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A note on graphs containing spanning trees with bounded leaf degree
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Abstract. For a tree T, the leaf degree of v € V(T) is the number of leaves adjacent to v, and the leaf degree
of T is the maximum leaf degree among all vertices of T. In this note, we study the existence of a spanning
tree with bounded leaf degree in a graph G with minimum degree 6, and provide the sufficient conditions
involving the size and the distance spectral radius, to guarantee a graph G with minimum degree 6 to have

a spanning tree with bounded leaf degree, which generalizes a result of Zhou et al. [Discrete Math., 347
(2024), 113927].

1. Introduction

In this paper, we only consider finite undirected simple graphs. Let G be a graph with vertex set V(G)
and edge set E(G), we use |[V(G)| = n and |E(G)| = m to denote its order and size, respectively. For v € V(G),
let d;(v) be the degree of vin G. A leaf is a vertex of degree one. We use 6(G) (or 6 for short) to denote the
minimum degree of a graph G. For a subset S C V(G), we use G[S] and G — S = G[V(G)\S] to denote the
subgraphs of G induced by S and V(G)\S, respectively. For S € V(G), let I(G — S) denote the set of isolated
vertices in G — S and i(G — S) denote the number of isolated vertices in G — S. For two disjoint graphs G;
and G, we use G1 U G, and G1VG; to denote respectively the union and join of G; and G,.

The study of spanning trees has been shown to be very important to graphs and has many applications
in fault-tolerance networks as well as network reliability [6, 9]. Thus it is quite interesting to explore a graph
G to have some special kinds of spanning trees. In [13], Ozeki and Yamashita had dealt with spanning trees
having some particular properties concerning hamiltonian properties, for example, spanning trees with
bounded degree, with bounded number of leaves, or with bounded number of branch vertices. Moreover,
they also studied spanning trees with some other properties. It is well known that finding some special
kinds of spanning trees in G is NP-complete. Therefore, it is widely believed that it is impossible to find
a good necessary and sufficient condition for a graph G to have some special kinds of spanning trees.
Thus we mainly deal with sufficient conditions for a graph to have some special kinds of spanning trees.
There exist several sufficient conditions, including the independence number conditions and the degree

sum conditions, for a graph G to possess a spanning tree with bounded degree or a bounded number of
leaves. For more results can be founded in [14, 15].
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In particular, in this note, we mainly focus on spanning trees with bounded degree. In [11], Kaneko
introduced the concept of leaf degree of a spanning tree. Let T be a spanning tree of a connected graph G.
The leaf degree of a vertex v € V(T) is defined as the number of leaves adjacent to vertex v in T. Furthermore,
the leaf degree of T is the maximum leaf degree among all the vertices of T.

The following fundamental theorem of Kaneko [11] provided a sufficient and necessary condition for
the existence of a spanning tree with bounded leaf degree in a graph.

Theorem 1.1 (Kaneko [11]). Let G be a connected graph and k > 1 be an integer. Then G has a spanning tree with
leaf degree at most k if and only if i(G — S) < (k + 1)|S| for all @ # S C V(G).

Note that for any graph G of order n <k +1and any 0 # S C V(G), we have

i(G—S)s{n_l sk<k+1=(k+1)sl iflsI=1;

n—-2<k-1<(k+1)S|, if |S] > 2.

It follows that (G — S) < (k + 1)|S| for any S € V(G). Thus Theorem 1.1 implies that for any graph G of
order n < k +1, G has a spanning tree with leaf degree at most k. That is, when the number of vertices
in a graph G is small (n < k + 1), the existence of a spanning tree with bounded leaf degree in G can be
guaranteed. Therefore, a natural and interesting question is “whether it can also be guaranteed when there are
enough edges. If so, what is the number of edges?” Inspired by Theorem 1.1, we establish the following edge
number condition to ensure that a graph G with minimum degree 6 to have a spanning tree with bounded
leaf degree.

Theorem 1.2. Let G be a connected graph of order n > (k + 6)6 — k + 2, where 0 is the minimum degree of G and
k > 1is an integer. If |[E(G)| = |[E(KsV(Ky—+2)5 U ((k + 1)0)K1))|, then G has a spanning tree with leaf degree at most
k, unless G = Kév(Kn_(k+2)5 U ((k + 1)6)K1)

In the past decades, the study of relationships between the related eigenvalues of a graph G and the
existence of some special kinds of spanning trees in G has received more and more attention [1, 7, 11, 13,
16, 21]. We won't list them all here, but we’ll focus primarily on those related to a spanning tree with
constrained leaf degree. Ao, Liu and Yuan [2] established several tight spectral conditions, in terms of the
eigenvalues of the adjacency and signless Laplacian matrices, for a graph to have a spanning tree with leaf
degree at most k. Moreover, they [3] also provided a tight spectral radius condition for the existence of a
spanning tree with leaf degree at most k in a connected graph with minimum degree 0.

The distance matrix D(G) is a real symmetric matrix whose (i, j)-entry is the distance d;; between v; and
vj, and the distance is defined as the length of a shortest path from v; to v;. The distance spectral radius of
G, denoted by 01(G), is the largest eigenvalue of its distance matrix 9(G). Very recently, the problem of
finding distance spectral radius conditions for graphs having certain structural properties or containing
some specified kinds of spanning trees has received considerable attention. Zhang and Lin [18] presented a
distance spectral radius condition to guarantee the existence of a perfect matching in a graph. In[17], Zhang
and Dam gave a sufficient condition in terms of the eigenvalues of the distance matrix for the k-extendability
of a graph. Zhou and Wu [20] proved a upper bound for distance spectral radius in a connected graph G to
guarantee the existence of a spanning k-tree in G. Zhou, Sun and Liu [19] established an upper bound on
the distance spectral radius of G to guarantee that G admits a spanning tree with leaf degree at most k.

Inspired by the above mentioned results, we generalize a recent result of Zhou et al [19] to graphs with
minimum degree 6 and prove the following result.

Theorem 1.3. Let G be a connected graph of order n > 4k6 + 126 + 2, where 6 is the minimum degree of G and k > 1
is an integer. If 01(G) < d1(KsV(Ky—k+2)5 U ((k + 1)0)K1)), then G has a spanning tree with leaf degree at most k,
unless G = K(}V(Kn_(k+2)6 U ((k + 1)0)Ky).

The remainder of the paper is organized as follows. In Section 2, we present some preliminary results,
which will be used in the subsequent. The proof of Theorem 1.2 is given in Section 3. Section 4 provides
the proof of Theorem 1.3.
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2. Preliminary

In this section, we present some preliminary results and lemmas which will be used in the subsequent
sections.

The eigenvalues of an n X n real symmetric matrix M are denoted by A;(M) > A,(M) > --- 2 A,(M),
where we always assume the eigenvalues to be arranged in nonincreasing order. Given a partition 7 =
(X1, X3, , X;) of theset {1,2,--- ,n} and a matrix B whose rows and columns are labelled with elements in
{1,2,---,n}, B can be expressed as the following partitioned matrix

Byp -+ By
Bn -+ By

with respect to 7. The quotient matrix B, of B with respect to 7 is the t by t matrix (b;;) such that each entry
bij is the average row sum of B;;. If the row sum of each block B;; is a constant, then the partition is equitable.

Lemma 2.1 (Brouwer, Godsil [4, 8]). Let M be a real symmetric matrix. If By is an equitable quotient matrix of
M, then the eigenvalues of By are also eigenvalues of M. Furthermore, if M is nonnegative and irreducible, then
(M) = A1(Br).

Lemma 2.2 (Berman, Horn [5, 10]). Let m < n, A and B be n X n and m X m nonnegative matrices with the spectral
radius A1(A) and A1(B), respectively. If B is a principal submatrix of A, then A1(B) < A1(A). In addition, if A is
irreducible, then A1(B) < A1(A).

Lemma 2.3 (Minc [12]). Let G be a connected graph with two nonadjacent vertices u,v € V(G). Then d1(G +uv) <
21(G).

3. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2, which presents a sufficient edge number condition to
ensure a graph with minimum degree 6 to have a spanning tree with bounded leaf degree.

Proof of Theorem 1.2. Assume that G has no a spanning tree with leaf degree at most k. By Theorem 1.1,
there exists a non-empty subset S C V(G) satisfying i(G — S) > (k + 1)|S|. Let |S| = 5. Then G is a spanning
subgraph of G’ = K;V(K,_+2)s U ((k + 1)s)K;). Note that G has the minimum degree 6. Then s > 4. It is
obvious that

[E(G)| < [E(G), 1)
where the equality holds if and only if G = G’. We proceed by the following two cases.
Case 1. s = 0.
Then G’ = KsV(K—¢+2)5 U ((k + 1)0)K1). By (1), we have
|E(G)| < |E(KsV(Ky—x+2)5 U ((k + 1)0)K1))l,

with equality holding if and only if G = K5 V(K- +2)s U ((k+1)0)K1). Observe that KsV(Kj,—x+2)5 U((k+1)0)Ky)
has no a spanning tree with leaf degree at most k. Hence, G = KsV(K;_ 425 U ((k + 1)0)K7).
Case2.s>06+1.

The vertex set of G’ can be partitioned as V(G’) = V(K;) U V(K,—x+2)s) U V(((k + 1)5)K;), where V(K;) =
{01,02, -+, s}, V(Ky—(k12)s) = {w1, W, - -+, Wp—rs2)s} and V(((k + 1)s)Kq) = {ug, ua, -, ugs1)s}. Let

Ei={uwj|(k+1)0+1 <i <(k+1)s,1 < j < n—(k+2)s},
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Ex={uuj|(k+1)0+1 < i <(k+1)s-1,i+1 < j < (k+1)s}

and
Es={ouj|6+1 <i <5, 1< j < (k+1)o}.

Assume that G* = G’ + E; + E; — E3. It is obvious that G* = KsV(Kj—+2)s U ((k + 1)0)K1). Since n > (k + 2)s,
we have

|E(GY)| = |[E(G)| = (k+ 1)(s — 0)(n — (k + 2)s) + %(k + D= 0)((k+1)(s—0)—-1)
—(s=0)(k+1)5
= }I(k + 1)(s — 0)[4n — 2(k + 3)s — 2(k + 3)6 — 2]
> }I(k +1)(s = 0)[2n — 25 — 2(k + 3)0 — 2]

> = (k+ 1)(s — )1 + ks — 2(k + 3)5 — 2)

[Ty

>2—(k+1)(s-0)(n+k(6+1)—2(k+3)0—-2)

4
> 0.

Then we have |E(G’)| < |E(G")|. Together with (1), we get |[E(G)| < |[E(G")| = |[E(KsV(Ky—g+2)s U ((k + 1)0)K1))l,
a contradiction to the condition. This completes the proof. O

4. Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3, which presents a sufficient distance spectral radius
condition to ensure a graph with minimum degree 6 to have a spanning tree with bounded leaf degree,
which generalizes a result of Zhou et al. [19, Theorem 1.1]

Proof of Theorem 1.3. Assume that G has no a spanning tree with leaf degree at most k. By Theorem 1.1,
there exists a non-empty subset S C V(G) satisfying i(G — S) > (k + 1)|S|. Let |S| = 5. Then G is a spanning
subgraph of G’ = K;V(K,_+2)s U ((k + 1)s)K;). Note that G has the minimum degree 6. Then s > 6. By
Lemma 2.3, we have

d1(G) 2 d1(G), ()

with equality holding if and only if G = G’. Then we proceed by the following two cases.

Case 1.5 =0.

Then G’ = KsV(Kj—+2)5 U ((k + 1)0)K1). By (2), we have

91(G) = 91 (KsV(Ku—(r25 U ((k + 1)0)K1)),

with equality holding if and only if G = Ks5V(Kj—(x4+2)s U((k+1)0)K1). Observe that KsV(Kj,—+2)s U (k+1)8)K1)
has no a spanning tree with leaf degree at most k. Hence, G = KsV(K;_4+2)s U ((k + 1)0)K;).

Case2.s>0+1.

Let B, be an equitable quotient matrix of the distance matrix D(G’) with respect to the partition V(K;) U
V(Ku—ges2)s) U V(((k + 1)s)K7). One can see that

s—1 n—(k+2)s (k+1)s
B, = s n—(k+2)s-1 2(k + 1)s
s 2n—2(k+2)s 2((k+1)s-1)



X. Lv et al. / Filomat 38:29 (2024), 10345-10350 10349
By a simple calculation, the characteristic polynomial B; is

D(Bs, x) = x° — (n + ks + s — 4)x* + (2k*s> + 7ks? + 5s* — 2kns — 2ns — ks — s — 3n + 5)x
— k2% — Bks® — 25 + kns® + ns? + 2k*s? + 7ks> + 55> — 2kns — 2ns — 2n + 2.

By Lemma 2.1, we know that d1(G’) = A1(B;) is the largest root of the equation ®(B,,x) = 0. Note that
D(KsV(Ky—x+2)s U ((k + 1)0)K1)) has the equitable quotient matrix Bs, which is obtained by replacing s with
0 in B;. Similarly, by Lemma 2.1, 91 (Ks V(K —x+2)5 U ((k + 1)0)K1)) = A1(Bs) is the largest root of ®(Bs, x) = 0.
Then

D(B,, x) — P(Bs, x) = (s — 6)(k + )[—x* + ((2k + 5)(s + 0) — 2n — 1)x — ks* — 2s* + ns
— Oks + 2ks — 205 + 5s + on — 2n — 6%k + 25k — 26% + 55].
We claim that ®(B;, x) — ®(Bs,x) < 0 forx € [n — (k+ 1)0 — 1, +00). In fact, let
f(x) = = x% + ((2k + 5)(s + 0) — 21 — 1)x — ks® — 25* + ns — Oks + 2ks — 20s + 5s
+ 01 — 2n — 8%k + 20k — 26% + 5.

Note that s > 0 + 1. Then we only need to prove f(x) <Oonx € [n —(k+1)0—1,+00). Note that n > (k + 2)s.
Then 6 +1 < s < /5 and the symmetry axis of f(x)is x = w <n—(k+1)0-1byn > 40k+126+2,
we obtain

f@x) < f(n—(k+1)6-1)
= — (k + 2)s> + (2kn + 61 — 20k — 85k — 78)s — 31> + (65k + 106 + 1)n — 36°k>
—106°k — 0k — 86% = 6
_ RNy _ns12 _Qsh IR
<-(k+ 2)(k " 2) + (2kn + 6n — 26k” — 806k 76)(k " 2) 3n° + (60k + 100 + 1)n
— 36%k? — 106°k — Ok — 86% = 6
= ﬁ[(k + 1)n? — (46k* + 145k + k + 138 + 2)n + 36°k> + 165°k* + Ok* + 286°k
+ 36k + 16567 + 26]
<- i[(k + 1)(40k + 1206 + 2)? — (40k? + 145k + k + 135 + 2)(40k + 126 + 2) + 36°K>
+ 166%k> + 0k* + 280%k + 30k + 165 + 2]
1
=— m[362k3 + (2467 + 50)k? + (486% + 196 + 2)k + 46?]
<0.

It follows that ®(B;, x) < ®(Bs, x) for x € [n—(k+1)0—1, +00). Note that K5V (K, —k+2)s U ((k +1)0)K7) contains
K,—(k+1)5 as a proper subgraph. By Lemma 2.2, we have

1(KsV(Ki—rs2)5 U ((k + 1)0)K1)) > d1(Ky—re1y5) =1 — (k+1)0 -1,
and so A1(Bs) > A1(Bs). This means that
91(G") > 91(Ks V(Ky—ges2)5 U ((k + 1)0)K1)).

Therefore,
91(G) 2 1(G’) > d1(KsV(Ky—rs2)5 U ((k + 1)0)K1)),

a contradiction. This completes the proof. O
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5. Concluding remarks

In this paper, we first provide an edge number condition to ensure a graph with minimum degree 6 has
a spanning tree with leaf degree at most k. Furthermore, we also provide a tight distance spectral radius
condition for the existence of a spanning tree with leaf degree at most k in a graph with minimum degree
0. Inspired by the work above, it is natural to ask whether there are other types of spanning trees can be
considered using the eigenvalues of the distance matrix? For further progress, we propose the following
problem.

Problem 5.1. Let G be a connected graph of order n with minimum degree 6 which has no spanning k-ended tree.
What is the minimum distance spectral radius of G? Moreover, characterize all the extremal graphs.
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