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Abstract. In this paper, the relationships of induced (L,M)-fuzzy bornology with (L,M)-fuzzy pseudo-
quasi-metric and (L,M)-fuzzy topology are discussed. Moreover, quotient (L,M)-fuzzy bornology is intro-
duced, and it is shown that the induced (L,M)-fuzzy bornology by quotient M-fuzzifying bornology is the
quotient (L,M)-fuzzy bornology of induced (L,M)-fuzzy bornology.

1. Introduction

In [11, 12], S.T. Hu first introduced the axiomatic definition of bornology to define the conception of
boundedness in a general topological space. Each bornology is an ideal in the powerset and contains all
singletons. From the theoretical aspect, the theory of bornology as well as some related theories, such as
hyperspace topologies [2, 5, 16], optimization theory [4], topologies in function spaces [3, 19], and so on
[6, 7, 10, 22, 30], have received wide attention in recent years.

With the development of fuzzy set theory, bornology structures have been generalized to fuzzy case.
Abel and Šostak [1] first introduced L-bornology. After that, Paseka et al. [20] introduced L-bornological
vector spaces and systems. The categorical properties of them were studied, and it is proved that the
category of L-bornological vector spaces is isomorphic to a full reflective subcategory of the category of
L-bornological vector systems. In [32], Zhang and Zhang discussed the induced I-bornological vector
spaces by general bornological vector spaces, and I-bornological linear mappings. Recently, Jin and Yan
[14] introduced separation and L-Mackey convergence in L-bornological vector spaces, and discussed the
equivalent characterization of separation in terms of L-Mackey convergence.

In an L-bornology, the bounded sets are fuzzy, but the bornology comprising those bounded sets is a crisp
subset. In a different way, Šostak and Uļjane [28] introduced (L, ∗)-valued bornology, which is considered as
an L-subset of 2X. In the setting of (L, ∗)-valued bornology, they proposed induced L-valued bornologies by
fuzzy metrics and relative compactness-type L-valued bornologies in Chang-Goguen L-topological spaces.
Adopting the terminology of fuzzy topology, we call this bornology an L-fuzzifying bornology. Shen and
Yan [23] discussed fuzzifying bornologies induced by fuzzy pseudo-norms. They proved that the degree
of bornological convergence is equivalent to the degree of topological convergence.

In 2017, Šostak and Uļjane [29] introduced M-valued bornology on the L-powerset of an L-valued
set (X,E) (where E : X × X → L is an L-valued equality on X), which is called LM-fuzzy bornology for
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short. Recently, Liang et al. [18] introduced a new kind of M-valued L-fuzzy bornological vector space,
namely (L,M)-fuzzy bornological vector space. The categorical properties were studied. In the classical
case, bornology, topology and metric are closely related. In this paper, we will use L-fuzzy topology and
(L,M)-fuzzy metric to characterize (L,M)-fuzzy bornology.

The structure of this paper is organized as follows. In Section 2, we review some preliminaries that
are needed in the subsequent sections. In Section 3, we propose the relationships of induced (L,M)-fuzzy
bornology with (L,M)-fuzzy pseudo-quasi-metric and (L,M)-fuzzy topology. In Section 4, we introduce
quotient (L,M)-fuzzy bornology and discuss the relationships between quotient (L,M)-fuzzy bornological
vector space and quotient L-bornological vector space. In Section 5, we discuss the relationships between
(L,M)-fuzzy bornological space induced by M-fuzzifying bornological space with quotient space and prod-
uct space.

2. Preliminaries

Throughout this paper, L (resp. M) is a frame with order-reversing involution. The smallest element
and the largest element in L (resp. M) are denoted by ⊥L and ⊤L (resp. ⊥M and ⊤M). An element a in L is
called a prime element [9] if a ⩾ b ∧ c implies a ⩾ b or a ⩾ c. An element a in L is called co-prime element
if a ⩽ b ∨ c implies a ⩽ b or a ⩽ c. The set of non-unit prime elements in L is denoted by P(L). The set of
non-zero co-prime elements in L is denoted by J(L).

For a nonempty set X, 2X denotes the powerset of X. For any nonempty subset A ⊆ 2X, let χA denote
the characteristic function of A. LX is the set of all L-subsets on X. For all a ∈ L and U ∈ LX[25],
U[a] = {x ∈ X | U(x) ⩾ a}, U(a) = {x ∈ X | U(x) ⩽̸ a}. The set of non-zero co-prime elements in LX is denoted
by J(LX). Each member in J(LX) is also called a point. It is easy to see that J(LX) is the set of all fuzzy points
xλ(λ ∈ J(L)). For each a ∈ L, a denotes the constant mapping X −→ L, x 7→ a, which is called constant
L-subset.

An M-fuzzy non-negative real number[13] is an equivalence class [φ] of antitone mappings φ : R −→M
satisfying

φ(0−) =
∧
t<0

φ(t) = ⊤M, φ(+∞) =
∧
t∈R

φ(t) = ⊥M,

where the equivalence identifies two such mappings φ, ψ if and only if ∀t > 0, φ(t−) = ψ(t−). We shall not
distinguish an M-fuzzy real number [φ] and its representative function φ being left continuous. The set of
all non-negative M-fuzzy real numbers is denoted by [0,+∞) (M).

Let f : X −→ Y be a mapping between two nonempty sets X,Y. The forward L-power operator
f→ : LX

−→ LY and the backward L-powerset operator f← : LY
−→ LX induced by f [21] are defined as

follows:

(1) ∀ A ∈ LX, y ∈ Y, f→(A)(y) =
∨

f (x)=y
A(x) ;

(2) ∀ B ∈ LY, f←(B) = B ◦ f .

Let X be a vector space over the field of real or complex numbers K, θ be the zero vector in X. Using
Zadeh’s extension principle, the addition and scalar multiplication operator in LX are defined as follows,
respectively. For all A,B ∈ LX, x ∈ X, and k ∈ K,

(1) (A + B)(x) =
∨

y+z=x(A(y) ∧ B(z));

(2) (kA)(x) = A
(

x
k

)
, k , 0;

(3) (0A)(x) =


∨
y∈X

A(y), x = θ,

⊥L, x , θ.

Lemma 2.1 ([25]). For each A ∈ LX and a ∈ L, we have:

(1) f
(
A(a)

)
= ( f→(A))(a);
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(2) If {At}t∈T ⊆ LX,
(∨

t∈T
At

)(a)

=
⋃
t∈T

(At)
(a);

(3) For each B ∈ LY, ( f←(B))(a) = f−1(B(a)).

Definition 2.2 ([20]). Let {Xi}i∈I be a family of sets. For all Ai ∈ LXi , define a mapping
∏

i∈I Ai :
∏
i∈I

Xi −→ L

as follows
∏

i∈I Ai(x) =
∧
i∈I

Ai(Pi(x)), where Pi :
∏
i∈I

Xi −→ Xi be the projection.

Definition 2.3 ([28]). An M-fuzzifying bornology on a set X is a mapping B : 2X
−→ M satisfying the

following conditions:

(MB1) B({x}) = ⊤M,∀x ∈ X;
(MB2) For all A,B ∈ 2XwithA ⊆ B,B(A) ⩾ B(B);
(MB3) B(A ∪ B) ⩾ B(A) ∧ B(B),∀A,B ∈ 2X.

The pair (X,B) is called an M-fuzzifying bornological space. The value B(A) is interpreted as the degree of
boundedness of a set A in the space (X,B).

Definition 2.4 ([1, 20]). An L-bornology on a set X is a subfamily B ⊆ LX such that:

(LB1)
∨

B∈B B(x) = ⊤L, ∀x ∈ X;
(LB2) ∀B ∈ B, D ∈ LX with D ⩽ B⇒ D ∈ B;
(LB3) A,B ∈ B ⇒ A ∨ B ∈ B.

The pair (X,B) is called an L-bornological space.

Definition 2.5 ([18, 29]). An M-valued L-fuzzy bornology, or an (L,M)-fuzzy bornology for short on a set
X is a mapping B : LX

−→M which satisfies:

(LMB1) B(x⊤L ) = ⊤M;
(LMB2) For each A,B ∈ LX, A ⩽ B⇒ B(A) ⩾ B(B);
(LMB3) B(A ∨ B) ⩾ B(A) ∧B(B), ∀A,B ∈ LX.

The pair (X,B) is called an (L,M)-fuzzy bornological space. B(A) can be interpreted as the degree of
boundedness of A.

Definition 2.6 ([18, 29]). Let (X,BX) and (Y,BY) be two (L,M)-fuzzy bornological spaces. A mapping
f : X −→ Y is (L,M)-fuzzy bounded provided that BX(A) ⩽ BY( f→(A)) for all A ∈ LX.

Theorem 2.7 ([18]). Supposed that {(Xi,Bi)}i∈I is a family of (L,M)-fuzzy bornological spaces, X =
∏
i∈I

Xi and

Pi : X −→ Xi is the projection. Define B : LX
−→ M by B(A) =

∨
A⩽

∏
i∈I Ai

∧
i∈I

Bi(Ai), ∀A ∈ LX. Then (X,B) is an

(L,M)-fuzzy bornological space, which is called the product space of {(Xi,Bi)}i∈I, denoted by (X,
∏
i∈I

Bi).

Remark 2.8. The product space of (L,M)-fuzzy bornological spaces can degenerate to the product space of
M-fuzzifying bornological spaces by restricting L = {0, 1}.

Remark 2.9. Let (X,B) be a crisp bornological space. Then B can be regarded as a mapping χB : LX
−→M

defined by

χB(A) =

⊤M,A ∈ B,

⊥M,A < B.

Obviously, (X, χB) is a special (L,M)-fuzzy bornological space. In this way, (X,B) can be regarded as an
(L,M)-fuzzy bornological space determined by the crisp bornology.
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Definition 2.10 ([18]). An (L,M)-fuzzy bornological vector space is a triple (X,K,B), where X is a vector
space over the field of real or complex numbers K, and (X,B) is an (L,M)-fuzzy bornological space such
that :

(BV1) f : X × X −→ X, (x, y) 7→ x + y is (L,M)-fuzzy bounded;
(BV2) 1 : K × X −→ X, (k, x) 7→ kx is (L,M)-fuzzy bounded,

where X×X andK×X are equipped with the corresponding product (L,M)-fuzzy bornologies B ×B and
BK ×B (BK is the (L,M)-fuzzy bornology determined by the crisp bornology onK), respectively.

Theorem 2.11 ([18]). Let X be a vector space over K, and (X,B) be an (L,M)-fuzzy bornological space. Then
(X,K,B) is an (L,M)-fuzzy bornological vector space if and only if B satisfies the following conditions :
(BV3) B(A) ∧B(B) ⩽ B(A + B), ∀ A,B ∈ LX;
(BV4) B(A) ⩽ B(λA), ∀ A ∈ LX, λ ∈ K;

(BV5) B(A) ⩽ B

( ∨
|λ|⩽1

λA
)
, ∀ A ∈ LX.

3. Induced (L,M)-fuzzy bornologies by (L,M)-fuzzy pseudo-quasi-metric and (L,M)-fuzzy topology

In this section, we construct (L,M)-fuzzy bornologies in (L,M)-fuzzy pseudo-quasi-metric space and
(L,M)-fuzzy topological space. In [24], the author introduced (L,M)-fuzzy pseudo-quasi-metric as follows.

Definition 3.1 ([24]). An (L,M)-fuzzy pseudo-quasi-metric on X is a mapping d : J(LX) × J(LX) −→
[0,+∞) (M) satisfying: ∀ a, b, c ∈ J(LX),

(LMd1) a ⩽ b⇒ d(a, b)(0+) = ⊥M;
(LMd2) ∀ r, s > 0, d(a, c)(r + s) ⩽ d(a, b)(r) ∨ d(b, c)(s);
(LMd3) d(a, b) =

∧
c≺b d(a, c).

Such a d is said to be an (L,M)-fuzzy pseudo-metric if d satisfies

(LMd4) ∀ u, v ∈ J(LX),
∧

a⩽̸u′ d(a, v) =
∧

b⩽̸v′ d(b,u).

An (L,M)-fuzzy pseudo-metric d is said to be an (L,M)-fuzzy metric if d satisfies

(LMd5) d(a, b)(0+) = ⊥M ⇒ a ⩽ b.

Proposition 3.2. Let d be an (L,M)-fuzzy pseudo-quasi-metric on X. For all xλ ∈ J(LX), define a mapping
Nd

xλ : LX
−→M by

Nd
xλ (U) =

∨
xλ⩽V⩽U

∧
yµ⩽̸V′

d(yµ,V
′

)(0+),

where d(yµ,V
′

)(0+) =
∨

r>0
∧

zv⩽V′ d(yµ, zv)(r). Then the following statements hold:

(1) Nd
xλ (⊤LX ) = ⊤M;

(2) For any U,V ∈ LX with U ⩽ V, Nd
xλ (U) ⩽ Nd

xλ (V);

(3) For any x ∈ X and U ∈ LX with x⊤L ⩽̸ U, Nd
x⊤L

(U) = ⊥M.
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Proof. (1) Since (⊤LX )
′

= ⊥LX , we have

Nd
xλ (⊤LX ) =

∨
xλ⩽V⩽⊤LX

∧
yµ⩽̸V′

d(yµ,V
′

)(0+)

=
∨

xλ⩽V⩽⊤LX

∧
yµ⩽̸V′

∨
r>0

∧
zv⩽V′

d(yµ, zv)(r)

⩾
∧

yµ⩽̸(⊤LX )′

∨
r>0

∧
zv⩽(⊤LX )′

d(yµ, zv)(r)

=
∧

yµ⩽̸⊥LX

∨
r>0

∧
zv⩽⊥LX

d(yµ, zv)(r)

= ⊤M.

This implies Nd
xλ (⊤LX ) = ⊤M.

(2) Take any U,V with U ⩽ V. Then

Nd
xλ (U) =

∨
xλ⩽A⩽U

∧
yµ⩽̸A′

d(yµ,A
′

)(0+)

⩽
∨

xλ⩽B⩽V

∧
yµ⩽̸B′

d(yµ,B
′

)(0+)

= Nd
xλ (V).

This implies that Nd
xλ (U) ⩽ Nd

xλ (V).
(3) Since x⊤L ⩽̸ U, it follows that

Nd
x⊤L

(U) =
∨

x⊤L⩽V⩽U

∧
yµ⩽̸V′

d(yµ,V
′

)(0+) = ⊥M,

as desired.

Theorem 3.3. Let d be an (L,M)-fuzzy pseudo-quasi-metric on X. Define a mapping Bd : LX
−→M by

Bd(A) =
∨
A⩽U

∨
y∈X

Nd
y⊤L

(U).

Then Bd is an (L,M)-fuzzy bornology induced by d.

Proof. It suffices to show that Bd satisfies (LMB1)-(LMB3).
(LMB1) By Proposition 3.2, we have for all y ∈ Y, Nd

y⊤L
(⊤LX ) = ⊤M. Therefore,

Bd(x⊤L ) =
∨

x⊤L⩽U

∨
y∈X

Nd
y⊤L

(U) ⩾
∨
y∈X

Nd
y⊤L

(⊤LX ) = ⊤M.

Then we have Bd(x⊤L ) = ⊤M.
(LMB2) For all A,B ∈ LX with A ⩽ B, we have

Bd(A) =
∨
A⩽U

∨
y∈X

Nd
y⊤L

(U) ⩾
∨
B⩽U

∨
y∈X

Nd
y⊤L

(U) = Bd(B).
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(LMB3) Take any A,B,U1,U2 ∈ LX with A ⩽ U1,B ⩽ U2. Then A ∨ B ⩽ U1 ∨U2. By Proposition 3.2, we
have ∨

y∈X

Nd
y⊤L

(U1) ∧
∨
y∈X

Nd
y⊤L

(U2) ⩽
∨
y∈X

Nd
y⊤L

(U1 ∨U2).

This implies

Bd(A) ∧Bd(B) =
∨

A⩽U1

∨
y∈X

Nd
y⊤L

(U1) ∧
∨

B⩽U2

∨
y∈X

Nd
y⊤L

(U2) ⩽
∨

A∨B⩽U1∨U2

∨
y∈X

Nd
y⊤L

(U1 ∨U2) = Bd(A ∨ B).

This shows that Bd satisfies (LMB1)-(LMB3). Therefore, Bd is an (L,M)-fuzzy bornology on X.

Remark 3.4. In Theorem 3.3, let L =M = {0, 1}, and Bd(A) = 1. Then there exist U ∈ LX and y ∈ X such that
A ⩽ U, and Nd

y⊤L
(U) = 1(which means U is a neighborhood of y⊤L ).

Next we discuss the (L,M)-fuzzy bornology induced by fuzzy compactness. In [17], the authors in-
troduced degrees of fuzzy compactness in L-fuzzy topological spaces. Definition 3.6 and Lemma 3.7 are
presented in L-valued L-fuzzy topology. They can easily be transformed to M-valued L-fuzzy topology as
follows.

Definition 3.5 ([15, 26, 27]). An M-valued L-fuzzy topology, or an (L,M)-fuzzy topology for short on a set
X is a mapping τ : LX

−→M which satisfies:

(LMT1) τ(⊤LX ) = τ(⊥LX ) = ⊤M;
(LMT2) ∀A,B ∈ LX, τ(A ∧ B) ⩾ τ(A) ∧ τ(B);
(LMT3) ∀

{
A j | j ∈ J

}
⊆ LX, τ(

∨
j∈J A j) ⩾

∧
j∈J τ(A j).

The pair (X, τ) is called an (L,M)-fuzzy topological space. Given two (L,M)-fuzzy topological spaces (X, τX)
and (Y, τY), a mapping f : X −→ Y is called continuous if τX( f←(B)) ⩾ τY(B) for each B ∈ LY.

Definition 3.6 ([17]). Let (X, τ) be an (L,M)-fuzzy topological space. For all B ∈ LX, the degree of fuzzy
compactness of B is defined as follows:

DFCτ(B) =
∧

U ∈S(B)

∨
D∈U

τ
′

(D),

where S(B) =
{
U ⊆ LX

|
∧

x∈X

(
B′ (x) ∨

∨
D∈U D(x)

)
⩽̸

∨
V ∈2(U )

∧
x∈X

(
B′ (x) ∨

∨
D∈V D(x)

)}
.

Lemma 3.7 ([17]). Let (X, τ) be an (L,M)-fuzzy topological spaces. Then for all A,B ∈ LX, DFCτ(A) ∧DFCτ(B) ⩽
DFCτ(A ∨ B).

Theorem 3.8. Let (X, τ) be an (L,M)-fuzzy topological space. Define a mapping Bc : LX
−→M by

Bc(A) =
∨
A⩽B

DFCτ(B).

Then Bc is an (L,M)-fuzzy bornology induced by the degree of fuzzy compactness.

Proof. We need to prove that Bc satisfies (LMB1)-(LMB3).
(LMB1) For each x ∈ X and U ⊆ LX, we have∧

y∈X

(x
′

⊤L
(y) ∨

∨
D∈U

D(y)) =
∨

D∈U

D(x)

=
∨

V ∈2(U )

∨
D∈V

D(x)

=
∨

V ∈2(U )

∧
y∈X

(x
′

⊤L
(y) ∨

∨
D∈V

D(y)).
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This implies S(x⊤L ) = ϕ. Thus

Bc(x⊤L ) =
∨

x⊤L⩽B

DFCτ(B)

=
∨

x⊤L⩽B

∧
U ∈S(B)

∨
D∈U

τ
′

(D)

⩾
∧

U ∈S(x⊤L )

∨
D∈U

τ
′

(D)

= ⊤M.

This shows Bc(x⊤L ) = ⊤M.
(LMB2) For all A,B ∈ LX with A ⩽ B, we can obtain

Bc(A) =
∨
A⩽D

DFCτ(D) ⩾
∨
B⩽D

DFCτ(D) = Bc(B).

(LMB3) By Lemma 3.7, we know that

Bc(A) ∧Bc(B) =
∨

A⩽D1

DFCτ(D1) ∧
∨

B⩽D2

DFCτ(D2)

=
∨

A⩽D1

∨
B⩽D2

(DFCτ(D1) ∧DFCτ(D2))

⩽
∨

A∨B⩽D1∨D2

DFCτ(D1 ∨D2)

= Bc(A ∨ B).

Therefore, Bc satisfies (LMB1)-(LMB3). Thus Bc is an (L,M)-fuzzy bornology induced by the degree of
fuzzy compactness.

Lemma 3.9 ([17]). If f : (X, τ) −→ (Y, δ) is continuous with respect to (L,M)-fuzzy topologies τ and δ, then
DFCτ(A) ⩽ DFCδ( f→(A)).

Proposition 3.10. Let (X, τX) and (Y, τY) be two (L,M)-fuzzy topological spaces, the mapping f : (X, τX) −→
(Y, τY) be continuous, (X,BcX ) and (Y,BcY ) be two (L,M)-fuzzy bornological spaces induced by the degree of fuzzy
compactness. Then f : (X,BcX ) −→ (Y,BcY ) is (L,M)-fuzzy bounded.

Proof. By Lemma 3.9, we know that for all A ∈ LX,

BcX (A) =
∨
A⩽B

DFCτX (B)

⩽
∨

f→(A)⩽ f→(B)

DFCτY ( f→(B))

⩽ Bc Y( f→(A)).

Thus f is (L,M)-fuzzy bounded.

In the following, we introduce the (L,M)-fuzzy bornology induced by (L,M)-fuzzy topology.
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Proposition 3.11. Let (X, τ) be an (L,M)-fuzzy topological space. Define Bτ : LX
−→M as follows:

Bτ(A) =
∨
A⩽B

∨
xλ∈J(LX)

∨
xλ⩽D⩽B

τ(D).

Then Bτ is an (L,M)-fuzzy bornology on X induced by τ.

Proof. It suffices to show that Bτ satisfies (LMB1)-(LMB3).
(LMB1) For all x ∈ X, we have

Bτ(x⊤L ) =
∨

x⊤L⩽B

∨
yµ∈J(LX)

∨
yµ⩽D⩽B

τ(D) ⩾ τ(⊤LX ) = ⊤M.

This implies Bτ(x⊤L ) = ⊤M.
(LMB2) For all A,B ∈ LX with A ⩽ B, we have

Bτ(A) =
∨
A⩽D

∨
xλ∈J(LX)

∨
xλ⩽C⩽D

τ(C) ⩾
∨
B⩽D

∨
xλ∈J(LX)

∨
xλ⩽C⩽D

τ(C) = Bτ(B).

(LMB3) Take any A,B ∈ LX. Then we have

Bτ(A) ∧Bτ(B) =

 ∨
A⩽C1

∨
xλ∈J(LX)

∨
xλ⩽C2⩽C1

τ(C2)

 ∧
 ∨

B⩽D1

∨
xλ∈J(LX)

∨
xλ⩽D2⩽D1

τ(D2)


⩽

∨
A∨B⩽C1∨D1

∨
xλ∈J(LX)

∨
xλ⩽C2∨D2⩽C1∨D1

τ(C2 ∨D2)

= Bτ(A ∨ B).

This proves that Bτ is an (L,M)-fuzzy bornology on X.

Proposition 3.12. Let B : LX
−→M be an (L,M)-fuzzy bornology on X. Define τB : LX

−→M as follows:

τB(A) =
∧
{TX(A) : B ⩽ TX ∈ TX} , ∀A ∈ LX,

where TX denotes the family of all (L,M)-fuzzy topologies on X. Then τB is an (L,M)-fuzzy topology on X.

Proof. It suffices to show that τB satisfies (LMT1)-(LMT3).
(LMT1) By the definition of τB, we have

τB(⊤LX ) =
∧
{TX(⊤LX ) : B ⩽ TX ∈ TX} = ⊤M,

and
τB(⊥LX ) =

∧
{TX(⊥LX ) : B ⩽ TX ∈ TX} = ⊤M.

(LMT2) For all A,B ∈ LX, we have

τB(A) ∧ τB(B) =
∧
{TX(A) : B ⩽ TX ∈ TX} ∧

∧
{TX(B) : B ⩽ TX ∈ TX}

=
∧
{TX(A) ∧ TX(B) : B ⩽ TX ∈ TX}

⩽
∧
{TX(A ∧ B) : B ⩽ TX ∈ TX}

= τB(A ∧ B).
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(LMT3) For each
{
A j | j ∈ J

}
⊆ LX, we have∧

j∈J

τB(A j) =
∧
j∈J

∧
{TX(A j) : B ⩽ TX ∈ TX}

=
∧∧

j∈J

{TX(A j) : B ⩽ TX ∈ TX}

⩽
∧
{TX

∨
j∈J

A j

 : B ⩽ TX ∈ TX}

= τB

∨
j∈J

A j

 .
This proves that τB is an (L,M)-fuzzy topology on X.

Remark 3.13. Let B be an (L,M)-fuzzy bornology on X. By Proposition 3.12, τB is the (L,M)-fuzzy topology
induced by B. By Proposition 3.11, BτB is the (L,M)-fuzzy bornology induced by τB, and

BτB (A) =
∨
A⩽B

∨
xλ∈J(LX)

∨
xλ⩽D⩽B

τB(D).

Proposition 3.14. Let (X,B) be an (L,M)-fuzzy bornological space. Then BτB ⩾ B.

Proof. For all A ∈ LX, we have

BτB (A) =
∨
A⩽B

∨
xλ∈J(LX)

∨
xλ⩽D⩽B

τB(D)

=
∨
A⩽B

∨
xλ∈J(LX)

∨
xλ⩽D⩽B

∧
{TX(D) : B ⩽ TX ∈ TX}

⩾
∨

xλ∈J(LX)

∨
xλ⩽D⩽A

∧
{TX(D) : B ⩽ TX ∈ TX}

⩾
∨

xλ∈J(LX)

∨
xλ⩽D⩽A

B(D)

⩾ B(A).

Therefore we can obtain BτB ⩾ B.

4. Quotient (L,M)-fuzzy bornology

In this section, we introduce the quotient (L,M)-fuzzy bornology induced by surjective mapping, and dis-
cuss the relationships between quotient (L,M)-fuzzy bornological vector space and quotient L-bornological
vector space.

Proposition 4.1. Let (X,B) be an (L,M)-fuzzy bornological space and f : X −→ Y be a surjective mapping. Define
a mapping B/ f : LY

−→M by

(B/ f )(B) =
∨

B⩽ f→(A) B(A), ∀ B ∈ LY.

Then B/ f is the finest (L,M)-fuzzy bornology on Y such that f is (L,M)-fuzzy bounded. We call B/ f a quotient
(L,M)-fuzzy bornology on Y induced by f and B.
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Proof. Firstly, we verify that B/ f is an (L,M)-fuzzy bornology on Y.
(LMB1) Take any y ∈ Y. Since f is a surjective mapping, we can obtain that there exists x ∈ X such that

f (x) = y. This implies f→(x⊤L ) = f (x)⊤L = y⊤L . Then

(B/ f )(y⊤L ) =
∨

y⊤L⩽ f→(A)

B(A) ⩾ B(x⊤L ) = ⊤M.

This shows (B/ f )(y⊤L ) = ⊤M.
(LMB2) For all A,B ∈ LY with A ⩽ B, we have

(B/ f )(B) =
∨

B⩽ f→(C)

B(C) ⩽
∨

A⩽ f→(C)

B(C) = (B/ f )(A).

(LMB3) Take any A,B ∈ LY. Since for all C1,C2 ∈ LX, f→(C1 ∨ C2) = f→(C1) ∨ f→(C2), it follows that

(B/ f )(A) ∧ (B/ f )(B) =
∨

A⩽ f→(C1)

B(C1) ∧
∨

B⩽ f→(C2)

B(C2)

=
∨

A⩽ f→(C1)

∨
B⩽ f→(C2)

(
B(C1) ∧B(C2)

)
⩽

∨
A⩽ f→(C1)

∨
B⩽ f→(C2)

B(C1 ∨ C2)

⩽
∨

A∨B⩽ f→(C1)∨ f→(C2)

B(C1 ∨ C2)

=
∨

A∨B⩽ f→(C1∨C2)

B(C1 ∨ C2)

= (B/ f )(A ∨ B).

This shows B/ f satisfies (LMB1)-(LMB3). Therefore, B/ f is an (L,M)-fuzzy bornology on Y.
Secondly, we prove f : (X,B) −→ (Y,B/ f ) is (L,M)-fuzzy bounded. For each A ∈ LX, it follows that

(B/ f )( f→(A)) =
∨

f→(A)⩽ f→(C)

B(C) ⩾ B(A).

Hence f : (X,B) −→ (Y,B/ f ) is (L,M)-fuzzy bounded.
Further, for any (L,M)-fuzzy bornological space (Y,BY) such that f : (X,B) −→ (Y,BY) is (L,M)-fuzzy

bounded, and A ∈ LY, we have

(B/ f )(A) =
∨

A⩽ f→(C)

B(C) ⩽
∨

A⩽ f→(C)

BY( f→(C)) ⩽ BY(A).

This implies B/ f is the finest (L,M)-fuzzy bornology on Y such that f is (L,M)-fuzzy bounded.

Lemma 4.2. Let f : X −→ Y be a surjective linear mapping. Then for all A,B ∈ LX, f→(A) + f→(B) = f→(A + B).
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Proof. Take any A,B ∈ LX and z ∈ Y,

( f→(A) + f→(B))(z) =
∨

z1+z2=z

( f→(A)(z1) ∧ f→(B)(z2))

=
∨

z1+z2=z

( ∨
f (x1)=z1

A(x1) ∧
∨

f (x2)=z2

B(x2)
)

=
∨

f (x)=z

∨
x1+x2=x

(A(x1) ∧ B(x2))

=
∨

f (x)=z

(A + B)(x)

= f→(A + B)(z).

Therefore, f→(A) + f→(B) = f→(A + B).

Proposition 4.3. Let (X,K,B) be an (L,M)-fuzzy bornological vector space and f : X −→ Y be a surjective linear
mapping. Then (Y,K,B/ f ) is an (L,M)-fuzzy bornological vector space.

Proof. By Proposition 4.1 and Theorem 2.11, we only need to check B/ f satisfies (BV3)-(BV5).
(BV3) Take any A,B ∈ LY. By Lemma 4.2, we have

(B/ f )(A) ∧ (B/ f )(B) =
∨

A⩽ f→(C1)

B(C1) ∧
∨

B⩽ f→(C2)

B(C2)

=
∨

A⩽ f→(C1)

∨
B⩽ f→(C2)

(
B(C1) ∧B(C2)

)
⩽

∨
A⩽ f→(C1)

∨
B⩽ f→(C2)

B(C1 + C2)

⩽
∨

A+B⩽ f→(C1)+ f→(C2)

B(C1 + C2)

=
∨

A+B⩽ f→(C1+C2)

B(C1 + C2)

⩽ (B/ f )(A + B).

(BV4) For all A ∈ LY and λ ∈ K, we have

(B/ f )(A) =
∨

A⩽ f→(B)

B(B)

=
∨

λA⩽λ f→(B)

B(B)

⩽
∨

λA⩽ f→(λB)

B(λB)

⩽ (B/ f )(λA).

(BV5) For all A ∈ LY, we have

(B/ f )(A) =
∨

A⩽ f→(B)

B(B) ⩽
∨

A⩽ f→(B)

B

∨
|λ|⩽1

λB

 .
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For all B ∈ LX with A ⩽ f→(B), we can obtain

∨
|λ|⩽1

λA ⩽
∨
|λ|⩽1

λ f→(B) =
∨
|λ|⩽1

f→(λB) = f→
∨
|λ|⩽1

λB

 .
This implies

∨
|λ|⩽1 λA ⩽ f→(

∨
|λ|⩽1 λB). Then

(B/ f )(A) ⩽
∨

∨
|λ|⩽1 λA⩽ f→(

∨
|λ|⩽1 λB)

B

∨
|λ|⩽1

λB


⩽

∨
∨
|λ|⩽1 λA⩽ f→(C)

B(C)

= (B/ f )

∨
|λ|⩽1

λA

 .
This shows that B/ f satisfies (BV3)-(BV5). Thus (Y,K,B/ f ) is an (L,M)-fuzzy bornological vector space.

In the following, we discuss the relationships between quotient (L,M)-fuzzy bornological vector space
and quotient L-bornological vector space.

Proposition 4.4 ([14]). Let (X,B) be an L-bornological space. Then (X,K,B) is an L-bornological vector space if
and only if B satisfies the following conditions:
(B3) U,V ∈ B ⇒ U + V ∈ B;
(B4) ∀ t ∈ K, U ∈ B ⇒ tU ∈ B;
(B5) U ∈ B ⇒

∨
|t|⩽1 tU ∈ B.

Proposition 4.5 ([18]). Let (X,B) be an (L,M)-fuzzy bornological space. Then

(1) ∀ a ∈M, B[a] = {A ∈ LX : B(A) ⩾ a} is an L-bornology on X.
(2) ∀ a ∈ P(M), B(a) = {A ∈ LX : B(A) ⩽̸ a} is an L-bornology on X.

Proposition 4.6. Let (X,K,B) be an (L,M)-fuzzy bornological vector space. Then

(1) ∀ a ∈M, (X,K,B[a]) is an L-bornological vector space;
(2) ∀ a ∈ P(M), (X,K,B(a)) is an L-bornological vector space.

Proof. (1) By Proposition 4.5, it is enough to show that B[a] satisfies (B3)-(B5).
(B3) Take any A,B ∈ B[a]. We have B(A) ⩾ a and B(B) ⩾ a. Thus a ⩽ B(A) ∧B(B) ⩽ B(A + B). This

implies A + B ∈ B[a].
(B4) For all t ∈ K, A ∈ B[a], we know that a ⩽ B(A) ⩽ B(tA). This shows that tA ∈ B[a].
(B5) Take any A ∈ B[a]. a ⩽ B(A) ⩽ B(

∨
|t|⩽1 tA). This implies

∨
|t|⩽1 tA ∈ B[a].

Hence, (X,K,B[a]) is an L-bornological vector space.
(2) For all a ∈ P(M), it suffices to verify that B(a) satisfies (B3)-(B5).

(B3) Take any A,B ∈ B(a), we have B(A) ⩽̸ a and B(B) ⩽̸ a. Thus B(A) ∧B(B) ⩽̸ a. Since B(A + B) ⩾
B(A) ∧B(B), this implies A + B ∈ B(a).

(B4) For all t ∈ K, A ∈ B(a), we know that B(A) ⩽̸ a. Since B(tA) ⩾ B(A), this shows that tA ∈ B(a).
(B5) Take any A ∈ B(a). Since B(

∨
|t|⩽1 tA) ⩾ B(A), this implies B(

∨
|t|⩽1 tA) ⩽̸ a. Therefore,

∨
|t|⩽1 tA ∈

B(a). Hence, (X,K,B(a)) is an L-bornological vector space.

By restricting M = {0, 1}, we can obtain the following corollary.

Corollary 4.7. Let (X,K,B) be an L-bornological vector space, and f : X −→ Y be a surjective mapping. Define
B/ f =

{
B ∈ LY

| ∃A ∈ B, B ⩽ f→(A)
}
. Then B/ f is the finest L-bornology on Y such that f is L-bounded. We call

B/ f a quotient L-bornology on Y induced by f and B.
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Theorem 4.8. Let (X,K,B) be an (L,M)-fuzzy bornological vector space and f : X −→ Y be a surjective mapping.
Then
(1) ∀a ∈ P(M), B(a)/ f = (B/ f )(a);
(2) ∀a ∈M, B[a]/ f = (B/ f )[a].

Proof. (1) Firstly, we verify that B(a)/ f ⊆ (B/ f )(a). Take any B ∈ B(a)/ f . Then there exists A ∈ B(a) such that
B ⩽ f→(A). Thus

(B/ f )(B) =
∨

B⩽ f→(A)

B(A) ⩽̸ a.

This shows that B ∈ (B/ f )(a).
Conversely, for all B ∈ (B/ f )(a), we have

(B/ f )(B) =
∨

B⩽ f→(A)

B(A) ⩽̸ a.

Then there exists A ∈ LX with B ⩽ f→(A) such that B(A) ⩽̸ a. Since A ∈ B(a) it follows that B ∈ B(a)/ f . This
implies (B/ f )(a)

⊆ B(a)/ f . Therefore, B(a)/ f = (B/ f )(a).
(2) Similar to the proof of (1), we can obtain B[a]/ f = (B/ f )[a].

5. Induced (L,M)-fuzzy bornological vector space by M-fuzzifying bornological vector space

In this section, we discuss the relationships of (L,M)-fuzzy bornological spaces induced by M-fuzzifying
bornological spaces with quotient spaces and product spaces. In [18], the authors introduced the induced
(L,M)-fuzzy bornological vector space by M-fuzzifying bornological vector space as follows.

Definition 5.1 ([18]). Let (X,K,B) be an M-fuzzifying bornological vector space. Define a mapping ω(B) :
LX
−→M by

ω(B)(A) =
∧
a∈L

B

(
A(a)

)
,∀A ∈ LX.

Then (X,K, ω(B)) is an (L,M)-fuzzy bornological vector space.

Next we discuss the relationships between M-fuzzifying bornology and (L,M)-fuzzy bornology induced
by M-fuzzifying bornology.

Theorem 5.2. Let (X,B) be an M-fuzzifying bornological space and f : X −→ Y be a surjective mapping. Then
ω(B/ f ) ⩽ ω(B)/ f . In addition, if f is a bijective mapping, then ω(B/ f ) = ω(B)/ f .

Proof. Since f : (X,B) −→ (Y,B/ f ) is M-fuzzifying bounded, then for all A ∈ LX and a ∈ L,

B(A(a)) ⩽ (B/ f )( f (A(a))).

Take any B ∈ LY. By Lemma 2.1, we have

(ω(B)/ f ) (B) =
∨

B⩽ f→(A)

ω(B)(A)

=
∨

B⩽ f→(A)

∧
a∈L

B(A(a))

⩽
∨

B⩽ f→(A)

∧
a∈L

(B/ f )( f (A(a)))

⩽
∧
a∈L

(B/ f )(B(a))

= ω(B/ f )(B).
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This shows that ω(B)/ f ⩽ ω(B/ f ).
Additionally, if f is a bijective mapping, then for all B ∈ LY,

ω(B/ f )(B) =
∧
a∈L

(B/ f )(B(a))

=
∧
a∈L

∨
B(a)⩽ f→(D)

B(D)

=
∧
a∈L

∨
f←(B(a))⩽D

B(D)

⩽
∧
a∈L

B( f←(B)(a))

= ω(B)( f←(B))

⩽
∨

B⩽ f→(C)

ω(B)(C)

= (ω(B)/ f )(B).

This implies ω(B/ f ) = ω(B)/ f .

Let f be a bijective mapping, B(X) be the set of all M-fuzzifying bornology on X, ∆(X) be the set of all
(L,M)-fuzzy bornology on X. The previous theorem shows that the following diagram commutes.

B(X)
1/ f
−−−−−→ B(Y)

ω

y ω

y
∆(X)

1/ f
−−−−−→ ∆(Y)

Corollary 5.3. Let (X,K,B) be an M-fuzzifying bornological vector space and f : X −→ Y be a surjective mapping.
Then ω(B/ f ) ⩽ ω(B)/ f . Futher if f is a bijective mapping, then ω(B/ f ) = ω(B)/ f .

Next we discuss the relationship between induced (L,M)-fuzzy bornological space and product space.

Proposition 5.4. Let {(Xi,Bi)}i∈I be a family of (L,M)-fuzzy bornological spaces, X =
∏
i∈I

Xi and (X,B) be the

product space of {(Xi,Bi)}i∈I. Then the projection Pi is (L,M)-fuzzy bounded.

Proof. For any
∏
i∈I

Ai ∈ LX, i ∈ I and xi ∈ Xi, we have

P→i

∏
i∈I

Ai

 (xi) =
∨

Pi(x)=xi

∏
i∈I

Ai

 (x)

=
∨

Pi(x)=xi

∧
i∈I

Ai(Pi(x))

=
∧
i∈I

Ai(xi)

⩽ Ai(xi).
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This implies P→i

(∏
i∈I

Ai

)
⩽ Ai. For any A ∈ LX, if A ⩽

∏
i∈I

Ai, we have P→i (A) ⩽ P→i

(∏
i∈I

Ai

)
⩽ Ai. Then for any

A ∈ LX and i ∈ I,

B(A) =
∨

A⩽
∏
i∈I

Ai

∧
i∈I

Bi(Ai)

⩽
∨

A⩽
∏
i∈I

Ai

Bi(Ai)

⩽
∨

P→i (A)⩽Ai

Bi(Ai)

⩽ Bi(P→i (A)).

This shows that Pi : X −→ Xi is (L,M)-fuzzy bounded.

The above proposition can degenerate to M-fuzzifying bounded by restricting L = {0, 1}.

Theorem 5.5. Supposed that {(Xi,Bi)}i∈I is a family of M-fuzzifying bornological spaces, X =
∏

i∈I Xi and (X,
∏

i∈I Bi)
is the product space of {(Xi,Bi)}i∈I. Then

∏
i∈I ω(Bi) = ω(

∏
i∈I Bi).

Proof. First we verify that ω(
∏

i∈I Bi) ⩽
∏

i∈I ω(Bi). Since Pi : (X,
∏

i∈I Bi) −→ (Xi,Bi) is M-fuzzifying
bounded, then for all B ∈ 2X and i ∈ I, it follows that (

∏
i∈I Bi)(B) ⩽ Bi(Pi(B)). For all A ∈ LX, let A =

∏
i∈I Ai.

Then for each i ∈ I,

ω(
∏
i∈I

Bi)(A) =
∧
a∈L

(
∏
i∈I

Bi)(A(a))

⩽
∧
a∈L

Bi(Pi(A(a)))

=
∧
a∈L

Bi((P→i (A))(a))

= ω(Bi)(Ai).

This implies

ω(
∏
i∈I

Bi)(A) ⩽
∧
i∈I

ω(Bi)(Ai)

⩽
∨

∏
i∈I Ai⩽

∏
i∈I Bi

∧
i∈I

ω(Bi)(Bi)

=
∏
i∈I

ω(Bi)(
∏
i∈I

Ai)

=
∏
i∈I

ω(Bi)(A).

Conversely, we shows that
∏

i∈I ω(Bi) ⩽ ω(
∏

i∈I Bi). For all A =
∏

i∈I Ai ∈ LX, we have∏
i∈I

ω(Bi)(A) =
∨

A⩽
∏

i∈I Bi

∧
i∈I

ω(Bi)(Bi)

=
∨

A⩽
∏

i∈I Bi

∧
i∈I

∧
a∈L

Bi(B
(a)
i ).
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Take any
∏

i∈I Bi ∈ LX with A ⩽
∏

i∈I Bi, i.e.,
∏

i∈I Ai ⩽
∏

i∈I Bi. Since for all a ∈ L, A(a) = (
∏

i∈I Ai)(a) ⩽

(
∏

i∈I Bi)(a) ⩽
∏

i∈I B(a)
i ,∧

a∈L

∧
i∈I

Bi(B
(a)
i ) ⩽

∧
a∈L

∨
A(a)⩽

∏
i∈I Ci

∧
i∈I

Bi(Ci)

=
∧
a∈L

(
∏
i∈I

Bi)(A(a))

= ω(
∏
i∈I

Bi)(A).

Then ∏
i∈I

ω(Bi)(A) =
∨

A⩽
∏

i∈I Bi

∧
i∈I

ω(Bi)(Bi)

=
∨

A⩽
∏

i∈I Bi

∧
i∈I

∧
a∈L

Bi(B
(a)
i )

⩽ ω(
∏
i∈I

Bi)(A).

This implies
∏

i∈I ω(Bi) ⩽ ω(
∏

i∈I Bi). Therefore,
∏

i∈I ω(Bi) = ω(
∏

i∈I Bi). □

6. Conclusions

In this paper, we used (L,M)-fuzzy pseudo-quasi-metric, (L,M)-fuzzy topology, surjective mapping,
and M-fuzzifying bornology to characterize (L,M)-fuzzy bornology, respectively. Moreover, we proposed
some properties of them and discussed the relationships between induced (L,M)-fuzzy bornology and
induced (L,M)-fuzzy topology, quotient (L,M)-fuzzy bornological vector space and quotient L-bornological
vector space. Further, we discussed the relationships of (L,M)-fuzzy bornology induced by M-fuzzifying
bornology with quotient space and product space. Following induced (L,M)-fuzzy bornology in this
paper, we will consider how to generalize (L,M)-fuzzy norms and use (L,M)-fuzzy norms to characterize
(L,M)-fuzzy bornology in the future.
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[1] M. Abel, A. Šostak, Towards the theory of L-bornological spaces, Iran. J. Fuzzy Syst. 8 (2011), 19–28.
[2] G. Beer, S. Levi, Gap excess and bornological convergence, Set-Valued Anal. 16 (2008), 89–506.
[3] G. Beer, S. Levi, Strong uniform continuity, J. Math. Anal. Appl. 350 (2009), 568–589.
[4] G. Beer, S. Levi, Total boundedness and bornology, Topol. Appl. 156 (2009), 1271–1288.
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