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Abstract. We investigate and confirm the geometric invariants under a SMRC-transformation group on
manifolds and propose an interesting asset pricing model via the geometric invariant and martingale idea
in a financial market. In this case we achieve, for the first time, an interesting example for the category
of invariant geometries with respect to semi-symmetric connections. By virtue of the projective confor-
mal semi-symmetric metric recurrent connection and the corresponding curvature tensors, the celebrated
Schur’s theorem, which is used to characterize the geometric properties of spaces, is also obtained.

1. Introduction

It is well known that A. Fridman and A. Schouten in [10] introduced and studied the metric connection
with torsion. A. Hayden in [15] posed for the first time the concept of a semi-symmetric connection in
a Riemannian manifold and investigated the basic geometric properties. Furthermore, K. Yano in [25], T.
Tmai in [24] and K. Yano and J. Imai in [26] respectively introduced and studied deeply the geometries of a
manifold associated with a semi-symmetric metric connection. In particular, U. C. De and B. C. Biswas in [6]
obtained the geometrical and physical properties of its curvature tensor of a manifold with this connection.
Afterwards N. S. Agache and M. R. Chafle in [1] and S. K. Chaubey and R. H. Ojha in [2] et al introduced
and confirmed some kinds of a semi-symmetric non-metric connections and the geometrical characteristics.
An interesting fact that K. A. Dunn in [8] introduced a basic physical model via the semi-symmetric non-
metric connection, in particular, L. Csillag in [4] investigated systematically the basci charactistics of the
Weyl-Schroinger, Yano-Schroinger and Friedmann-Weyl-Schroinger via Schroinger connections and semi-
symmetry of connections, and then Fu, Yang and Zhao in [11, 12] and I. Suhendro in [20] and Zhao, De,
Unal and De in [31] et al investigated the physics of this physical model based on the semi-symmetric
non-metric connection. On the other hand, Zhao, De, Mandal and Han in [30] and De, Zhao, Mandal and
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Han in [7] also introduced a semi(quarter)-symmetric connection being projective equivalent to the Levi-
Civita connection and studied some of its geometric and physical properties. At the same time, a projective
conformal semi-symmetric connection was introduced and studied systematically in [5, 13, 14, 16, 27].

S. B. Edgar in [9] considered the curvature copy problem of a semi-symmetric connection and E. S.
Stepanova in [19] introduced and studied the conjugate symmetry condition of Amari-Chentsor connection
in the statistical manifold. S. S. Chern, W. H. Chen and K. S. Lam in [3] summarized systematically the
Schur’s theorem w.r.t. the Levi-Civita connection and Han, Ho and Zhao in [13], Ho, Jen and Piao in [17]
posed and proved the Schur’s theorem of a semi-symmetric non-metric connection. Tang, Ho, Fu and
Zhao in [21, 22] introduced and studied respectively some invariant properties and geometric properties of
semi(quarter)-symmetric metric recurrent connections, and Zhao, Ho and An in [27], Zhao, Ho, Wwak and
Jon in [28], Zhao, Jen and Ho in [29] also investigated respectively some invariant properties of a manifold
associated with semi-symmetric metric recurrent connections.

Recently, V. G. Ivancevic, T. T. Ivancevic in [18] studied deeply the connection homotopy based on
geodesic of the Levi-Civita connection. In fact there were few results, about the projective invariant, the
conformal invariant and the Schur’s theorem of asymmetric non-metric connection and projective conformal
asymmetric non-metric connection because of its formal complex and computational difficulty.

In this paper we newly defined a semi-symmetric metric recurrent connection homotopy which it is
the connection homotopy from a semi-symmetric metric connection to a semi-symmetric metric recurrent
connection family and its projective invariant and the conformal invariant. And itis extended as a projective
conformal semi-symmetric metric recurrent connection homotopy and studied its properties of curvature
tensor, conjugate symmetry condition and studied the Schur’s theorem of this connection homotopy.
Furthermore, we also give an application to this class of homotopy as a product posed by Tang and Zhao
in [23] with respect to no-arbitrage principle in a financial market, and confirm some interesting models
associated with this connection.

The present paper is organized as follows. Section 2 introduces one type of a semi-symmetric metric
recurrent connection homotopy and proposes the projective invariants and conformal invariants. In section
3 the semi-symmetric metric recurrent connection homotopy is extended as the projective conformal semi-
symmetric metric recurrent connection homotopy. Finally, the Schur’s theorem of the projective conformal
semi-symmetric metric recurrent connection homotopy is investigated. As an application, this article shows
us a no-arbitrage principle by virtue of the invariant related with some option model.

2. Semi-symmetric metric recurrent connection homotopy

Let (M, g) be a Riemannian manifold (dimM > 3), g be the Riemannian metric on M and V be the
Levi-Civita connection with respect to g. Let T(M) denote the collection of all vector fields on M.

t
Definition 2.1. In a Riemannian manifold (M, g), a connection V is called a semi-symmetric metric recurrent
connection homotopy, if it satisfies the relation

t
V.9(X,Y) = =2(a = 2)tw(Z)g(X, Y) — (@ — Dtw(X)g9(Y, Z) — (a — Dtw(Y)g(X, Z),
T(X,Y) = n(V)X - n(X)Y (2.1)
forany X,Y,Z € T(M) and 1-form w, .
t
A semi-symmetric metric recurrent connection V is a non-metric connection and it is expressed as

VxY = VxY +2(@ = 2f(X)Y + [(@ = ta(Y) + 1(V)IX + [t(Z) - 1(Z)]g(X, Y), 2.2)

for X, Y € T(M) , where V is the Levi-Civita connection.
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The local expressions of the relations (2.1) and (2.2) are
t
ngij =-2(a - 2)ta)kg,-]- —(a— 1)twig]-k —(a— 1)tw]-gl-k, 2.3)
Tk = n]'él.( - 7'(1'6](.
i i j
and

t
rfj = {ﬁf].} +2(a - 2)twi6’; + (@ — 2)tw; + 1;]6F + (to — 7¥)g; (2.4)

t t o
respectively, where l"i,‘j is the connection coefficient of V and {1?].} is the connection coefficient of V and w; is

t
a component of 1-form w(this is called a metric recurrent component of V) and m; is a component of 1-form
t
7i(this is called a semi-symmetric component of V) and wk = gklnl, ik = gkl manda =1,2,3,t€[0,1].
t t
If t = 0, then V is a semi-symmetric metric connection and if t = 1, then V is a semi- symmetric metric

t
recurrent connection family. So V is a connection homotopy from a semi-symmetric metric connection to a
semi-symmetric metric recurrent connection family.

t
Remark 2.1. If t = 1 and o = 1, then V is the first semi-symmetric metric recurrent connection. If t = 1 and

t t
a = 2, then V is the second semi-symmetric metric recurrent connection. And ift = 1 and o = 3, then V is third
semi-symmetric metric connection.([13, 27])

t
Using the expression (2.4), the curvature tensor of V is
t

t t
R,‘jkl = Kijkl + (Si'aik - 65&1]'/( + g]‘kbil — gikb]‘l + 6i(0[ - Z)twij (2.5)

where Ki]'k’ is the curvature tensor of the Levi-Civita connection V and

= Vil(e = 2)tawy + 1] — [(@ = 2)tw; + mi][(a — 2)twy + ] — gil(a — 2)tw, + 7p](tw? — 7P)
t o

by = Vi(twy — 1) + (tw; — 1) (bwr — 1)

wi = Viwg — Viwg

tm t
And from the expression (2.4), the connection coefficient of the mutual connection V of V

tm

T = {5+ [(a = 2tw; + 10 + (a = 2)tw;df + (t = gy (2.6)

tm
and from this expression, the curvature tensor of V is

tm

; ; t t
Rije' = Ky + 8 a =0t i+ gibi' = gib;' + SL(a — 2)tawy; + ;] 27)
where

{ t&”ik = Vil(a - 2)twi] — (o — 2)*Pwiwi — gi(a — 2)tw,(taP — 1P)

7'[1']' = V,’T[l' —V]‘TCI'.

4
Definition 2.2. In a Riemannian manifold (M, g), a connection V is called a projective semi-symmetric metric

4 t
recurrent connection homotopy if V is projective equivalent to V.
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p
From the expression (2.4) the connection coefficient of V is
Ik =k 2 & 2 5 i 2.8
ij = {l-]-}+[(0l— )i’a)i+ll),‘] j+[(a— )ta)j+n]-+1p]-] ; + (" — T )!]ij (2.8)

4
where 1; is a projective component of V.
4
Using this expression, the curvature tensor of V is

Rl g st st o bl o b ST — Do 4 0
Rl]k —szk + ik Ajk + gikbi — gi0j + k[(a 2)ta)1]+n,]] (29)

where

b = Vil(a - Dtay + i + Vil = [(a = Dtw; + 11 + Pi][(a = 2)twy + 113 + Pr]
—gil(a = 2)twy, + 7y + Pp](twf — )
Yij =V = Vi
From the expressions (2.5) and (2.9), we obtain

RZ

= Rf]k + 5’ — Sl + Sk (2.10)

I4 P t
where Qe = Ajk — Ajk.

pm.p
Using the expression (2.8), the connection coefficient of the mutual connection V of V is
pm
r i-‘]- = { } + [(a = 2)tw; + ;i + ] 6 + [(a = 2)tw; + 71]]6 (to* — 7 )glj (2.11)
pm

Using this expression the curvature tensor of V is

LA 1, s 1P Ll L1yl

Rjjk = K,‘]‘k + 6]- ai — 51» ajk + gjkbi - gikbj + 6k[(a - 2)ta)i]' + T + Hbij] (2.12)
where

p apg= V [(a = 2twr + ] = [(a = 2tw; + Pi][(a = 2)twy + Pi] = gal(@ = 2)twy + Ppl(ta? — 7P)

From the expressions (2.7) and (2.12), we obtain

l!’
Rf]k_R’km’ i — Ol + Bl (2.13)

pm pm tm
where A = A — Aig.

Theorem 2.1. In a Riemannian manifold (M, g), if 1-form 1 is a closed form, then the Weyl projective curvature
t
tensor for V

1 1 1 ! 1 !
= R}~ —(O[Rjc ~ 5/R) (2.14)

t 4
is an invariant under the connection transformation V.— V.

Proof. 1f 1-form 1 is a closed form, then ¢;; = 0. In this case the expression (2.10) becomes

/4
Rﬁjk = Rfjk + 0 o — Sl (2.15)
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Contracting the indices i and [ of this expression, then we get
|4 t p
R]'k = R]'k - (Tl - l)ajk-
From this expression, we find
p 1t 7
ik = ——7 (Rjk = Rji)-

Substituting this expression into (2.15) and by a direct computation, we have

bl Al
W, = W e
where the tensor Wl AR’ (6’1% -0 llé- ) is a Weyl projective curvature tensor for Vp O
ik N ijk T n=1\Cik ik Yyl proj .

10307

Corollary 2.1. In a Riemannian manifold (M, g)(dimM > 3), if 1-form 1 is closed form, then the Weyl projective

tm
curvature tensor of V

tm tm

; 1 ltm ltm
=R ijk m(éink - 61R1’k)

tm pm
is an invariant under the connection transformation V. — V.

Theorem 2.2. In a Riemannian manifold (M, g)(dimM > 3), the tensor
T g z P ;
ik m(éiR]k ;Ri) — [(5 (Rjk Rk]) - ( ik — sz) (n — 1)6,(Rij — Rji)]

t t P
for the connection V is an invariant under the connection transformation V. — V.

Proof. Contracting the indices i and / of the expression (2.10) then we find

P t p
Rj = Rje = (n = Daje — Pjk.

Alternating the indices j and k of this expression, using & ik~ ka]- = Yj, we find
1 ¢ t 4 4
Yk = m[(Rjk = Rij) = (Rjk = Rej)]-
Substituting this expression into (2.18), we have

P 1 (¢ P P 14
Q= m{Rjk - Rjx - [(R]k - Rk]) (R — Rkj)]}

Substituting the above results into (2.10) and by a direct computation, we have

P t
Wl !
Wik = Wi
7l ! 1 (sik I Bk LR _ R
where Wz]k = R ijk - m(éiRjk - 6]~Rik) nz 1 [5 (R]k - Rk]) 6 ‘(Rik - Rki) - (1’1 - 1)6/((Rij - R]‘{)]. |
Corollary 2.2. In a Riemannian manifold (M, g), the tensor
pm — tml l l 1 tm tm ! tm tm
Wi = Rij = =7 OiRjx = 9 Rif) - [5 (R]k Rk]) 8i(Rik = Ry) = (n = 1oy (Ri; = Rj)]

tm o pm
for the connection V is an invariant under the connection transformation V. — V.

(2.16)

(2.17)

(2.18)
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[
Definition 2.3. In a Riemannian manifold (M, g)(dimM > 3), a connection V is called a conformal semi-symmetric

c t
metric recurrent connection homotopy, if V is conformal equivalent to V.

C
From the expression (2.4), the connection coefficient of V is
C
l”i.‘]. = {;‘j} + [(a = 2)tw; + oi]él; +[(a = 2tw; + 0 + n]-]éif + (tk = 7F - ak)g,-]-

t
where o; is a conformal component of V.
t
Using this expression, the curvature tensor of V is

c c c
1 1 1¢ ¢ 1 1 1
Rijk = Kijk + 6].aik - 6ia]-k + gjkbi - gikbj + 6k((,¥ - Z)ta)ij

where
&ik = %,‘[(d = Dtwy + o + 1] — [(a — 2tw; + 0; + 7i][(a — 2)twy + ok + TT]
—gil(a = 2twy, + 0, + 1p](ta? — 0 — 1),
c o
b = Viltwy —or —m) + (tw; — 0; — ) (twk — 0k — ).

c* C
On one hand, from the expression (2.19), the connection coefficient of dual connection V of V is

iif]. = {f],} — [(a = 2)tw; + 01]6’; —[tw; — 0; — 7j]6F = [(a — 2t + 7* + 0*)g;;

Cc*
and the curvature tensor of V is
1 I <t 15 c cy g
Rijk = Kijk — 6]'bik + 6ibjk + gkt — gk — 5k(a — Z)ta)ij
From the expressions (2.20) and (2.21), we obtain

C Cc*
I I I slE _sl€ ¢ 1 ¢
Riji" + Rijk" = 2Kiji" + Ojavix = Ot + gjkctj” = gixdli

c c ¢
where aij = IZ,‘]‘ - bij-
t*

(2.19)

(2.20)

(2.21)

(2.22)

On the other hand, from the expression (2.4), the connection coefficient of dual connection V of V is

23
T = {5 = (@ = 2twdf - (fo; = 1)0F — [(@ = 2)ta + ]y,

t=
and the curvature tensor of V is
Rige! = Kip! = 6y + b — g + gus! = 6L = 2)teoy
ijk = Kijk Uik Ojk — gjkdi + gikdj A Wij
From expressions (2.5) and (2.23), we obtain

bl Ioslh st f t
Rij" + Rij" = 2Kijic " + 00 — O + gjratj” — gixcki

t t ¢
where a;; = a;; — bj;.

(2.23)

(2.24)
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Theorem 2.3. In a Riemannian manifold (M, g)(dimM > 3), the tensor

t tx

C,’jkl + Cijk] (2.25)

t e t c te ox t

for the connection V and V is an invariant under the connection transformation V.— V and V — V, where Cij.' and
b t e

Cijk! are the Weyl conformal curvature tensors with respect to connection V and V respectively, namely

t t t t t t
Cix =Rix— i5ORk = R+ gixRi’ = gicR;") = 5= O\ — 8'70),

A W N N f (2.26)
- R
Cf’jk = Rfjk - nlj((sﬁRjk - 6;Rik + g]'kR,'l - gikR]'l) - m(éigzk - 5?%1{)
Proof. Contracting the indices i and [ of (2.24), we get
t g t ¢l
R]'k + R]'k = ZKjk - (1/1 - Z)Llfjk — Jjk&; (2.27)
Multiplying both sides of this expression by g/, then we arrive at
t I3 t i
R+R=2K-2(n-1)a;
Thus we get
¢ 1 t tx !];k t tx
ik = ———[2Kjic = (Rje + Rj) — 21— 1)(2K - R-R)]
Substituting this expression into (2.24), then we arrive at
t ! tx ! o !
C,‘]‘k + Cijk = 2Ci]»k (2.28)
where Cf]k = Kf] - ﬁ(éfK]k - (S;.Kik + g]'kKil - gikKj l) - m(éig,k - 5;9]k)
On the one hand, using the expression (2.22) and by using the same method above we have
Al e ]
Cijk + Cijk = 2Cijk (2.29)
where
ol oy 1 (5T IR Q.1 R R I I
Cijk =Rix— i3 (OiRjk = O:Rix + gjrRi” = gikR;") = ==y (039 — 0,9 %), (2.30)
c* c* c* Cc* c* Cc* c* .
I _RI 1 (sl ! ! ! R ! I
Cijk =Rix— a2 (ORjk = ORix + gjrRi” = gikR;") = ==y (0,9 — 09 jk)-

[ c* C c*
(C i.jk and C ﬁjk are the Weyl conformal curvature tensor with respect to V and V respectively). From the
expressions (2.28) and (2.29), we have
t B

I -V Y
Cijk +Cijk =C:., +C

ijk ijk (2.31)

t [ t c
This expression shows that Cijkl + Cijkl is an invariant under the connection transformation V — V and

i c*
V-V. O

cm c
On the one hand from the expression (2.19), the connection coefficient of the mutual connection V of V

CFZ = {i.‘].} + [(a = tw; + o; + ni]él; +[(a = 2)tw; + 0,16 + [t — 7* — oF1g;; (2.32)
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cm
and the curvature tensor of V is

cm c c

Ri]'kl = K,‘jkl + (Sé»l;ik — (Sg{?l]'k + gjkbil - gikb]‘l + 6;{[(01 - Z)l‘a)l‘]‘ + 7'[,']‘] (2.33)
where

Wi = Villa—2)tx + 0 - [(@ - Dtw; + o/ll(@ - 2)tag + 4]

—gi[(a = 2)twy + 0,](ta” — of — 1)

C;Vl cm
And from the expression (2.32), the connection coefficient of the dual connection V of V is

CITS = {i{]} - [(a = Qtw; + 0; + 7'(1‘](5];- - [ta)j —0j— 7'[1‘]65-( —[(a - Z)ta)k + Uk]{]ij

cin
Using this expression, the curvature tensor of V is

*
cm

c c
Ri]‘kl = K;‘jkl - 6;bik + 6§b]‘k - gjkbclil + g,‘kccl]'l - (55([(0( — 2)ta)1-]- + nij] (2.34)
From the expressions (2.33) and (2.34), we obtain

cm cm

cin
1 1 l em jcm cn 1
Rijk + Rijk = 2Kijk + 6ja,-k - (5i0é]'k t ki — gt (2.35)

c tm
where Cgfl-k =7 i — bir. And from the expression (2.6) the connection coefficient of the dual connection V of
is

tm

T = {5 = (@ = 2tw; + 1188 — [to; - mj10f = [(@ = 2)ta]gy

tn
and using this expression the curvature tensor of V is

.
tm

¢ t ; ¢
Rijkl = Ki]'kl - 5;1?1']( + 6i~bjk - g]-ka,-l + gikajl - 5;([(05 - 2)ta)l-]- + nij] (2.36)
From the expressions (2.7) and (2.36), we obtain

tm tm

1 1 1 jtm jtm tm | tm
Rz’jk + Rijk = 2Kijk + (3]~a,'k - 61.0(]-k t ki — gt (2.37)

t
tm tm
where Qe = Ajg — b,‘k.

Using the expressions (2.35) and (2.37), the following corollary is tenable.
Corollary 2.3. In a Riemannian manifold (m, g)(dimM > 3), the tensor

tm tm

Cijx' + Cije! (2.38)

tm t;ﬂ tm cm t;ﬂ cin tm
for the connections V and V is an invariant under the connection transformation V.— V and V. — V, where C’

tm o tm
and Cyj" are the Weyl conformal curvature tensor with respect to V and V respectively, namely

tgl _ tml 1 ltm ltm tm I tm I IRW ; !

i = R = O R = OiRic + gixRi* = gacR ;") = o=y 039k = 039 k),

%z _pl 1 lt;" 1[;" i ! b ! w I ! 239
e = Rig— a2 (O Rjk = 0 Rix + gjxRi" = g R ;) = Gy (09 = 0,9 jk)-
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3. Projective conformal semi-symmetric metric recurrent connection homotopy

10311

Definition 3.1. In a Riemannian manifold (M, g), a connection V is called a projective conformal semi-symmetric

metric recurrent connection homotopy, if V is a conformal equivalent to V.

The projective conformal semi-symmetric metric recurrent connection homotopy V satisfies the relation.

Vigii = —2[(@ = 2twx + P + olgij — [(@ — Dtw; + Yilgi — [(a — Dtw; + ¢ + jlga,
T =mk - ni(S’]‘.,

ij i
and its connection coefficient is
I“i.‘]. = {Z‘} + [(a — Qtw; + 0; + 1/)1-]6’]? +[(a = 2)twj + 0+ yb]-]ééc + [t — 7 = ok]gij
and the curvature tensor of V is
Rij" = Ky + i = Sl + giubi' = gub;" + 0} 1(a = 2)tawi + ¢y]
where
A = Vi[(()( — 2)ta)k + o + lllk] — [(0( — 2)ta)i +0; + T[,‘][((X — 2)ta)k + o + l/lk + T(k]
—gil(a = 2)twy, + 0y + Py + 1]t — o — 1P)
by = Viltwr — ox — Pi] + (tw; — 0; — 1) (twr — ok — %)
The coefficient of dual connection V of V is
T = () = (@ = 2)tw; + 0; + Y185 = [tw) — 0j = )10} = [(a = 2t + ¥ + " + g,
and from this expression the curvature tensor of V is

Rije! = Ky — lan + 0z — b’ + gub;' — 0} 1(a — 2)tawij + 9]

m
The mutual connection V of V satisfies the relation

V]I(cgij = =2[(a = Qtwy + Yr + o + Tilgij — [(@ = Dtw; + i — milgp — [(@ — Dtw; + ¢ — 7j]gi,

_ sk _ . <k
Ti]- —nl(Sj 71]61.,

and its connection coefficient is

1"1;‘]- = {i.‘j} + [(a = 2)tw; + 0; + P + ni]él; +[(a = 2)tw; +0; + gbj]éf + [tk — * - ok]g,-]-

m
and from this expression, the curvature tensor of V is

m

Rijkl = Kl']'kl + (Sligik - (Sigjk + gjkb,'l - gikb]‘l + 65{[(0( - 2)ta),-]- + llbjj + ﬂl‘]‘]
where
ax = Villa - tw +op + Y] = [(@ = 2)tw; + 01 + Pill(@ = Dty + ox + Y]

—gil(a = 2)twy, + 0, + Ppl(ta? — o — 7P)

m*

Tk _ (k k k ko ok, ok
r i = {i].} - [(a = 2tw; + 0; + P; + 7'(1']6]- - [twj — 0j — ;16; — [(@ = 2)tw” + " + 0"1g;;
mx*
and from this expression, the curvature tensor V is

mx

m m
Rije! = Kije' = 0bix + (b = gjeati’ + gt = 0} [(a = 2)tai + ¢ + i)

m
From the expressions (3.6) and (3.7), the connection coefficient of the dual connection V of V is

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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Theorem 3.1. In a manifold (M, g) if 1-form V), w and 1 are closed form for the projective conformal semi-symmetric
metric recurrent connection homotopy V, then we have

R,‘jkl + Rjki ! + Rk,‘]‘ F= O,ﬁrst Bianchi identity (310)
Rjx = Ryj, Pij = 0Rjx = Rﬁjk,Pij = Rijc"), (3.11)
Riji + Rijir = Ryij + Ryij- (3.12)

Proof. 1f 1-form ¢, w and 7 are closed form, then ¢;; = w;; = 11;; = 0. From these facts, the expression (3.3) is
R,‘]‘kl = Kijkl + (Siﬂ,‘k - (Séa]‘k + g]‘kbil - gl‘kbjl (3.13)

Using the expression Kijkl + Kjk,vl + Kkijl = 0, a cyclic permutation of the indices of the expression (3.13)
yields

Rije'+ Rji' + Ry’ = 5§(aik — ) + Olaj — ay;) + O, (aji — aij) (3.14)

On the one hand, from the expression (3.4), we have

{ ajj—aj = (o — Z)ta),‘]‘ + llbij + T = 0, (3.15)

b,‘j - b]',' = twij — mjj = 0.

Using these expressions, from the expression (3.14), the expression (3.10) is proved.
Contracting the indices k and [ of the expression (3.13) we find

Pi]‘ = R,']'kk = Pi]' +aij—aj+ bij - b]','
where P;; = Kjj ¥ = 0. Using the expression (3.15), from this expression we obtain P;; = 0. And contracting
the indices i and / of the expression (3.10), we have
Rjk +ij _Rkj =0.

Using P;; = 0, from this expression we obtain R = Ry;.
Adding the expressions (3.3) and (3.5), we obtain

Rij + Rij = 2K + gpai — gatjx — g + gitji (3.16)
where a; = aj — b.

Putting Ajjy = gpaix — gaajx + gty — gjrevy and using the expression (3.15) we have Ay = Ay;j. Using
this expression and K;j; = Ky;j, we proved the expression (3.12). [J

Remark 3.1. If R,-]-kl is a curvature tensor of V, then
VhRijkl + Vithkl + Vthikl = z(nhRijkl + nithkl + anhikl)/ second Bianchi identity (3.17)

and

*

Rjna + Rjma = —Rijie — Rjnik-

It is easy to see that the following Corollary is tenable.
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Corollary 3.1. In a Riemannian manifold (M, g), if 1-form ¢, w and Tt are closed form, then there holds

m

m m
Rz-jkl + R]-kil + Rk,-]-l = 0, first Bianchi identity

m

m m m m m i m k
Rjr = Ryj, Pij = 0, (Rjx = Riji", Pij = Rijx")

m m* m m*
Riju + Rijr = Rygij + Ruij
m . m
Remark 3.2. If R is a curvature tensor of V to V, then

mom m m nom m m m . . .
V,,R,-]-kl + V,‘thk[ + Vthikl = Z(HhRijkl + nithkl + anhikl)/ second Bianchi zdentzty (318)
Second Bianchi identity and
m i+ m e+

Rijma + Ry = —Rijie — R jpu-

Theorem 3.2. If a Riemannian metric admits the projective conformal semi-symmetric recurrent connection homo-
topy V with a vanishing curvature tensor in the Riemannian manifold (M, g)(dimM > 3), then the Riemannian metric
is conformal flat.

Proof. Contracting the indices i and / of (3.16), then we find

Rjk + R]k = ZK]k - (1’1 - Z)ijk - gjkaf, (319)

Multiplying both sides of this expression by g/, we have

R+R=2K-2(n-1)a.

Thus we arrive at

1 - 1 *
k= ——=[2Kjx = Ry = Rjx — =——=—=gx(2K - R - R)].
Ajk n—z[ jk T Bk T Rk 2(n_1)!71k( )]

Substituting this expression for the expression (3.16), and by a direct computation, we obtain

Cl‘jkl + Ci]‘kl = 2Ci]‘kl (320)
where
tm tm tm tm tm
Ciw =R~ iz OR = O Ric+ gixRi" = gicR;") = Gt (03 = 8i970),
Cii =Rip— 5 ORk = R+ gixRi' = giR;") = G (09 = 8l70), (3.21)
Ci‘jk = Ki]‘k — ﬁ(égKﬂ( - 55.1(17( + gij,‘l - g,'kK]‘l) - m(@;gzk - 6?‘%’]{)

From the expression (3.21) if R i.jk =0,thenC ﬁjk =C gjk =0,wehaveC ﬁjk = 0. This means that the Riemannian
metric is conformal flat. [

Following Theorem 3.2, it is not hard to see that there holds

m
Corollary 3.2. If a Riemannian metric admits the mutual connection V with a vanishing curvature tensor of V in
the Riemannian manifold (M, g), then Riemannian metric is conformal flat.
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Theorem 3.3. In order that the projective conformal semi-symmetric metric recurrent connection homotopy V is a
conjugate symmetry in a Riemannian manifold (M, g)(dimM > 3), it is necessary and sufficient that it is a conjugate
Ricci symmetry and a conjugate volume symmetry.

Proof. From the expressions (3.3) and (3.5), we have

*

Rix' = Riz' - 555,-,( + 8Bk — gipi’ + 9B’ — 20,[(a — 2)twij + Y] (3.22)

where Bi = aj + bi. Contracting the indices i and I of this expression, we have

*

Rjk = R]'k + 1Bk — g]'kﬁii = 2[(a — Z)ta)jk + l]l)]'k] (3.23)
Alternating the indices j and k of this expression, we have

Rjk = Rij = Rjx = Ryj + n(Bjx — Prj) — 4l(a — 2)tw i + Pl

On the one hand, contracting the indices k and ! of the expression (3.2) and changing the index i for j and
index j for k, we have

Py =Py —2Bjx — Prj) — 2nl(a — 2)tw i + Yi].
From the above two expressions, we find
_1
2(n? —4)

Substituting this expression for the expression (3.23), we find

(& = Doy + P = [21R;x - Riy) = (Rix ~ Rip)] = (P — P} (3.24)

*

1 . 1 * * %
Bix = E{Rjk — Rjx + gup; + m(z[(R]‘k = Rgj) = (Rjx = Ryj)] = (Prj — ij))} (3.25)

And substituting the expressions (3.24) and (3.25) for the expression (3.22) and by a direct computation we
obtain

w1 w1 2 * * * * * *

Rz]k - —(51 Rj -0 Rzk +giR; — giR;) - HE—d) ————[&i(Rjx — Rj) — 5;(Rik — Rii) + n8(Rij — R;i)]

— 4(6§ij — 8P + g,-kP]- -~ g]-kp,. + néipij))
1 2
=Rij' - ;(55Rjk - 5;Rik + gikR;- — gxR) - =4 —————[6}(Rjx — R)) — 6;(Rik — Ryi) + nd(Rij — R;)]

5 k— 6;Pik + g,‘kpi- — g]kpi + nékPij))
From this expression we arrive at R,-]-kl = Rijkl ifand only if Rjx = R and Py = Pj. O

Theorem 3.4. In a Riemannian manifold (M, g)(dimM > 3), if 1-form w, { and 1 are closed form for V the in order
that V is a conjugate symmetry it is necessary and sufficient that it is a conjugate Ricci symmetry.

Proof. 1f 1-form w, ¢ and 7t are closed form, then w;; = 1;; = m;; = 0. From this fact and formulas (3.8), (3.9),
the expression (3.22), is

Rije' = Rij' + 61 — 5;51'1( + gikﬁé - g (3.26)
Contracting the indices i and [ of this expression, we have

*

Rji = R+ nBji = giuf)
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Thus we get
Bix = %(f{jk =R+ gixy)
Substituting this expression for the expression (3.26) and by a direct computation we obtain

* w1 1

1z * 1
Rij' - Ry = 5§Rik +gaR; — gieR;) = Ry - —Rjic = 5§-Rik + !]ikRé - gjR})
From this expression we arrive at R; jkl = R,'jkl ifand only if Rjx = Ry. O

4. Schur’s theorem w.r.t. the projective conformal semi-symmetric metric recurrent connection homo-
topy

Theorem 4.1. (Schur’s theorem) Suppose there is a connected Riemannian manifold (M, g)(dimM > 3) with the
projective conformal semi-symmetric metric recurrent connection homotopy V that is everywhere isotropic. If it
satisfies the relation

(@ = 3)twy + Yy + 20, + 21, = 0 4.1)
then the Riemannian manifold (M, g, V) is a constant curvature manifold.
Proof. From the fact that (M, g) is isotropic at p, the curvature tensor of V is
Rij' = k(P)((S;-gik - 8ig) (4.2)
Substituting (4.2) into (3.17), we obtain
Vik(0gix — 0igj%) + Vik(8},gjk — 03guk) + V k(O — 5,9:)
+k(6§vhgl-k — 5iVigjx + 0L Vigj — 6§.vigik + 6V igm — 0! Vigix)
= Zk[nh(éégik — 8igjk) + (0, g — 6;ghk) + 70Ol — 8, 91)]
Using the expression (3.1), we arrive at the following
{Vik = Kl(a = 3)tey, + iy + 203 + 2,1} (0 — 8ig7j6) + (Vik = kl(@ = 3)tw; + Yi + 20; + 27010}, 9 — Ome)
HVjk = k[(a = 3)tw; + 1P + 20; + 2nj]}(5§ghk - 6;,!7ik) =0
Contracting the indices i and I of this expression, then we find
{Vik = [(@ = 3)tw; + ¢ + 20 + 211 g = {Vik — [(a@ = 3)twy + Yy + 204 + 2]}
And multiplying both sides of this expression by g/, then we obtain
{Vik = k[(a = 3)twy, + Py + 20, + 215} = 0
Consequently, from dimM > 3, k = const if and only if
(a = 3twy + Yy + 204 + 21, = 0.

This ends the proof of Theorem 4.1. [
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Using the expression (4.1), from (3.1) and (3.2), we have
Vigii = =2(twy — ok — 2m)gij — 2(tw; — 0; = 21 g — 2(tw; — 0j — 21})gik,
T"] = 708 — n,-é’;, 4.3)
Ffj = {Z.‘].} + (tw; — 0; — 27'(1)6’]‘. + (twj — 0j — 21))0F + gyt — o* — 211%)
This expression is expresses a projective conformal semi-symmetric metric recurrent homotopy with con-
stant curvature. The expression (4.3) is independent of 1-form 1. This fact shows that V is different from Vv,

c
but that V with constant curvature is not different from V with constant curvature.
If t = 0, then from the expression (4.3) we have

ngij = Z(O'k + an)gij + 2(0'1' + Zﬂi)g]‘k + 2(0] + an)gik/
i.{]. 7'(]‘(31.c - 7'[,'(5’;, (4.4)
1";‘]. = {Z} —(o; + 271,‘)(5]; - (O']' + ﬂj)é? - gi]'(Gk + 7'(k)

This connection is a projective conformal (or conformal) semi-symmetric metric connection with constant
curvature.
If t = 1, then from the expression (4.3) we have

Vigij = 2wk — 0k — Te)gij — 2wi — 0i — TG jk — 2(w;j — ) = TT})Gik,

Ti.(]. = ﬂjé? - 7'(1'6’;, (4.5)
I“f], = {f]} + (w; — 0; — 27‘[,‘)5];. + (a)j —0j— le)(Sf + gi]‘(a)k —of - T(k)

This connection is the projective conformal (or conformal) semi-symmetric metric recurrent connection with
constant curvature. So the expression (4.3) expresses a projective conformal (or conformal) semi-symmetric
metric recurrent connection homotopy V with constant.

p
If 0 =0, then V = V. In this case from the expression (4.3) we have

p
Vz;(gij = _Z(Ifﬂ)k - 2k7'fk)!7ij = 2(tw; — m)g i — 2(tw; — 1) gk,
Tij = njél. — 7'(1'6j, (46)
4
rk] = {fj} + (tw; — 27@)6'}? + (twj — 21)0F + gij(tawk — %)
p

This expression expresses the projective semi-symmetric metric recurrent connection homotopy V with
constant curvature.

If t = 0, then from expression (4.6) we have

p

Vigij = ATgij + 21g jk + 270Gk,

Tij = ﬂjéi - 7'(1'6j, (4‘7)
p

ric] = {f]} - 27-[1‘61](- - 77]65( - gi]‘T[k

This connection expresses the projective semi-symmetric metric connection with constant curvature.
If t = 1, then from expression (4.6) we have

p
vl;{_?ij = —Z(Iivk - 27k1k)gij = 2(w; — )ik — 2(w; — 1T})Gik,

Tz'j = nfbi - 7'[,'5]., (4.8)
p

I’;‘j = {Z} + (w; — 27'(1')(5]; + (a)]- - T(]')(Si.{ + gij(a)k - ’Rk)

This connection expresses the projective semi-symmetric metric recurrent connection with constant curva-
ture. So the expression (4.6) expresses the projective semi-symmetric metric recurrent connection homotopy

P
V with constant curvature.
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In particular, if w; = m;, then the expression (4.8) becomes

p
Vigij = 210443,

TS =l - md, (4.9)
P k

k = — .5k
rif - {ij} 71161

This connection is studied as the semi-symmetric non-metric connection with constant curvature in [8].
If w; = 2m;, the expression (4.8) becomes

p
Vigij = 21955 — kﬂjgz'k,

Z;i(] = 71]‘(5;( - 7'(1'6j, (4.10)
k
I“f], = {ij} + njélig,-jnk

t
If p = 0 =0, then V = V. In this case from the expression (4.3) we have
t
Vz;(gij = _z(lfﬂ)k - 2k7'fk)!]z‘j = 2(tw; — m)gjx — 2(tw; — )Gk,
Tij = njél. - niéj, (4.11)
t
Ffj = {f]} + (ta),' - 2771')6]; + (ta)j — 7'(]')(%4< + gi]-(ta)k — Tik)
This expression coincides with expression (4.6) in form but this connection does not express the semi-

t

symmetric metric recurrent connection homotopy V, (namely the connection homotopy from the semi-

symmetric metric connection to the semi-symmetric metric recurrent connection) with constant curvature.
In fact, in this case the expression (4.1) becomes

(o — 3)tawy, + 27y, = 0. (4.12)

From this expression, if t = 0 or a = 3, then 71, = 0. So if t = 0, then the expression (4.11) expressed as

Vl;cgij =0,
Y;z’j =0, (4.13)
k
k _
ri] B {ij}'

This connection is the Levi-Civita connection. Consequently the expression (4.11) expresses the semi-

t
symmetric metric recurrent connection family V with constant curvature together with connection homo-
topy from the Levi-Civita connection to the semi-symmetric metric recurrent connection with constant
curvature.

Remark 4.1. If o = 3, then the expression (4.11) becomes

t
ngij = —Zta)kg,-]- - thig]-k - Zta)jg,-k,
TL =0, (4.14)

t
F?j = {Z} + ta)i(S’]? + ta)]-éi? + gijta)k.

This expression is expresses the connection homotopy from the Levi-Civita connection to the Amari-
Chentsor connection with metric recurrent connection satisfying the Schur’s theorem.
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m
Theorem 4.2. (Schur’s Lemma) Suppose a Riemannian manifold (M, g)(dimM > 3) with the mutual connection V
of V is isotropic everywhere. If it satisfies the relation

(a =3)twy + Py + 20, + 1, = 0. (4.15)
m
then the Riemannian manifold (M, g, V) is a constant curvature manifold.

Proof. From the fact that (M, g)(dimM > 3) is isotropic at point p, the curvature tensor of Vis
Bl I !
Riji" = k(p)(0;9i — 6:9x)
Substituting this expression into (3.18), we obtain
th((sﬂ-gik = 8gjk) + Vik(5], 95k — 5§-ghk) +V k(S gm — 6, gi)
+k(6;thik - 6§thjk + 62Vigjk - (S;Vig,‘k + 6§nghk - 6§1ngik)
= —Zk[ﬂh(éﬂ-!]ik — 8igjk) + (0, gk — 6;ghk) + 70(Sgme — O, gi)]
Using the expression (3.6), from this expression we obtain
{Vik — k[(a = 3)twy, + Py, + 205, + 27‘(11]}(5;!711( - 559]']{) + {Vik — k[(a = 3)tw; + ¢; + 20; + Zﬂi]}(éé,gjk - 5;911;()
HV ik = k[(a = 3)tw; + p; + 20 + 2,1} (O} gk — SLgi) = O
Contracting the indices i and I of this expression, then we find
{V]'k —[(a— 3)ta)j + I]Dj + 20} + T(j]}ghk = {Vik - [(a = 3)twy + Py + 204, + nh]}gjk
And multiplying both sides of this expression by g/, the we obtain
(Vi = Kl(@ = 3)tay + Wy, + 20y, + 7]} = 0.
Consequently, from dimM > 3, k = const if and only if
(a = 3)twy + Py + 20, + 1, = 0.
This completes the proof of Theorem 4.2. [J

Using the expression (4.15), from (3.6) and (3.7), we have

m

Vk!]ij = =2(twy — ak)gij - 2(tw; —0; — T(,')gjk - 2(ta)j —0j— T[j)gik,

m

Ti.(]. = ﬂjé? - 7'(1'6’;, (4-16)
m

1"1.‘]. = {fj} + (tw; — Gi)él; + (twj -0 — 7'(]')6;‘ + gij(tcuk - of — 1)

m
This connection is the mutual connection V with constant curvature of V and is independent of 1-form .
cm m cm m
This fact shows that V is different from V but that V with constant curvature is not different from V with
constant curvature.
m cm C
So the expression (4.16) expresses the mutual connection V (or V) with constant curvature of V (or V).
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m pm
If 0 =0, then V = V. In this case from the expression (4.16), we have

pm
Vigij = —2twggij — 2(tw; — 11)g i — 2(tw; — 1)) gix,
pm
Th =k — s, (417)
pf" koo [ s 5 k_ ok
i = {ij} + tw; j + (ta)j - ‘IZ]') Pt gij(ta) - 7%)

pm 4
This connection expression the mutual connection V with constant curvature of V.
If t = 0, then the expression (4.17) is

pm
Vigii = 2mgj + 215k,

TE =t — 4.18
pmij _71] l‘_nl j’ ( . )
k — k k
1—‘ij - {i]‘}_nféi - gijTc
pm

This connection is the same connection as (4.10) and the mutual connection V with constant curvature of

p
the projective semi-symmetric metric connection V. If ¢ = 1, then the expression (4.17) is

pm

Vigii = —2wigij — 2(w;i — 1)@ — 2(w; — )Gk,

pm

T f] = T(](Si( - 711‘(5];., (419)
(e k k K k_ -k

T ij = {ij} + wié}' + (a)]‘ - ﬂj)éi + g,-]-(a) — 1Y)

pm
This connection is the mutual connection V with constant curvature of the projective semi-symmetric metric
p pm
recurrent connection V. So the expression (4.17) expresses the mutual connection V with constant curvature

4
of the projective semi-symmetric metric recurrent connection homotopy V. In particular, if w; = 7;, then
from (4.19) there holds

pm
Vigij = —2149ij,
m

P
k — k k

;Z; ij = T]((]'(Si - 711‘6]., (4.20)
k — Sk

r ij - {ij} + n,é]..

This is the same as the expression (4.9). If w; = 2m;, then from the expression (4.19), we have

pm
Vigij = —4mgij — 21 jk — 270Gk,
m

P
Th  =mo—mdk, (4.21)

pmk k k k k
Trr = {} +27T,‘(5. +7'[]‘(3. +gl‘]‘7'( .
1 ij ] 4

pm
This connection is the same connection as the expression (4.7) and expresses the mutual connection V with

4
constant curvature of projective semi-symmetric metric current connection V.
m tm
If p = 0 =0, then V = V. In this case, from expression (4.16), we have

tm

Vigij = —2twggij — 2(tw; — )G — 2(tw; — 7)) Gik,

tm

Tfj = ;6% — nié’j?, (4.22)
tm

r i.(]. = {Z} + ta),-éz? + (tw]- - 7'(]‘)(5;( + g,-]-(twk - T[k)
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This expression coincides with the expression (4.17) in from but this connection does not express the mutual

tm t
connection V with constant curvature of the semi-symmetric metric recurrent connection homotopy V. In
fact, in this case from the expression (4.15), we have the expression

(0( - 3)[’60}1 + 1, = 0.

From this expression, if t = 0 or & = 3 then 7, = 0. From this fact, if t = 0, then from the expression (4.22)
we have

tm tmk tmk
ngij:O, TijZO, Fij:O.
t tm

This expression expresses the Levi-Civita connection and from the expression (4.13), we have V = V. And
if @ = 3, then from the expression (4.22) we have

ngij = —thkgi]- - thi!]jk - thjgik,
Tk =0, (4.23)

k — [k k k k
ij = {1]} + ta)iéj + twj(Si + g,-jtw .

t tm
This connection is the same connection as the expression (4.14), namely V = V. So the expression (4.22)

t
expresses the mutual connection V with constant curvature of the connection homotopy from the Levi-
Civitaconnection to the semi-symmetric metric recurrent connection with constant curvature.

5. An Application to Projective Conformal Semi-symmetric Metric Recurrent Connections

In this subsection we will investigate no-arbitrage properties of a manifold associated with projective
conformal semi-symmetric metric recurrent connections as a financial market. This view is new and
interesting for a manifold with some semi-symmetric connections to describe the financial information,
in particular, no-arbitrage principle. This research is a good example of the application of manifolds in
financial engineering. The present paper poses only one application of the manifold associated with a
special connection. The other further researches we will state them the the following articles (we omit them
here). All the related information about financial market represented by manifolds, one can refer to [23] for
details.

t top

Theorem 5.1. In a financial market M = (M2, V,{¢:); F), if a one-parameter transformation ¢ satisfying ¢s(V)=V

is a projective conformal semi-symmetric metric recurrent connection transformation, then there exists an invariant
t

Wijk satisfying the following

Ll E 1t i [t t 1 t [ t

Wi = Rij = nTl(éiRjk — 0;Ri) = p— [6;(Rjk = Rj) = 0;(Rix = Ryi) = (n = 1)0,(Rij = R;i)] (6.1)
t

such that M = (MZ,V,{¢:); F) is of geometric no-arbitrage (where F is the friction factor in the market, M" is a

manifold with dimension n and S is the asset prices process).
Proof. One can directly see [23] for the proof of Theorem 5.1. [J

t

Remark 5.1. Following [23], one gets that the invariant Wﬁjk can be regarded as an option up to {¢s}sso such that
t

qu(Wf,jk), which satisfies the corresponding option pricing equation, is exactly the pricing formula of this class of

options.
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Following the work posed by L. Csillag in [4], we can consider Schroinger connections associated with
projective conformal semi-symmetric metric recurrent connections (briefly, PCSMR connection) and arrive
at similarly the generalized Friedmann Equations and obtain the De Sitter Solution, we will prove this fact
in our next manuscript and omit it here.
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