaxa = xa.

Hence, a2 = xa.
The proofs of (3) and (4) are similar to the proof of (2).

Proposition 2.14. Let x, y, z ∈ R and y, z be left (resp. right) x-idempotents. Then y + z is a left (resp. right)
x-idempotent if and only if yz + zy = 0.

Proof. Since y, z are left x-idempotents, y2 = xy and z2 = xz. Then (y+z)2 = y2+yz+zy+z2 = xy+yz+zy+xz =
x(y + z) + yz + zy. Hence, (y + z)2 = x(y + z) if and only if yz + zy = 0. Thus the proof is completed.

Theorem 2.15. Let e ∈ R. Then e ∈ E(R) if and only if e is a left (x−xe+e)-idempotent (a right (x−ex+e)-idempotent)
for any x ∈ R.

Proof. ⇒ Suppose that e2 = e, then

(x − xe + e)e = xe − xe2 + e2 = xe − xe + e = e.

⇐ By (x − xe + e)e = xe − xe2 + e2 = e2, then xe − xe2 = 0. In particular, taking x = 1, then e = e2. Hence,
e ∈ E(R).

Proposition 2.16. Let e ∈ MEl(R) (resp. e ∈ MEr(R)) and e be left (resp. right) semicentral. Then for any x ∈ R
with xe , 0 (resp. ex , 0), there exists some y ∈ R such that e is a left xy-idempotent (resp. a right yx-idempotent).

Proof. Since xe , 0, Rxe = Re. Assume that e = yxe, we obtain e = yexe, and so ye , 0. By Rye = Re, we
suppose that e = zye. Hence, ze = z(yexe) = (zye)(xe) = exe = xe, and so e = zye = zeye = xeye = xye. It
follows that e2 = e = xye, and thus e is a left xy-idempotent.

Proposition 2.17. For any x ∈ R with xe , 0 (resp. ex , 0), if there always exists some y ∈ R such that e is a left
xy-idempotent (resp. a right yx-idempotent), then e is left (resp. right) semicentral.

Proof. Taking any x ∈ R, if (1 − e)xe , 0, then by the assumption, there exists some y ∈ R such that
e = e2 = (1 − e)xye, a contradiction. Hence, (1 − e)xe = 0 for any x ∈ R, which implies that e is left
semicentral.

From Propositions 2.16 and 2.17, we infer the following corollary immediately.

Corollary 2.18. Let e ∈ MEl(R) (resp. e ∈ MEr(R)). Then e is left (resp. right) semicentral if and only if for
any x ∈ R with xe , 0 (resp. ex , 0), there exists some y ∈ R such that e is a left xy-idempotent (resp. a right
yx-idempotent).
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Theorem 2.19. Let x ∈ R. Then x ∈ Z(R) if and only if for each a ∈ R, xa − ax is a left (resp. right) xa-idempotent
and a left (resp. right) (xa + a)-idempotent.

Proof. ⇒ If x ∈ Z(R), then it is obvious that xa− ax = 0 is a left xa-idempotent and a left (xa+ a)-idempotent.
⇐ By (xa − ax)2 = xa(xa − ax), we have ax(ax − xa) = 0, i.e., ax[a, x] = 0. According to (xa − ax)2 =

(xa + a)(xa − ax), then a(xa − ax) = 0, i.e., a[a, x] = 0. Since a + 1 ∈ R, (a + 1)[a + 1, x] = 0, thus [a, x] = 0. It
follows that x ∈ Z(R).

Theorem 2.20. Let x ∈ R. Then x ∈ Z(R) if and only if xa − ax is a left (right) a-idempotent for each a ∈ R.

Proof. ⇒ Note that x ∈ Z(R), then xa − ax = 0, and so it is a left a-idempotent for any a ∈ R.
⇐ By a straightforward computation, [a, x] = [a + 1, x]. Thus, by assumption, we have

a[a, x] = (xa − ax)2 = (x(a + 1) − (a + 1)x)2 = (a + 1)[a, x].

Hence, [a, x] = 0 for any a ∈ R, and so x ∈ Z(R).

Theorem 2.21. Let e ∈ R. Then e ∈ RPI if and only if e is a left (x − xee∗ + e)-idempotent (a right (x − e∗ex + e)-
idempotent) for each x ∈ R.

Proof. ⇒ If e = ee∗e, then (x − xee∗ + e)e = xe − xee∗e + e2 = e2.
⇐ By (1 − ee∗ + e)e = e2, one gets e = ee∗e.

3. One-sided x-equal elements

Definition 3.1. Let a, b, x ∈ R, a and b are called left (resp. right) x-equal if xa = xb (resp. ax = bx).

In particular, for the case of left x-equal in Definition 3.1, if x = a, then a is a right b-idempotent; provided
that x = b, then b is a right a-idempotent.

Proposition 3.2. Let a, x ∈ R. Then a is a left (resp. right) x-idempotent if and only if a and x are right (resp. left)
a-equal.

Proof. It follows from a straightforward verification.

Proposition 3.3. Let a, b, x ∈ R. Then a and b are left (resp. right) x-equal if and only if a− x and b− x are left (resp.
right) x-equal.

Proof. ⇒ If xa = xb, then x(a − x) = x(b − x).
⇐ By x(a − x) = x(b − x), one gets xa = xb.

Proposition 3.4. Let a, b, x ∈ R, and a and b be left (resp. right) x-equal. Then if ab = ba, we have a2 and b2 are left
(resp. right) x-equal.

Proof. Since xa = xb and ab = ba, we have

xa2 = (xa)a = (xb)a = (xa)b = (xb)b = xb2.

Proposition 3.5. Let a, b, x ∈ R, and a and b be left (resp. right) x-equal. Then a and b are left (resp. right) xn-equal,
where n ∈ Z+.

Proof. By xa = xb, we have

xna = xn−1(xa) = xn−1(xb) = xnb.
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Theorem 3.6. Let e ∈ R. Then the following statements are equivalent:
(1) e ∈ E(R);
(2) 1 − e and 0 are left e-equal;
(3) 1 − e and 0 are right e-equal;
(4) e and 0 are left (1 − e)-equal;
(5) e and 0 are right (1 − e)-equal;
(6) 2e − 1 and e are left e-equal;
(7) 2e − 1 and e are right e-equal.

Proof. (1)⇒(2) By e2 = e, we have e(1 − e) = e2
− e = 0.

(2)⇒(3) It follows from e(1 − e) = (1 − e)e.
(3)⇒(4) It is obvious.
(4)⇒(5) It follows from (1 − e)e = e(1 − e).
(5)⇒(6) By (1 − e)e = 0, e2 = e. Thus,

e(2e − 1) = 2e2
− e = e = e2.

(6)⇒(7) It follows from e(2e − 1) = (2e − 1)e.
(7)⇒(1) By e2 = (2e − 1)e = 2e2

− e, one gets e2 = e.

Theorem 3.7. Let e ∈ E(R). Then e is left (resp. right) semicentral if and only if for each x ∈ E(R), if e and x are left
(resp. right) e-equal, then e and x are right (resp. left) e-equal.

Proof. ⇒ By e2 = e, exe = xe and e2 = ex, then

xe = exe = e3 = e2.

⇐ For any y ∈ R, let x = e − (1 − e)ye. Then xe = x, ex = e2, and x2 = (xe)x = x(ex) = xe2 = xe = x. Note
that ex = e2, hence xe = e2 by hypothesis, and so x = xe = e. It follows that (1 − e)ye = 0, i.e., e is a left
semicentral.

Theorem 3.8. Let a, b, x, y,u ∈ R, and x = uyx (resp. x = xyu). Then a and b are left (resp. right) x-equal if and
only if a and b are left yx-equal (resp. right xy-equal).

Proof. ⇒ If xa = xb, then y(xa) = yxb.
⇐ By yxa = yxb, we have

xa = uyxa = uyxb = xb.

Theorem 3.9. Let a, b, x ∈ R. Then a and b are left (resp. right) x-equal if and only if a + b and 2a are left (resp.
right) x-equal.

Proof. ⇒ If xa = xb, then x(a + b) = xa + xb = 2xa = x(2a).
⇐ Assume that x(a + b) = x(2a) = 2xa, then xa = xb.

Theorem 3.10. Let e ∈ R. Then e is left (resp. right) semicentral if and only if x and ex (resp. x and xe) are right
(resp. left) e-equal for each x ∈ R.

Proof. ⇒ Since e is left semicentral, exe = xe for any x ∈ R.
⇐ By assumption, exe = xe for every x ∈ R. In particular, taking x = 1, then e2 = e. Hence, e is left

semicentral.

Theorem 3.11. Let e ∈ R. Then e is left (resp. right) semicentral if and only if xy and xey are right (resp. left)
e-equal for any x, y ∈ R.
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Proof. ⇒ By exe = xe and eye = ye, then xeye = xye.
⇐ By hypothesis, xeye = xye for each x, y ∈ R. Taking x = 1, then eye = ye. Furthermore, setting

x = y = 1, then e2 = e. Thus e is left semicentral.

Theorem 3.12. Let x ∈ R. Then x ∈ Z(R) if and only if xy and yx are left (right) y-equal for any y ∈ R.

Proof. ⇒ If x ∈ Z(R), then yxy = y2x.
⇐ By yxy = y2x and (y + 1)x(y + 1) = (y + 1)2x, then xy = yx for any y ∈ R. Hence, x ∈ Z(R).

Theorem 3.13. Let x ∈ R and n ∈ Z+. Then x ∈ Z(R) if and only if xy and yx are left (right) yn-equal for each
y ∈ R.

Proof. ⇒ If x ∈ Z(R), then ynxy = yn+1x.
⇐ By yn(xy − yx) = 0 and (y + 1)n(x(y + 1) − (y + 1)x) = 0, i.e., (y + 1)n(xy − yx) = 0. Then,

(1 +
(

n
n − 1

)
y + · · · +

(
n
2

)
yn−2 +

(
n
1

)
yn−1)[x, y] = 0. (1)

Multiplying (1) on the left by yn−1, then by yn(xy − yx) = 0, one gets yn−1[x, y] = 0. Repeating the above
procedures, one has [x, y] = 0, and hence x ∈ Z(R).

4. One-sided x-projections

Definition 4.1. Let a, x ∈ R. Then a is called a left (resp. right) x-projection if a2 = xa (resp. a2 = ax) and a∗ = a.

From Definitions 4.1 and 2.1, we get the following conclusion.

Proposition 4.2. Let a, x ∈ R. Then a is a left (resp. right) x-projection if and only if a ∈ RHer and a is a left (resp.
right) x-idempotent.

By Proposition 4.2, one gets the following corollary.

Corollary 4.3. Let x ∈ R. Then x is a left (right) x-projection if and only if x ∈ RHer.

Corollary 4.4. Let x ∈ R and n ∈ Z+. Then
(1) (xx∗)n is a left (right) (xx∗)n-projection.
(2) (x∗x)n is a left (right) (x∗x)n-projection.
(3) x + x∗ is a left (right) (x + x∗)-projection.

Proof. It follows from Corollary 4.3.

Lemma 4.5. Let a be a left x-projection and m,n ∈ Z+. Then
(1) ax∗ = xa.
(2) xman = am+n.
(3) an(x∗)m = am+n.
(4) (ax∗)n = (xa)n = a2n.
(5) (ax)n = a2n−1x.
(6) (x∗a)n = x∗a2n−1.
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Proof. (1) ax∗ = a∗x∗ = (xa)∗ = (a2)∗ = a2 = xa.
(2) By xa = a2, then

xman = xm−1(xa)an−1

= xm−1an+1

= xm−2(xa)an

= xm−2an+2

= · · ·

= am+n.

(3) By ax∗ = a2, then

an(x∗)m = an−1(ax∗)(x∗)m−1

= an+1(x∗)m−1

= an(ax∗)(x∗)m−2

= an+2(x∗)m−2

= · · ·

= am+n.

(4) By ax∗ = xa = a2, then

(ax∗)n = (xa)n = (a2)n = a2n.

(5) By xa = a2, then

(ax)n = (ax)n−2a(xa)x

= (ax)n−2a3x

= (ax)n−3a(xa)a2x

= (ax)n−3a5x
= · · ·

= a2n−1x.

(6) By ax∗ = a2, then

(x∗a)n = (x∗a)n−2x∗(ax∗)a

= (x∗a)n−2x∗a3

= (x∗a)n−3x∗(ax∗)a3

= (x∗a)n−3x∗a5

= · · ·

= x∗a2n−1.



L. Cao et al. / Filomat 38:28 (2024), 9877–9889 9886

Theorem 4.6. Let a be a left x-projection and n, p, q ∈ Z+. Then
(1) an is a left xn-projection.
(2) an is a left apxq-projection, where p + q = n.
(3) an is a right (x∗)n-projection.
(4) an is a right (x∗)paq-projection, where p + q = n.

Proof. (1) By Lemma 4.5 (2), then xnan = a2n.
(2) By Lemma 4.5 (2), (apxq)an = ap(xqan) = ap+q+n = a2n.
(3) By Lemma 4.5 (3), an(x∗)n = a2n.
(4) By Lemma 4.5 (3), an((x∗)paq) = (an(x∗)p)aq = an+p+q = a2n.
By Theorem 4.6, one has the following conclusion.

Corollary 4.7. Let a be a left x-projection and m,n, s, t, p, q ∈ Z+. Then
(1) an(x∗)txsam is a left an+m+s+t-projection.
(2) an(x∗)txsam is a left an(x∗)txs+m-projection.
(3) (ax∗)n(xa)s is a left a2n+2s-projection.
(4) (ax∗)n(xa)s is a left (ax∗)nx2s-projection.
(5) anxs(x∗)tam is a left anxs(x∗)txm-projection.
(6) xsam(x∗)t is a left am+s+t-projection.
(7) xsam(x∗)t is a left xsam+t-projection.
(8) xs(ax∗)t is a left as+2t-projection.
(9) xs(ax∗)t is a left xsa2t-projection.
(10) xsam(x∗)t is a left am+s+t-projection.
(11) xs(ax∗)t is a left as+2t-projection.
(12) (xax∗)s is a left a3s-projection.
(13) an(x∗)txsam is a left am+n+s+t-projection.
(14) an(x∗)txsam is a left apxq-projection, where p + q = m + n + s + t.
(15) (ax∗)nxsam is a left a2n+m+s-projection.
(16) (ax∗)nxsam is a left apxq-projection, where p + q = 2n +m + s.
(17) (ax∗)n(xa)s is a left a2n+2s-projection.
(18) (ax∗)n(xa)s is a left apxq-projection, where p + q = 2n + 2s.
(19) an(x∗)t(xa)s is a left an+2s+t-projection.
(20) an(x∗)t(xa)s is a left apxq-projection, where p + q = n + 2s + t.
(21) an(x∗)txsam is a right (x∗)n+m+s+t-projection.
(22) an(x∗)txsam is a right (x∗)paq-projection, where p + q = n +m + s + t.
(23) (ax∗)nxsam is a right (x∗)2n+m+s-projection.
(24) (ax∗)nxsam is a right (x∗)paq-projection, where p + q = 2n +m + s.
(25) an(x∗)t(xa)s is a right (x∗)n+2s+t-projection.
(26) an(x∗)t(xa)s is a right (x∗)paq-projection, where p + q = n + 2s + t.
(27) (ax∗)n(xa)s is a right (x∗)2n+2s-projection.
(28) (ax∗)n(xa)s is a right (x∗)paq-projection, where p + q = 2n + 2s.
(29) an(x∗)txsam is a right (x∗)n+m+s+t-projection.
(30) an(x∗)txsam is a right (x∗)paq-projection, where p + q = n +m + s + t.
(31) (ax∗)nxsam is a right (x∗)2n+m+s-projection.
(32) (ax∗)nxsam is a right (x∗)paq-projection, where p + q = 2n +m + s.
(33) an(x∗)t(xa)s is a right (x∗)n+2s+t-projection.
(34) an(x∗)t(xa)s is a right (x∗)paq-projection, where p + q = n + 2s + t.
(35) (ax∗)n(xa)s is a right (x∗)2n+2s-projection.
(36) (ax∗)n(xa)s is a right (x∗)paq-projection, where p + q = 2n + 2s.
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Proposition 4.8. Let e, a ∈ R. Then
(1) e ∈ Rproj if and only if e is a left (right) 1-projection.
(2) Assume that x ∈ RHer, then a is a left x-projection if and only if a − x is a right (−x)-projection.
(3) a is a left x-projection if and only if a is a right x∗-projection.

Proof. (1)⇒ If e ∈ Rproj, then e2 = e and e∗ = e, and hence e is a left 1-projection.
⇐ By e2 = e and e∗ = e, we have e ∈ Rproj.
(2)⇒ If x∗ = x, a∗ = a and a2 = xa, then

(a − x)2 = a2
− ax − xa + x2 = −ax + x2 = (a − x)(−x), and (a − x)∗ = a∗ − x∗ = a − x.

It follows that a − x is a right (−x)-projection.
⇐ By hypothesis, x ∈ RHer, (a − x)∗ = a − x, and (a − x)2 = (a − x)(a − x). Thus, one gets a∗ = a and a2 = xa,

which implies that a is a left x-projection.
(3) It follows from Lemma 4.5 (1).

Proposition 4.9. Let e ∈ R. Then the following statements are equivalent:
(1) e ∈ Rproj;
(2) e is a left (2e − 1)-projection;
(3) e is a right (2e − 1)-projection.

Proof. (1)⇒(2) Since e2 = e and e∗ = e, we obtain that e is a left (2e − 1)-projection.
(2)⇒(3) It follows from e(2e − 1) = (2e − 1)e.
(3)⇒(1) By e2 = e(2e − 1) = 2e2

− e, one gets e = e2. Thus, e ∈ Rproj by e = e∗.

Proposition 4.10. Let a, x ∈ R and a be a left x-projection. Then
(1) x2a = axa.
(2) if a2 = 1, then x = a.
(3) x ∈ a{1} if and only if a3 = a.
(4) a is a left (x + ax − x2)-projection.

Proof. By assumption, a = a∗ and a2 = xa.
(1) x2a = x(xa) = xa2 = (xa)a = a2a = aa2 = axa.
(2) If a2 = 1, then x = xa2 = (xa)a = a3 = a.
(3)⇒ If a = axa, then a3 = aa2 = axa = a.
⇐ By a3 = a, then a(xa) = a3 = a.
(4) (x + ax − x2)a = xa + axa − x2a = a2 + a3

− xa2 = a2 + a3
− a3 = a2. Then by a∗ = a, a is a left

(x + ax − x2)-projection.

Proposition 4.11. Let e ∈ R. Then the following statements are equivalent:
(1) e ∈ Rproj;
(2) 1 − e is a left (1 − 2e)-projection;
(3) 1 − e is a right (1 − 2e)-projection;
(4) e is a left (e + e∗ − 1)-projection;
(5) e is a right (e + e∗ − 1)-projection.

Proof. (1)⇒(2) If e2 = e = e∗, then (1− e)2 = 1− 2e+ e2 = 1− e and (1− 2e)(1− e) = 1− 3e+ 2e2 = 1− e. Hence,
(1 − e)2 = (1 − 2e)(1 − e), and so 1 − e is a left (1 − 2e)-projection.

(2)⇒(3) It follows from (1 − 2e)(1 − e) = (1 − e)(1 − 2e).
(3)⇒(4) By 1 − e = 1 − e∗ and (1 − e)2 = (1 − e)(1 − 2e), one gets e = e∗ and e = e2. Hence,

(e + e∗ − 1)e = e2 + ee∗ − e = e = e2.

(4)⇒(5) By hypothesis, e = e∗ and e2 = (e + e∗ − 1)e, then e∗e = e. Thus e(e + e∗ − 1) = e2 + ee∗ − e = e2.
(5)⇒(1) If e = e∗ and e2 = e(e + e∗ − 1), then ee∗ = e, and so e2 = ee∗ = e.
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Proposition 4.12. Let a ∈ Rre1 and a be a left (resp. right) x-projection. Then a is a left (x + u − uaa−)-projection
(resp. a right (x + u − a−au)-projection) for any u ∈ R.

Proof. If a = a∗ and a2 = xa, then (x + u − uaa−)a = xa + ua − uaa−a = xa + ua − ua = xa.

Theorem 4.13. Let e ∈ E(R) and ea∗ be a left (right) a-idempotent for each a ∈ R. Then e is a central projection.

Proof. By hypothesis, for any a ∈ R,

ea∗ea∗ = aea∗, and e(a + 1)∗e(a + 1)∗ = (a + 1)e(a + 1)∗.

Then ea∗e = ae. Taking a = e∗, then e = e∗e, which implies that e ∈ Rproj. For any x ∈ R, let 1 = e + (1 − e)xe.
Then

e1 = e, 1e = 1, and 12 = 1.

By hypothesis, e1∗ is a left 1-idempotent. Then e1∗e1∗ = 1e1∗, and hence 11∗ = 1e1∗ = (1e1∗)∗ = (e1∗e1∗)∗ =
1e1e = 1. It follows that 1 ∈ Rproj, and so 1 = 1∗ = (1e)∗ = e∗1∗ = e1 = e. Hence, (1 − e)xe = 0 for any
x ∈ R, which shows that e is left semicentral, and so e∗ is right semicentral. Notice that e ∈ Rproj, hence e is
central.

Remark 4.14. In Theorem 4.13, if ea∗ is replaced by a∗e or a − ea∗ or a − a∗e, then the assertion also holds.

Proposition 4.15. Let a, x, y ∈ R and x and y be left (resp. right) a-projections. Then x + y is a left (resp. right)
a-projection if and only if xy + yx = 0.

Proof. By assumption, x∗ = x, y∗ = y, x2 = ax and y2 = ay.
⇒ If (x + y)2 = a(x + y), then by x2 = ax and y2 = ay, one gets xy + yx = 0.
⇐ By xy + yx = 0, then (x + y)2 = x2 + xy + yx + y2 = ax + ay = a(x + y).

Theorem 4.16. Let e ∈ R. Then the following statements are equivalent:
(1) e ∈ Rproj;
(2) e is a left (a + 1 − xe∗e + xe)-projection for each a ∈ l(e) and x ∈ R;
(3) e is a right (a + 1 − ee∗y + ey)-projection for every a ∈ r(e) and y ∈ R.

Proof. (1)⇒(2) If e2 = e = e∗, then

(a + 1 − xe∗e + xe)e = ae + e − xe∗e2 + xe2

= ae + e
= e

= e2.

(2)⇒(3) By hypothesis, e∗ = e and e2 = (a + 1 − xe∗e + xe)e, then one gets e2 = e. Thus,

e(a + 1 − ee∗y + ey) = ea + e − e2e∗y + e2y
= e

= e2.

(3)⇒(1) It follows from a straightforward verification.
Notice that if e ∈ E(R), then (1 − e)e = e(1 − e) = 0. Thus, we have the following corollary of Theorem

4.16.

Corollary 4.17. Let e ∈ R. Then the following statements are equivalent:
(1) e ∈ Rproj;
(2) e is a left (a(1 − e) + 1 − xe∗e + xe)-projection for any a, x ∈ R;
(3) e is a right ((1 − e)a + 1 − ee∗y + ey)-projection for any a, y ∈ R.
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