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Abstract. In a real Hilbert space, let the SGEP, VIP, HVI and CFPP represent a system of generalized equi-
librium problems, a pseudomonotone variational inequality problem, a hierarchical variational inequality
and a common fixed-point problem of countable nonexpansive mappings and an asymptotically nonex-
pansive mapping, respectively. We propose two relaxed inertial subgradient extragradient implicit rules
with line-search process for finding a solution of the HVI with the SGEP, VIP and CFPP constraints. The
designed algorithms are on the basis of the subgradient extragradient rule with line-search process, inertial
iteration approach, hybrid deepest-descent method and Mann implicit iteration technique. Under suitable

conditions, we prove the strong convergence of the designed algorithms to a solution of the HVI with the
SGEP, VIP and CFPP constraints.

1. Introduction

Let H be a real Hilbert space and @ # C C H be a closed and convex set. For a nonlinear operator
S : C — H, we use the Fix(5) to indicate the fixed-point set of S. S is said to be asymptotically nonexpansive
if 3{0,};2, € [0, +00)s.t. 6, = 0 (I = oo)and O|jv—wl||+[lv—w|| = ISt =Stwl|, Yo,we C,1>1.1£6;=0, VI >1,
S is called nonexpansive. Let ® : C X C — R be a bifunction. Consider the equilibrium problem (EP) of
determining its equilibrium points, i.e., the set EP(®) = {u € C : ®(u,v) > 0, Yv € C}. In the framework
of the equilibrium problems theory, ones can take advantage of a unified approach for treating numerous
problems arising in the physics, optimization, structural analysis, transportation, finance and economics.
Throughout, we assume that

(H1) ©(v,v) =0, Vv e C; (H2) © is monotone, i.e., O(v, w) + O(w,v) <0, Yo, w € C; (H3) lim)_,o- O((1 -
Ao+ Au, w) < O(v,w), Yu,v,w € C; and (H4) w — O(v, w) is convex and lower semicontinuous (l.s.c.) for
every v € C.

In 1994, Blum and Oettli [1] presented the following lemma, which had performed an important role in
settling the equilibrium problems.
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Lemma 1.1. ([1]) Suppose that © : C X C — R suits for the hypotheses (H1)-(H4). For any T > 0, let the mapping
T® : H — C be formulated as:

T?(u) ={veC:0(v,w)+ %(w—v,v—u) >0, YweC}, VYueH.

Then T? is well defined and the following hold: (i) T® is single-valued, and firmly nonexpansive, i.e., |T9v - T w|* <
(T9v — T®w,v — w), Yov,w € H; and (ii) Fix(T®) = EP(®), and EP(®) is convex and closed.

The EP reduces to the classical variational inequality problem (VIP) of finding x € Cs.t. (Ax,y —x) >
0, Yy € C, where A is a self-mapping on H. The solution set of the VIP is denoted by VI(C, A). It is well
known that, one of the most popular techniques for settling the VIP is the extragradient method with weak
convergence, which was put forward by Korpelevich [21] in 1976. Up to now, the vast literature on the
Korpelevich extragradient approach reveals that numerous authors have paid extensive attention to it and
ameliorated it in different manners; see e.g., [2-5, 9-15, 17, 18, 20, 22, 24-34, 36-46] and references therein.

Let ©,0, : CxC — Rbe two bifunctions and suppose that Bi, B, : H — H are two nonlinear mappings.
In 2010, Ceng and Yao [7] considered the following problem of finding (x*, y*) € C X Cs.t.

m

O1(x", x) + (B1y", x —x") + Ly - y,x—x)>0, Vxe( )
Oy, y) + (Box', y — y') + i(y* -x,y—-yy=0, VyeC

which is referred to as a system of generalized equilibrium problems (SGEP). In particular, in case ©; = ©, =

0, then the SGEP reduces to the following general system of variational inequalities (GSVI) investigated in

[5]: Find (x*,y") € C X Cs.t.

(mB1y +x" -y ,x—-x")>0, VxeC
(UoBox*+y —x",y—yH) >0 VyeC

The SGEP (1) can be transformed into the fixed-point problem (FPP).

Lemma 1.2. ([7]) Let ©®1,0; : C X C — R be two bifunctions s.t. the hypotheses (H1)-(H4) hold, and suppose that
the mappings By, B, : H — H are a-inverse-strongly monotone and B-inverse-strongly monotone, respectively. Let
u1 € (0,2a) and u, € (0,2p), respectively. Then, for given x*, y* € C, (x*, y*) is a solution of SGEP (1) if and only if
x* € Fix(G), where G := Tgl (I- lel)Tf?j (I — y2By) and y* = TO(1 - U2Bo)x".

12

On the other hand, assume that the mappings By, B, : C — H are a-inverse-strongly monotone and g-inverse-
strongly monotone, respectively. Let f : C — C be contractive with constant 6 € [0,1) and F : C — H be -
Lipschitzian and 1-strongly monotone with constants x, 7 > O such that 6 < 7 := 1— /1 — u(2n — ux?) € (0,1]
for u € (0, i—’;). Let S : C — C be an asymptotically nonexpansive mapping with a sequence {0;} such that
Q = Fix(S) N Fix(G) # 0 with G := Pc(I — p1B1)Pc(I — u2Bs) for i € (0,2a) and s € (0,26). In 2018, Cai,
Shehu and Iyiola [2] proposed the modified viscosity implicit rule for finding an element of Q, i.e., for any
x1 € C, let the sequence {x;} be formulated below

pr =P+ 1 =By,
v = Pc(pr — p2Bapy),
y1 = Pc(v; — w1Bivy),
X = Pelagf(x) + (I — auF)S'y)], VI>1,

where {a}, {B1} € (0,1] s.t. (i) X2l — agl < 00, Y720 ap = o0; (ii) limseo ) = 0, liml_,oog—; = 0; (iii)
0<e<pB <1, Y2Bu — Bil < oo;and (iv) X2, IS* y; — S'yill < oo. It was shown in [2] that the

sequence {x;} converges strongly to an element x* € (2, which is a unique solution of the hierarchical
variational inequality (HVI): ((uF - f)x*,p—x") > 0, Vp € Q. Very recently, Ceng and Shang [4] put forth the
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hybrid inertial subgradient extragradient method with line-search process for solving the pseudomonotone
VIP with Lipschitz continuous A and the common fixed-point problem (CFPP) of finite nonexpansive
mappings {Sl};\:f 1 and an asymptotically nonexpansive mapping S in a real Hilbert space H. Assume that
Q= ﬂfio Fix(5;) N VI(C, A) # 0 with Sy := S. Given a contraction f : H — H with constant 6 € [0, 1), and
an 1-strongly monotone and x-Lipschitzian mapping F : H — H with 6 < 7 := 1 — /1 — u(2n — ux?) for
u e, g). Let {¢;} € [0,1] and {ay}, {B1} € (0,1) with a; + B; < 1, VI > 1. Moreover, one writes S; := SimodN
for integer | > 1 with the mod function taking values in the set {1,2,...,N}, i.e.,, whenever | = jN + g for
some integers j > 0 and 0 < g < N, one has that §; = Sy ifg =0and S; = S;if 0 < g < N. Given
y>0,£€(0,1), ve(0,1) and x1,x9 € H arbitrarily, one calculates x;.1 (k > 1) below:

Step 1. Set p; = Six; + €/(Six; — S1x1-1) and calculate y; = Pc(p; — GAp:), where (; is chosen to be the largest
Cely,yt, v, ...} satisfying C||lAp; — Ayl < vipr — yill-

Step 2. Calculate z; = Pc,(p; — GAy;) with C;:={y € H : {pi — GAp1 — y1, y1 — y) = 0}.

Step 3. Calculate x;,1 = a;f(x;) + Bix + (1 — )] — ayuF)S'z;.

Again set/ := 1+ 1 and go to Step 1.

Under mild conditions, it was shown in [4] that if S'z; — S"*1z; — 0, then {x;} converges strongly to x* € Q if
and only if x; — x;,; — 0 and x; — y; — 0 as [ — oco. Next, let the HVI, VIP, SGEP, and CFPP represent a hier-
archical variational inequality, a pseudomonotone variational inequality problem, a system of generalized
equilibrium problems, and a common fixed-point problem of countable nonexpansive mappings and an
asymptotically nonexpansive mapping, respectively. We propose two relaxed inertial subgradient extra-
gradient implicit rules with line-search process for finding a solution of the HVI with the CFPP, SGEP and
VIP constraints. The suggested algorithms are based on the subgradient extragradient rule with line-search
process, inertial iteration approach, hybrid deepest-descent method and Mann implicit iteration technique.
Under mild restrictions, we prove the strong convergence of the suggested algorithms to a solution of the
HVI with the CFPP, SGEP and VIP constraints. In addition, an illustrated instance is used to illustrate the
feasibility and implementability of our proposed rules.

The architecture of this article is arranged below: In Sect. 2, we release some concepts and basic tools
for further use. Sect. 3 provides the convergence analysis of the suggested algorithms. Lastly, Sect. 4
applies our main results to settle the SGEP, VIP and CFPP in an illustrated example. Our results improve
and extend the corresponding ones in [2, 4, 31].

2. Preliminaries

Let C be a nonempty convex and closed subset of a real Hilbert space H. For all v,y € C, an operator
T:C — Hiscalled

(a) L-Lipschitzian if L > 0 s.t. ||[Tv — Ty|| < Lllv — yll;
b) pseudomonotone if (Tv, y —v) > 0 = (Ty,y —v) > 0;
¢) monotone if (Tv — Ty, v —y) > 0;
d) a-strongly monotone if da > 0s.t. (To - Ty, v —y) > allv - yIIZ;
e) B-inverse-strongly monotone if 8 > 0s.t. (Tv — Ty,v — y) > BlITo — Tyll%;

(f) sequentially weakly continuous if V{y;} C C, the relation holds: y; = y = Ty, — Ty.

Vv € H, 3| (nearest point) Pc(v) € Cs.t. |[v — Pc(@)l| < |lv —ull, Yu € C. Pc is called a nearest point (or
metric) projection of H onto C. The following conclusions hold (see [16]):

(@) (v -y, Pc(v) = Pc(y)) = IPc(v) — Pc(WIP, Yov,y € H;

b)y=Pcv) o w-—y,x—y)<0, YveHxeC;

© Ilo =yl > l[o = Pe@)| + lly = Pe(@)IP, Vo€ H,y € C;

(d) llo =yl = l[olP> = Iyl = 2(0 - y, ), Yo,y € H;

(©) llso + (1 = s)ylI? = sllol’ + (1 = )llyll? - s(1 = 9)llo - yI, Yo,y € H,s € [0, 1].

The following inequality is an immediate consequence of the subdifferential inequality of the function
2l 1P
2

o+ yI? <llol® + 2(y, 0+ y), Vo,y€H. )

(
(
(
(
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The following concept and two propositions can be found in [8].

Definition 2.1. Let {k);2, € [0, 1] and suppose that {Si}?, is a sequence of nonexpansive self-mappings on C. For
each m > 1, the self-mapping W,,, on C is formulated below:

um,m+1 = I/
Upm = Emsmum,nﬁl + (1 - Em)ll
um,mfl = gmflsmfl um,m + (1 - gmfl)lz

Ui = ExSklmprr + (1 = &I,

Uy = E25 Uy + (1 - &),
Wi = Uy = 151U + (1 = &)1

Then, Wy, is refereed to as a W-mapping generated by S,,, - -+ , 52,51 and &y, - -+ , &2, &1

Proposition 2.2. Let {&l2, € (0, 1] and suppose that {Si}}?, is a sequence of nonexpansive self-mappings on C,
such that (N, Fix(Sx) # 0. Then,

(a) Wiy, is of nonexpansivity and (L, Fix(Sx) = Fix(W,,), Ym > 1;

b)Vq € C, k=1, limy—e Up g exists;

(c) the mapping W, formulated as Wq := limy, 00 Wiuq = limy—e0 U1, Vg € C, is a nonexpansive mapping
s.t. (Nieq Fix(Sx) = Fix(W), and it is refereed to as the W-mapping generated by Sy, S, ... and &1, &, ...

Proposition 2.3. Let {&)2, € (0, €] for certain € € (0,1) and suppose that {Skh2, is a sequence of nonexpansive
self-mappings on C, such that Miey Fix(Sx) # 0. Then, limy, e sup,ep [IWnp — Wpll = 0 for each bounded set
DcC.

Proposition 2.4. ([19]) Let Hy and H, be two real Hilbert spaces. Suppose that F : Hi — H, is uniformly continuous
on each bounded subset of Hy and D is bounded in Hy. Then, F(D) is bounded.

The following lemmas will be useful for concluding our main results in this paper.
Lemma 2.5. Let the mapping B : H — H be n-inverse-strongly monotone. Then, for a given u > 0,
(I - uB)y — (I - uB)zIP < lly — zI* — u(2n — w)iBy — Bz,
In particular, if 0 < u < 2n, then I — uB is nonexpansive.
Using Lemma 1.1 and Lemma 2.5, we immediately obtain the following lemma.

Lemma 2.6. ([7]) Assume that ©1,0, : C x C — R are two bifunctions satisfying the hypotheses (H1)-(H4), and
the mappings B1, B> : H — H are a-inverse- strongly monotone and p-inverse-strongly monotone, respectively. Let
the mapping G : H — C be defined as G := TS (I - lel)T} (I—u2By). Then G : H — C is a nonexpansive mapping
provided 0 < uy < 2aand 0 < up < 2B.

H

In particular, if ®; = ©, = 0, using Lemma 1.1 we deduce that T®1 = T®2 = Pc. Thus, from Lemma 2.6
we obtain the corollary below.

Corollary 2.7. ([5]) Suppose that the mappings B1,B, : H — H are a-inverse-strongly monotone and p-inverse-
strongly monotone, respectively. Let the mapping G : H — C be defined as G := Pc(I — u1B1)Pc(I — p2By). If
0 < <2aand 0 < up <2, then G : H — C is nonexpansive.

Lemma 2.8. Assume that A : C — H is pseudomonotone and continuous. Then v € C is a solution to the VIP
(Av,w—v) >0, Yw € C, ifand only if (Aw,w —v) >0, Yw € C.
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Lemma 2.9. ([35]) Suppose that {a;} is a sequence in [0, 00) s.t. aiy < (1 — ¢p)a; + gyvi, VI 2 1, where {¢;} and {v;}
are sequences of real numbers s.t. (i) {c;} € [0,1] and Y2, ¢; = oo, and (ii) lim sup,_,,v1 < 0or Yo lavil < oo
Then lim;_, o, a; = 0.

Lemma 2.10. ([6]) Assume that X is a Banach space which admits a weakly continuous duality mapping. Let C be
a nonempty closed convex subset of X, and T : C — C be an asymptotically nonexpansive mapping with Fix(T) # 0.
Then 1 — T is demiclosed at zero, i.e., if {v;} is a sequence in C such that vy = v € C and (I — T)v; — O, then
(I = T)v = 0, where I is the identity mapping of X.

Lemma 2.11. ([23]) Let {I'y,} be a sequence of real numbers that does not decrease at infinity in the sense that,
AL} €T} s.t. Ty, < Ty Yk > 1. Let the sequence {(p(1m)}ysm, of integers be formulated below:

¢(m) = maxitk <m : T < Ty},

with integer my > 1 satisfying {k < mg : T < Tiy1} # 0. Then the following hold:
(i) p(mo) < Pp(mg + 1) < -+ and P(m) — oo;
(ii) Tgmy < Tpmy+1 and Ty < Tmyn Y > mg.

Lemma 2.12. ([35]) Let A € (0,1] and Let S : C — C be a nonexpansive mapping. Let the mapping S* : C — H be
formulated as S*v := (I— AuF)Sv Vv € Cwith F : C — H being x-Lipschitzian and n-strongly monotone. Then S" is

a contraction provided 0 < p < i—;], ie., |IS*o=Stw|| < 1-A1)llv—wll, Yo,w € C, wheret = 1— /1 — u(2n — px?2) €
©,1].

3. Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. Assume always that the following
conditions hold:

(r1): {Skl}2, is a sequence of nonexpansive mappings on H and S is asymptotically nonexpansive mapping
on H with a sequence {0x};

(r2): W, is the W-mapping generated by S,, S,—1,...,51 and &,, &y, ..., &1, With {ék}]‘;‘;l C (0,€] for some
e€(0,1);

(r3): Aispseudomonotone and L-Lipschitzian mapping on H, s.t. [[Au|| < liminf,_,c ||[Auy,|| for each {u,} C C
with u, — u;

(r4): ©1,0, : C x C — R are two bifunctions satisfying the hypotheses (H1)-(H4), and By, B, : H — H are
a-inverse-strongly monotone and g-inverse-strongly monotone, respectively;

(r5): f: H — H is a contractive map with constant 6 € [0,1), and F : H — H is 5-strongly monotone and
x-Lipschitzian such that 6 < 7 := 1 — /1 — u(2n — ux?) for u € (0, %);

(¥6): Q = N2y Fix(Sk) NFix(G)NVI(C, A) # O with Sp := Sand G := Ty (I - 1 B1) T (I - p12Ba) for 1 € (0,2a)
and up € (0, 2p).
(r7): {en} € [0,1], {04} € (0,1] and {a,}, {Bn} € (0,1) with a, + B, <1Vn > 1, s.t.
(i) limy—e @y = 0and Y07 @y = oo; (ii) sup, ., (&n/an) < coand lim,(0,/ay) = 0;
(iii) 0 < liminf, e B < limsup,_, fn < 1; (iv) limsup, , o, < 1.
Algorithm 3.1. Initial Step: Giveny >0, v € (0,1), £ € (0,1). Let x1,x0 € H be arbitrary.
Iterative Steps: Compute x,.1 below:
Step 1. Calculate p, = Wyx, + (Wi — Wyxn_1) and g, = onpn + (1 — o), with u, = T:?]l (vn — u1B1vy)
and v, = Tf:)zz(qn - t2Bogy).
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Step 2. Calculate y, = Pc(qn — ChAqy), with Cy, being chosen to be the largest C € {y, y{, )/52, ...} st
CllAGn — Ayull < VIIgn = Yull. (4)
Step 3. Calculate t,, = vx,+(1-v)z, withz, = Pc,(§n—CuAyyn) and C, == {y € H : {§y—ChAGn—Yn, Yn—y) = 0}.
Step 4. Calculate
X1 = A f (Xn) + Puxn + (1= Bu)] — anpuF)S"t. ()

Put n :=n+ 1 and return to Step 1.
Lemma 3.2. The Armijo-like search rule (4) is well defined, and the relation holds: min{y,v{/L} < C, < .

Proof. Thanks to ||Ag, —APc(qn — Y Agu)ll < Lllgn — Pc(gn — y €/ Agu)ll, one obtains that (4) holds for all y¢/ < ¥
and hence C, is well defined. It is obvious that {, < y. In the case of {, = y, the relation is true. In the case
of ¢, <y, from (4) one has ||Ag, — APc(g, — %Aqn)ll > wpllan — Pe(@n - CT?“A%)H- So this yields ¢, > %. O

Lemma 3.3. Suppose that {qu}, {pn}, {ynl, {zu} are the sequences generated in Algorithm 3.1. Then for each p € Q,
one has

iz = pI* < llpn = pIP = (1 = 0u)lllpn — galP* + 1228 = p2)I1B2gn — Bapll?
+ w1 — pun)lIB1oy — B1glP1 = (1 = yw — zall® + Iy — galI*],

where g = T%(p — UaBop) and v, = Tf?j (gn — H2Bagn).

Proof. First, it is readily known from Lemma 2.6 that for each n > 0 there exists a unique element g, € H
such that

Gn = Oupn + (1 — 04)Gqp.
Observe that foreachp € Q c C c C,,

Iz = pI* = IPc, (@n — CuAya) — Pe,pll?
<zn =P dn — ChAYn — P)
= 2z = pIP + g = pIP = e = 4ulP) = e — p, Ay,
which hence arrives at
NIz = pI* < 11gn = pI* = 20 = Gull® = 2z = p, Ay).
Owing to z, = Pc,(gn — CuAY,) with C, := {y € H : (g — C4AGn — Yn, Yn — y) = 0}, one gets (g, — C,Agn —
Yu, Yn — 24) = 0. Combining (4) and the pseudomonotonicity of A, guarantees that
N1z = pI* < 190 = pIP = 2w = Gull® = 2CuCAYn, Y = P + 20 = )
< Mgn = pIP = llzw = gull® = 2CCAYn, 20 = Y
= g0 = pIP = llzn = Yull® = 1y = Gull® + 2(q0 = CaAYn = Y, Zu = Yn)
= llgn = pIP = llzw = Yul® = 1yn = Gull* + 240 = CuAGu = Y, 20 = Yu) + 2CuAGn = AYn, 20 = Y} (6)
< Mgn = pIP =20 = yall® = 1y = Gall® + 2v11g, = yullllza = yl
< 11gn = pIP = llzw = Yull® =y = Gull* + v(lgn = yull® + 120 — yal?)
= llgn = pI? = (1 = W)lyn = zalP* + lyn — Gal 1.

Note that g = Tﬁ)j (p — wa2Bop), vy = Tﬁ)j(qn — H2B2g,) and u, = Tﬁ)f (vn — w1B1vy). Then u, = Gg,. By Lemma
2.5 we have

l[0n = gl < g = pIP = p2(2B ~ u2)l1B24 — Bapll®
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and
lltn = pII* < llon = ql* = 11Ra = w)lIB1o, — Bigll*.

Combining the last two inequalities, we obtain

llitn = pIF < llgn = pIP = p2(2B — 12)lIBogn — Bopll* — p1 (e — p1)|B1vy, — Bagll*.
Thanks to g, = 0upy + (1 — 0,1, we get |lg, — plI* < 04{pn — P, Gu — P) + (1 — 01)llgn — plI>, which hence yields
Ign =PI < pu = p,gn — p) = 3llIpn = pI? + g = pI* = lpx — galI*]. This immediately implies that
gn = PIP < llpw = pIF = llpn — gall*- 7)
So it follows that
gn = pIP < oullpn — pIF + (1 = o)l — plI?
< oullpn = pIP + (1 = 0)[llgn — pI* — 1228 — p2)lIB2gn — Bopl* — p1 (2 — p1)l1B1vy — Bagll*]
< oullpn = pIP + A = 0)lllpn = pIF = lpw = qull® = 1228 — w2)l1B2gu — Bopl* — p1 (2 — p11)l1B1v, — Bagll*]
= llpn — pIF = (1 = 0)lllpn — Gall® + 1228 — u2)lIB2gn — Bopll* + p1(2a — p1)lB1vy — B1gl],
which together with (6), yields

llzw = PI? < 13w = pI? = (1 = V)Y = zal® + 1y = 4al°]
<llpw = pIF = (1 = 6)lllpn = Gull® + p2(2B — p2)l1B2g,s = Bopll®
+ 1 2a = p)lIB1oy = BaglP1 = (1 = )lyw = zall® + Iy = qal*1-
This attains the desired conclusion. [
Lemma 3.4. Assume that {q,},{ps}, {yn}, {zn} are bounded sequences generated in Algorithm 3.1. Suppose that

X —Xn41 — 0, x4 =Yy = 0, py — 2, = 0and S"x, — Sy, — 0. Then wy({x,}) € Q, with we({x,) =z € H :
Xy, — z for some {x,,} C {x,}}.

Proof. Take an arbitrary fixed z € wy({x,}). Then, Ix,,} C {x,} s.t. x,, = z € H. Thanks to x,, — y, — 0, we
know that Iy, } C {y,} s.t. y,, = z € H. In what follows, we claim that z € Q. In fact, by Lemma 3.3 we
obtain that for each p € Q,

(1 - Gn)[”pn - QnHZ + HZ(Zﬁ - H2)||Bz% - BZPHZ + [»11(205 - ,ul)”Blvn - BMHZ] + (1 - V)[”yn - Zn||2 + ”yn - ‘114”2]
< |lpn = pIP = llzw = pIP < lIpn = zall(lpn = pll + Nz = pI)-

Since py —zp = 0, v € (0,1), w1 € (0,2a), y2 € (0,2p) and 0 < lim infyco(1 — 04), from the boundedness of
{pn}, (zn} we deduce that

lim [1Bzg, — Bapll = lim |1B;o, — Bugll = 0, ®)
and
1}21;10 ”yn -zl = Jg{}ollyn - Qn” = r}g{}o ”pn - Qn” =0.
So it follows that
[l — pn” <lx, - ynH + ”yn = Zull + ||z — Pn” -0 (n— ),
[lx, — qn” < lxp, — Pn” + ||Pn - ‘771” -0 (1’1 - oo),
”‘771 =zl £ ”‘771 - ]/n” + ”]/n -zl > 0 (n— ),

and
“xn - Zn” < “xn - pn” + “pn - QH” + “%1 - Zn“ -0 (1’[ - Oo)

It is clear that
llpn — Waxull = eallWnxy = Wixpall < enllxy — x44ll = 0 (2 — o0).
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Hence we have
llxn = Wixull < Xy = pull + llpn = Waxull > 0 (n — o).
Also, from (5) we get x,41 — X, = a,(f(x,) — pFS™t,) + (1 = B,)(S"t, — x,,), which hence yields

(L =BlIS"tn = xull = llxns1 — Xn — an(f(xn) — uFS"t,)l
< w1 = xall + (Il f Ce)ll + [|UES"tall) = 0 (1 — o).

This together with 0 < liminf, (1 — ), arrives at lim,, . [|1S"t, — x,|| = 0. Noticing ||t — x4l = (1 = V)llz, —
Xull = 0 (n — o0) and using the asymptotical nonexpansivity of S, one deduces that

Ity = S"xull < llxy — S"tull + 1Sty — S"xull < llxy — S"tll + T+0)lty = x4l >0 (1 — 00),
and hence
o = S0l < Il = "l + 15", = 5™, + 15", = S
< ey = S™xall + 11S™ 20 = S™ xyll + (1 + O)IIS™ 2 — x4l )
= 2+ 01l — S"xall + [1IS"xy — S" 2yl > 0 (1 > o0).
On the other hand, by the firm nonexpansivity of Tﬁl we obtain that
llitw = pIP < (0n = q, 1w = p) + p1(B1q — B1ow, uy — p)
1
< 5llon =gl + llwy = pIF = Il = + p = qI*1 + 1111B1g = Broglllw, — pll
which hence arrives at
llitn = pIP < llow = ql* = llow — 1 + p = gl* + 2p111B1g — Broallllu, — pll.
In a similar way, one gets
llow = gl* < 119 = pI* = 1lgn — vn + q = PI* + 2u2lIB2p — Bagallllv — qll.
Combining the last two inequalities, one deduces that
llitn = pIF < Ngn = PIP = 1190 — 0 + g = pIF = 0w — iy + p — gl

+ 2Us|[Bop — Bogullllon — gl + 2pal|B1g — Byoylllluy — pll,
which together with (6) and (7), leads to

llzw =PI < 1lgn = pI* < oullpn = pI? + (1 = 0l — pIF?
< oullpn = pIF + @ = 0)lllpn = pIP = 19 — 00 + g = pIF = llon — 10 +p — gl
+ 2u2||B2p — Bogullllon — gll + 2u1llB1g — Brogllllun — pll]
<llpu = pIP = X = 0)lllgn = 0 + g = pIF + llow =y + p = qII*1 + 2p2]1Bop — Bogll
X |[on = qll + 2p111B1g — Byog|llluy, — pll-
This immediately implies that

(1= on)lllgn = vn + g = pI* + llog — i + p = qIP°]
< lpn = pIP = Iz = pI* + 2p211Bop — Bagullllon — qll + 2u111B1g — Byvalllluy — pl|
< lpn = zall(lpn = pll + 11z = pll) + 2p2l|Bap — B2gallllon — 4l

+2u111B1g = Byoyllllu, — pll.

Since p,, —z, — 0, and 0 < liminf,_,oo(1 — 0,,), from (8) and the boundedness of {u,}, {v,}, {px}, {zx} we obtain
that

lim [lg, — vy + g = pll = lim [lo, — ux +p =gl =0,



L.-C. Ceng et al. / Filomat 38:29 (2024), 10351-10372 10359
which hence yields
gn = Gaull = 1gn = tull < 119w = 0w + g = pll +llon —un +p—qll = 0 (n — o0).

This immediately implies that
“xn - Gxn” < “xn - Qn“ + “qn - qu’l” + “GQn - Gxn”

(10)
< 2|lx, - ‘711” + ”5]71 - GQn“ -0 (n— o).
We show that lim,,_,« |lx, — Wx,|| = 0. In fact, it is readily known that
Iy = Waxnll < llxn = Wrxyll + [[Wixy — Wl
< lxu = Waxyll + sup||W,p — Wpl|,
peD

where D = {x, : n > 1}. Using Proposition 2.3, from x,, — W,x, — 0 we get

lim ||x,, — Wx,|| = 0. (11)
n—oo

Next, let us show z € VI(C,A). In fact, since C is of both convexity and closedness, from {y,} ¢ C
and y,, — z we get z € C. In what follows, we consider two cases. In the case of Az = 0, it is easy
to see that z € VI(C,A) (due to (Az,w —z) > 0, Yw € C). Let Az # 0. Since y,, — zas k — oo,
using the condition imposed on A, instead of the sequentially weak continuity of A, one gets 0 < [|Az|| <
liminfy e [|Ayyll. Thus, we might assume that ||Ay,, || # 0, Yk > 1. Meanwhile, from v, = Pc(q, — C,Aqy),
we have (g, — C,AGn — Yn, w — yu) <0, Yw € C, and hence

1
=—Gn = Y, W = Yu) + AGn, Y — Gn) < {AGu,w — qn), Yw e C. (12)

By the uniform continuity of A, one knows that {Ag,} is bounded. Note that {y,} is bounded as well. Using
Lemma 3.2, from (12) we get lim infy_,oo(Aqp,, w — q4,) =2 0, Yw € C. Moreover, note that (Ay,, w — y,) =
(AYn — Agn, W = qn) + {AGy, W = Gu) + (AYn,qn — Yu). Noticing g, — v, — 0 and the uniform continuity of A,
we have Ag, — Ay, — 0, which hence yields lim infy_,e(AYp,, w — y,,) > 0, Yw € C.

To obtain z € VI(C, A), we now pick a sequence {6x} C (0,1) s.t. O | 0 as k — oo. Yk > 1, one denotes by
Iy the smallest positive integer s.t.

(AYn;, W = Yn) + 0 20, Vj>I (13)
Since {6} is decreasing, it is clear that {/;} is increasing. Noticing Ay;, # 0, Yk > 1 (due to {Ay,} C {Ayy,}), we
putv;, = ”Af‘y%, and hence get (Ay;,, v,) =1, Yk > 1. So, from (13) we have (Ay,, w+0rv;, —y1,) = 0, Vk > 1.

k
Also, by the pseudomonotonicity of A one gets (A(w + oxvy,), w + Okvy, — yi,) = 0, Yk > 1. This immediately
arrives at

<AZU, w — ylk> > <Aw - A(w + 6kvlk),w + 6kvlk — ylk> - 6k<Aw, vlk>, Vk > 1. (14)

Let us show that limy_,., Ok, = 0. In fact, noticing {y;,} C {y,} and o | 0 (k — o0), one concludes
limsup,_, . 0k
I = liminfise lAy Il

that 0 < limsup,_,, [I6xv,]l = limsup,_,, Aéykl = 0. Accordingly, one has 6v, — 0 as
k

k — oo. So, letting k — oo, one deduces that the right-hand side of (14) tends to zero by the uniform
continuity of A, the boundedness of {y;,}, {v,} and the limit lim_,., 5xv;, = 0. Consequently, one obtains
(Aw, w — z) = liminfy_,o.(Aw, w — y;,) 2 0, Yw € C. By Lemma 2.8 one has z € VI(C, A).

Next we show that z € Q. In fact, noticing x,,, — z and x,, — Wx,,, — 0 (due to (11)), from Proposition 2.2
and Lemma 2.10 we get the demiclosedness of [ - W at zero, which hence ensures z € Fix(W) = (2, Fix(5¢).
Also, using (9) and (10) we have x,,, — Sx,, — 0 and x,,, — Gx,,, — 0, respectively. In addition, from Lemma
2.10 it follows that I — S and I — G both are demiclosed at zero, and hence we get (I —S)z = 0and I -G)z =0,
i.e., z € Fix(S) N Fix(G). Therefore, z € (., Fix(Sx) N Fix(G) N VI(C, A) = Q with Sy := S. This completes the
proof. O
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Theorem 3.5. Suppose that {x,} is the sequence generated in Algorithm 3.1. Then

+1
S'x, — S x, — 0,

X, 2ox e &
sup,.q |lxy — xp-1ll < oo,

where x* € Q is only a solution of the HVI: ((uF — f)x',p—x*) >0, Ype Q.

Proof. Thanks to 0 < liminf, .., < limsup,_, By < 1 and lim, e g—’”, = 0, we might assume that {,} C

[a,b] € (0,1) and 0, < @, ¥n > 1. We first show that Po(I — uF + f) : H — H is a contractive map. In
fact, by Lemma 2.12 one has that Vx,y € H,

IPo(I = uF + f)(x) = Po(I = uF + )l < [1 = (7 = 0)]llx - ylI,

which ensures that Po(I — uF + f) is contractive. Banach’s Contraction Mapping Principle guarantees that
there exists a unique fixed point of Po(I — uF + f). Say x* € H, i.e., x* = Po(I—- uF + f)(x*). Thus, 4 | (solution)
x* € Q =2, Fix(Sx) N Fix(G) N VI(C, A) of the HVL:

((UF = f)x",p—x")>0, Vpe. (15)
It is now easy to check that the necessity of the theorem is true. In fact, if x, — x* € Q, then we know that
x* = Sx* and
18" %, = $™ | < 18" % = x| + [lx" = S wll < 2+ Oy + Ol = X[l = 0 (1 — 0).
In addition, it is clear that

lln = Xnaall < [l = 27 + llx" = Xpiall = 0 (12— 00).

Next we show the sufficiency of the theorem. To the goal, under the condition S"x,, — $"*!x, — 0 with
sup,. [lxy — xp-1l| < 0o, we divide the proof of the sufficiency into several steps.

Step 1. We show that {x,} is bounded. In fact, take an arbitrary p € Q = 2, Fix(Sx) N Fix(G) N VI(C, A).

Then Gp = p, p = Pc(p — C,Ap), Sup = p, Yn > 0, and the inequalities (6) and (7) hold, i.e,,

lzs =PI < llgn = pIP = (= V)llyn = 24l = A =)y = qall®, (16)
and

19, =PI < llpn = PIP = llpn = qal. (17)
Combining (16) and (17), guarantees that

lizn = pll < llgn = pll < llpn —pll, Yn=1. (18)
By the definition of p,, one gets

P = pll < IWaxn = pll + €nllWad = Wiyl

En (19)
< lx, — PH + enllxy = xp-1ll = llxy — P|| +ay - a_”xn = Xp—1ll-
n

Since sup,,.,(¢,/a,) < oo and sup, ; [|x4-1 — xu|| < o0, we know that sup, _, ;—lexn_1 — x,|| < 0o, which hence
ensures that AM; > 0 s.t.

Z—”uxn — el <My, Vn> 1 (20)

n

Combining (18)-(20), one obtains
lzw = pll < llgn = pll < llpw = pll < llxn —pll + @My V1> 1. (21)
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Thus, using (21) and a;, + f, <1 Vn > 1, from Lemma 2.12, we obtain

IIxp1 — P|| = “anf(xn) + BnXn + (1 - ,Bn)l - anHF)Sntn - P||

=l (f(en) = p) + BuCn = p) + (1 = an = i)l ja;ﬁ_” , (-1 f”ﬁn uE)S"ty
(1——ﬁuF)p] f—”ﬁa—mp}u
= llaa(f ) = FP) + Bl = p) + (1 = BT = 5 ﬁ”‘F)Snt ~(I- ﬁ ]
+ a(f = uF)pll
< anllf () = FO+ Ballra — pll + (1 = I by~ (1~ ﬁ
+ ayll(f - uF)pll

< andlfxn = pll + Bullrn —pll + (1 = fu)(1 = 7 fnﬁ (1 + Ou)lltn — pll + anll(f — uF)pll

< anénxn - P” + ,Bn(”xn - P|| + aan) + (1 - ,Bn - anT)(”xn - P” + aan) + Qn”tn - P||
+aul|(f = uF)pll
an(T - 6)(”9(,, - PH + (Xan)
2

< a0 + Bu + (1= By — an?)llxn — pll + @My + + aul|(f — uF)pll

(T —0)
2

<[1- lllxn = pll + an @My + [I(f = uF)pll)

n(T—0 n(T—0) 22M - uF
WDy =) 224~ DD

2(2M; +|I(f - MF)P”)}
) ’

=[1-

< max{|lx, — pll,

By induction, we obtain

2M; + I(f - HF)PH)}

— VYn>1. (22)

llxn = pll < max{llx; —pl|,

Therefore, {x,} is bounded, and so are the sequences {g,}, {p.}, {v LA @)b AAY), (WL}, {S™ ).
Step 2. We show that

(1= Bu = D)1 = )1 = )lIps = Gull® + (1 = V) (Il = 2l
1Y = gall®) + VI = 2alP1 < ey = pIP = %1 = pIP + (@ + 6,)Ma,

for some My > 0. In fact, observe that

1- n
ot = = @ FC5) =)+ B =)+ (1=, = o)
dn
xI( by — (= —ﬁHF)P] T—ﬁn(l — ubpl
=an<f<xn>— o+ Pl =)+ 01
-
L
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Then by inequality (2), Lemma 2.12 and the convexity of the function ¢(s) = s, Vs € R, we get

an 2
1 uE)plll

I1Xp41 — P||2 < ”an(f(xn) - f(P)) + ,Bn(xn - P) +(1 - AB”)[(I - — ﬁn

+ 20 ((f — uF)p, Xpe1 — p)
< [adllxy = pll + Ballx, —pll + (1 = o)1 -

ay ne
1 ﬁyP)Stn (I

— Pn

Qp

1-8 T)(1 + Op)llt, — P||]2
! (23)
+ 20,{(f — uF)p, Xns1 — p)

= [aadllxy = pll + Bulln = pll + (1 = Bu — au)(1 + O,)lltw — plII?
+ 20,((f = uF)p, xp1 = p)
< adllxy = pI* + Bullxn = pIP* + (1 = Bu — anT)(1 + O)lIty — pII* + uM,
(duetoa,0+pn+(1—PBn—a,7)(1+0,) < 1-a,(t-0)+0, <1- @), with sup, ., 2||(f = uF)pllllx, —pll < Ma
for some M, > 0. Using Lemma 3.3, from (23) we get
Xns1 = I < @ndlixn = pl> + Bullxn = pIF + (1 = B — T + O)lItw = pIP + auMy
= a0y — pI* + Bulln — pIF + (1 = B — anD)[Vllxw = pIP* + 1 = v)llzs — pIP
—v(1 = V)llxy = zlPP] + Oulltn — pIP* + M
< a,dllxy — I + Bullxn — pIF + (1 = B — awDWllxn — pI* + (1 = V)[lips — pI
— (= 0llpn = Gl = @ =)y = 2ull* + 1y = Gul )] = (1 = V)l — 2l P}
+ Oullty = plI* + ctuMs.

(24)

Also, from (21) we have
llpn =PI < (lxn = pll + aMy)?
= |lx, — P”z + an(2M1||xn - P” + anM%) (25)
< ey = plI* + auMs,

where sup, . 2M;|x, — pll + oan%) < Mj3 for some M3 > 0. Combining (24) and (25), we obtain
Xns1 = pIP < @dlixn = pl* + Bullxy = pIP + (1 = Bu = awD){vllx, = plP* + (1 = v)

X [l = plP* + Mz = (1 = a)llpn = Gall® = (1= V)WY = 2l + 1y = gal?)]
—v(1 = V)llxy = zulPP} + Oulltn = pIP* + M
< 1= an(t = 0)lly = plP = (1 = Bu = aw D)X =) = 0l = gull® + (A = V)llyn = zal
+ 1y = Gl P] + vy — zalP} + Oullty — pIP + €uMy + M
< e = plP = (1= B = D)1 = V(L = )llpn = Gull* + (1 = V)Y — 2l
+11Yn = Gall?) + viie = 2alP] + (@ + 6,)Ma,
where sup, ., (Ilt, — p||2 + M3 + My) < My for some My > 0. This immediately implies that
(1= Bn — )L = VA = 0)llpn = Gull® + A = V)Y = zal® + 1y — gall®) + viixw = 24l] 26)
< lln = pIP = buss = pIP + (@ + 6,)Ma.
Step 3. We show that

2
%1 = pIP < [1 = an(t = O)lllxn = pIP + ava(T - N5 ((f = uF)p, X1 = p)

M En 971
+ T— 6(an3llxn Xl + 2, )
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for some M > 0. In fact, we have

I = pIP < (lxn = pll + enlls — xa-1l)?

(27)
= |l = pIP + enllxn — x0-alllxn = pll + enllxn — xa-l))-

Combining (21), (23) and (27), we have

1 = PIF < audllxy = pl* + Bullcy — pIP + (1 = By — awT)(L + Op)lltn — pI* + 2a5((f — pF)p, Xns1 — p)
< aullxy = pIP* + Bully = pIP + (1 = B — awDllty — pI* + Oullts — pIP* + 20, ((f — uF)p, Xns1 — p)
< a0l = pl* + (1 = an)lllxn — pIF + enlltn = xuallllxn = pll + enllxn = xu-1l)]
+ Oullty — pI” + 200 ((f — pF)p, Xue1 — p)
< [1 = an(t = O)]lxn = pIP + ealln = xualI2lIx, = pll + €nllxy — Xaoall) (28)
+ Oulltn — pII* + 200((f = UF)p, Xns1 — P)
< [1 = au(t = O)llxn — pIF + (enlltn — Xu-1lI3 + 6,)M + 20, ((f = uF)p, Xps1 — p)

2((f — uF)p, xp1 — p) N M

= [1 = ay(t = )]l = pIP* + (T = O)] R -5

I3 0
(=3llxy — Xl + =)],
Qn Qp

where sup, . {llxu — pll, enllxn — xu-1ll, It — pll?} < M for some M > 0.
Step 4. We show that {x,} converges strongly to the unique solution x* € Q of the HVI (15). In fact,
putting p = x*, we deduce from (28) that

1 = 217 < [1 = (T = O)]lln = 217 + (T = )

2{(f — uF)x*, x41 — X*) M &, 6,
VB =) | M ey e 21 o)
-0 T—0 ay ay

Putting ', = ||x, — x*||?>, we show the convergence of {I';} to zero by the following two cases.
Case 1. Suppose that there exists an integer ny > 1 such that {I';} is nonincreasing. Then the limit

limy e Iy = d < 400 and lim,, o (T, = T141) = 0. Putting p = x*, from (26) and {,} C [, b] € (0, 1) we obtain

(1=b-a,0)A =1 = on)llpn — gal* + (1 = )Yn = zal® + lyn — qull®)
+ vl = zalP1 < (1 = B — an ) (L = V(L = au)llpn — Gal®
+ (L =)y = zall® + Y — qull®) + vlixn = 24l ]

< e = %17 = Il = X\ + (@ + 0,)My = Ty = Tpiq + (@ + 0,,)Ma.

Noticing 0 < v <1, 0 < liminf, (1 —04), @y = 0, 6, = 0and I, — T';41 — 0, one has

Lim [lpy = gull = lim [y = 24l = lim [y = gall = lim Jlx, =24l = 0. (30)
Thus, we get

n = yull < M1xXn = zall + llzn = yull > 0 (n — ), 31)
and

”Pn —zyl| < ”Pn - qn” + ”qn - yn” + ”]/n —-zyl =0 (n— oo) (32)
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Moreover, noticing x,41 — X* = B, (x, — x*) + (1 = Bu)(S"ty — X*) + an(f (x,,) — uES"t,), we obtain from (21) that

1 = X1 = 1B (¥ = X7) + (1= Bu)(S" by = X°) + an(f(xn) — uFS"t,)IP
< B = X7) + (1 = Bu)(S"tn = NP + 2 (f (x0) = HFS" ), X1 = X°)
< Bulln = X1 + (1 = Bu)lIS"ty = X°IP = Ba(1 = Bu)llxn — S"tll?

+ 2llevn(f () — uFS" tn) X1 — 27l
< Bulltn = I + (1 = Bu) (A + 0, M1t = X1 = Bu(1 = B)llxu — S"tl?
+ 20, (L f Cenll + IUES" tulDllxnsr — 27l
< Bu(1+ 0 (Ihw = X1l + nM1)” + (1= Bu)(1+ 0) (Il — Il + ctuM)®
= Bu(L = Bu)llxy = S"tull® + 20 (Il f ()|l + IES" tulDlxsr = 7l
= (14 0, = X'l + @uM1)* = Bu(1 = Ba)llxy = S™8I
+ 200, (Il f (o)l + IUES" EulDllxnsr — 27l
= (14 0, = 21 + (1 + 0, @M 2l — X°l| + M
= Ba(L = Bl = S"tull® + 2a (1 f Il + IES" tulDllas1 = 271,
which immediately arrives at
Bu(L = Bulllxn = S"tall? < (1 + 0,2l = X1 = [lxsr = X1
+ (1 + 0,)apMi[2llx — X7l + @] + 200 (L f )l + IUFS™ bl |1 — X7
< (1+0,)°T, — Ty + (1 + 0, M 287 + auMi] + 20 (| f (el + ES" £, [DE:

n+l°
Since 0 < liminf, o f, < limsup,_, B, <1,0, =0, &y =0, I, -T,;1 = 0and lim, .o I, = d < +00, from
the boundedness of {f(xy)}, {S"t.}, we infer that
lim ||x,, — S"t,|| = 0.
n—o0
So it follows from Algorithm 3.1 that

141 — xall = ”anf(xn) +(1- ,Bn)(sntn —Xy) — ocnyFS”th
< (1= BlIS"tn = xull + aull f (xi) — wES 4l (33)
< 18"ty = xall + (Il f eIl + [[WES™ Eall) > 0 (7 — o0).

From the boundedness of {x,}, it follows that there exists a subsequence {x,,} of {x,} such that

lim sup{(f — pF)x*, x, — x*) = ]}im((f — uF)x*, x,, — x%). (34)

Since H is reflexive and {x,} is bounded, we may assume, without loss of generality, that x,, — x. Thus,
from (34) one gets

lim sup{(f — pF)x*, x, — x*) = I}im((f — uF)x*, xy, — x") )
H—c0 —oo 35
= ((f - pPx, T - x°.

Since x;, — X441 = 0, x4, —y, = 0, pp — 2, — 0 and S"x, — Sy, — 0, by Lemma 3.4 we infer that
X €€ wy({xy}) € Q. Hence from (15) and (35) one gets

lim sup{(f — uF)x", x, —x*) = {(f — uF)x",x —x") <0, (36)

n—o0
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which together with (33), leads to

lim sup((f — E)X", X1 — x°) = Hmsup[{(f — pF)X’, Xus1 = %) + {(f = pEIX', 2 — 2]

n—oo n—oo

< limsuplll(f — uF)x"lIIXns1 = xull + <(f — pF)x", %, —x)] < 0.

n—oo

Note that {a,,(t — 0)} € [0,1], Yy @n(T = 6) = 00, and

(37)

2 — F £ ” — *
lim sup| ((f = uF)x*, xp1 x)+ M

En O
—3 — x|+ —)] £0.
s - (Bl + L]

Consequently, applying Lemma 2.9 to (29), one has lim,,_,c ||x, — x|? = 0.
Case 2. Suppose that A{I',,} C {I';} s.t. Iy, < Iyo1, Yk € N, where N is the set of all positive integers.
Define the mapping 1y : N — N by

P(n) := maxfk < n: Tp < Tiiq).
By Lemma 2.11, we get
FW) < r¢(n)+1 and l"n < F¢(n)+1.
Putting p = x*, from (26) we have
(1= b= aymn)A = I = apmliPem — quml® + @ = V)Y — 2l
+ 1y = Guel?) + ViPge = ZponlI’]

< (1= By — @y DL =)L = opalipwe — ool + @ = V)UIYpey — Zpmll*

) ) (38)
+ Yy = Guanll”) + VI = 2y I°]
< gy — XM = g1 — XN + (@ + Oy Ma
=Ty = Ty1 + (@pe + Oyn)Ma,
which immediately yields
Hm [lpyon = qyenll = B0 1Y gon = 2peoll = B Yy = queoll = Hm llxye = zgell = 0.
Utilizing the same inferences as in the proof of Case 1, we deduce that
,}g{}o Xy = Yomll = }ggo Py — Zpwll = ;}Lnolo Ixymy+1 — Xymll = 0,
and
lim sup{(f — uF)x", xy(m)+1 — x*) < 0. (39)
n—oo
On the other hand, from (29) we obtain
2((f = ub)x", xpms1 =X M Eym) Oy
aw(n)(qj - 6)r¢(n) < rlp(n) - F¢(n)+1 + aw(n)(’t - (S)[ -5 + — 6(C¥Lp(n) 3l|x¢(n) - x#’(n)*l” + m)]
2(f = pb)X, Xy =X M €y Oy(n)
< aym (T —0)[ > o 6(a¢(n)3||xlp(n) = Xy(m)-1ll + o )
which hence arrives at
2{(f — uF)x*, x —-x*) M € 0
lim supI'y < limsup| (=ub et + Ll b

( Bllxy ) — Xyp@m-1ll + ——)] < 0.
a

00 o0 T—0 =0 aym) ()
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Thus, limy—c [lXy@) — x*[1 = 0. Also, note that

lrcpnyer = X1 = Iocyiny = X°IF = 20 g1 = Yoy, Xpey — X7 + Xpemye1 — Xpe|P (40)
< 2llxepmy+1 — Xpelllxpe — x°1 + xpea — Xpl

Owing to I'; < Ty()+1, we get

Il = 1P < gy — 1P
< ey = X1 + 2lxpemye1 — Xpelllxpe — X1+ [Xpm+1 — Xpel* = 0 (1 — o).

That is, x, — x* as n — oco. This completes the proof. [
According to Theorem 3.5, we can obtain the following corollary.

Corollary 3.6. Let S : H — H be nonexpansive and the sequence {x,} be constructed by the modified version of
Algorithm 3.1, that is, for any initial x1,x9 € H,

Pn = Whx, + gn(wnxn - ann—l)/

Gn = OuPn + (1 - an)un/

tty = T (U — t11B10y),

Op = TSZZ (qn - #232‘171)/

Yn = PC(Qn - CnAQn)/

Zy = PC” (qn - CnAyn)/

ty =vx, + (1 =v)z,,

Xn+l = anf(xn) + BuXn + (- ,Bn)l - an‘UF)Stn/ Yn>1,

(41)

where for each n > 1, C, and C, are chosen as in Algorithm 3.1. Then x, — x* € 2 & sup,. [[xy — x4-1]| < o0,
where x* € Q is the unique solution to the HVI: ((uF — f)x*,p—x") >0, Vpe€ Q.

Next, we put forth another modification of relaxed inertial subgradient extragradient implicit rule with
line-search process.

Algorithm 3.7. Initial Step: Giveny >0, v € (0,1), £ € (0,1). Let x1,x0 € H be arbitrary.

Iterative Steps: Compute x,.1 below:

Step 1. Calculate p, = Wyxy + €,(Wpxy — Wyxp—1) and g, = oupn + (1 — 0p)tty, with u, = Tf:)f (vn = u1B1vy)
and v, = Tp(qn — 12Baqn).

Step 2. Calculate y, = Pc(qn — CuAqy), with C, being chosen to be the largest C € {y, y€, (2, ...} s.t.

CllAGn = Ayall < Vlign = yull- (42)

Step 3. Calculatet, = vz,+(1-v)S"t, withz, = Pc,(§,—ChAyn) and C, := {y € H : (g —CnAGu—Yn, Yn—y) = 0}.
Step 4. Calculate

Xn+1 = Anf(Xn) + Buxn + (1 = Bu)] — ayuF)S"t,. (43)
Set n :=n + 1 and return to Step 1.

Theorem 3.8. Suppose that {x,} is the sequence generated in Algorithm 3.7. Then

+1
S"x, —S"x, =0,

x, ox e o
Supnzl “xl’l - xn—l” < 0,

where x* € Q is only a solution of the HVL: ((uF — f)x',p—x*) >0, Ype Q.
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Proof. Using the same arguments as in the proof of Theorem 3.5, we deduce that there exists the unique
solutionx* € Q = (N2, Fix(Sx)NFix(G)NVI(C, A) to the HVI (15), and that the necessity of the theorem is valid.
Thanks to lim,,_, 2—: = 0, we might assume that {0,,} € [0,v) and 0, = 0, (V i )2) < “”(T 9 ¥n>1.In
what follows, we show the sufficiency of the theorem. To the goal, under the condltlon S”xn - S””xn -0
with sup,.; [lx, — x,-1l| < oo, we divide the proof of the sufficiency into several steps.

Step 1. We show that {x,} is bounded. In fact, noticing t, = vz, + (1 — v)S"t, and the asymptotical
nonexpansivity of S, we get

Ity = pll < vllzw = pll + (A = V)IIS"t, = pll
SVllzn = pll + (1 =v)(1 + O,)lIt, = pll
<z = pll + (1= v+ O)lIt, = pll.

This together with (21), ensures that

0, 0,
I = pll < (1 ="Ml = pll < (14 =)o = pll + ), Vi 2 1. (44)

O
From a,, + B, <1, Lemma 2.12 and (44) it follows that

[1Xp41 — P” = “an(f(xn) - f(P)) + ﬁn(xn -p)+(01- ﬁn)[ (-

UF)S"t, — (

1ﬁn 15

ﬁn 1= [5
(L + Ou)litn = pll + aull(f — uF)pll

T1- ﬁ

< aullf(xn) = FPI + Bullxn — pll + (1 = Bl - uF)S"t, — (I -

(f uEpll

< adllxn — pll + Ballxn — pll + (1 = Bn)(1 - 5

< a0l = pll + Bullxn — pll + (1 = Bu — au7)(1 + ”

O
— gV llzw = pll + aul(f = pFpl

< a0llcy = pll + Bulllcn = pll + auMy) + (1 = By — an?)(|lxn — pll + @uMy) + Oylizy — pll + anll(f — uF)pll
an(T - 6)(”xn - P” + O(an)

< [ano + Bn + 1- Bn — an)]llx, — P|| +a, My + 5 + an”(f - [JF)P”
<11 - 2Dy, i+ a2ny +1F ~ Yl

22Mi +1I(f — uF)plD)
-5

)

< max{|lx, —pll,

By induction, we obtain

202My + I(f - #F)PII)}
-5 ’

Therefore, {x,} is bounded, and so are the sequences {g,}, {pu}, {yn}, {zn}, {f(cn)}, (Ayn), {Wax,), {S" ).
Step 2. We show that

(1= Bn = an{(1 + 0,)*[(1 = ou)llpn = Gull® + (1L = v)(Ulyn = zall? + lyn = galIP)]
+V(1 = v)llzy — S"tallP} < Nl — pIP = xus1 — pIP + (@ + 6, + 6,)My

llxn = pll < max{llx; —pl|, Yn > 1.

for some M > 0. In fact, by inequality (2), Lemma 2.12 and the convexity of the function ¢(s) = s?, Vs € R,
we get

vt = PIP < llata (Fxa) = () + Bl =) + (1= Bl = 7= ﬁn ﬁ

+ 20, ((f — uF)p, Xn+1 — p) (45)
< [andllxn = pll + Bullxn — pll + (1 = Bu — D)L + Op)litn = P + 20{(f = uF)p, Xns1 — p)
< apdllxy = pl* + Bullxn = pIP + (1 = By — anT)(1 + O)llts — pIP + €uy

uF)S™t, — (I - uF)plIP?
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(due to ayd+ By + (1= By —anD)(1+0,) < T—ay(t—08)+6, < 1-20=2) with sup,_, 2lI(f — uF)pllilx. —pll < Ma
for some M, > 0. Using Lemma 3.3, from (45) we get

xns1 = pIF < andliy = pI* + Bullxn — pIF + (1 = B — auT + On)litn — pI* + M,
= a0y — plI* + Bullxn — pII* + (1 = By — aw)Vllzw — pIP + (1 = v)IIS"t, — plI?
—v(1 = V)llzu = S"tlPP1 + Oulltn — pI* + auMs
< aydllxy = plPP + Bullxy = pI* + (1 = By — awD)Vllzn — pIF + (1 = v)(L + 0,)llzn — pI?
—v(1 = V)llzn — S"tullP] + Oullts — pI* + uM>

. (46)
< audllxn = pIP + Bullxn = pI* + (1 = Bu — aw)[(1 + 0,)lIz0 — pII
—v(1 = V)llzu = S"tllP1 + Oulltn — pI* + auMs
< audllxy — pIF + Bullxn — pIF + (1 = B — awIA + 0,)[llpn — pII?
-(1- Un)llpn - inlz -(1- V)(Hyn - Zn”2 + ”yn - q;1||2)]
- V(l - V)”Zn - Sntn”z} + Oullt, — P”Z + a, M.
Also, from (21) we have
llpn =PI < (s = pll + anMi)* < llxy — pIP + M, (47)

where sup, ., 2M;|x, — pll + anM%) < Mj3 for some M3 > 0. Combining (46) and (47), we obtain

Ixne1 = pIP < andliy = pli* + Bullxn — pIP + (1 = Bu — an (L + 0,)?[llxy — pII?

+a,Ms — (1= 0p)llpn = Gall® = (1 = V)Y = 2al® + 1y = gal*)]
—v(1 = V)llzn — S"tall*} + Oullts — pI* + uM>

<[1 = au(t = )y = pIF = (1 = Bu — a1 + 62)*[(1 = 0)llpn — gull®
+ (L= v)(lYn = zull® + lyn = gul)] +v(L = V)llzn — S"talPP} + Oullts — pIP
+ My + ayMs + 0,2 + 6,) (X, — plI* + @uMs)

<llew = plP = @ = Bn — aw (L + 6,)*[(1 = 0)llpn — gulP* + (1 = v)
X (1yn = zall® + llyn = Gul>)] +v(1 = V)llzw = S"tall?} + (@ + O + 6,)Ms,

where sup, . {llt, = plI* + Mz + My, (2 + 0,)(llx, — plI> + a,Ms)} < My for some My > 0. This immediately
implies that

(1= Bu = (A + 0,11 = 0)lIpn = gal® + (1 = V)(lyn = zal* + [y = Gl )]

ng 112 2 2 al (48)
+ V(1= Vllzn = S"tlP} < 1w = pIP = s = pIF + (@ + O + 0,) M.

Step 3. We show that

2
l1Xp41 — P||2 <[1- an(T - 6)]“xn - P||2 + (T - 6){m<(f - HP)Pr Xn+1 — P>
M ¢, 0, + 6,M
+ (S, — x|+ )
T—0 ay a

n

for some M > 0. In fact, it is clear that

”Pn - P”z <lx, - P”z + enllxn = X1l 2llx, — P|| + &xllxn = xXp-1l)). (49)
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Combining (21), (45) and (49), we have

et = PIP < andliy = pli* + Bullxn — pIP + (1 = Bu — anT)(L + Oty — pIP + 2a,((f = uE)p, Xns1 — p)
< adllxn = plP* + Bullxy = pI* + (1 = Bu — aw)lltw — pI* + Oulltn — pI?
+ 20, ((f — pF)p, Xna1 — p)
< 011y =PI + Bl = pIF + (1 = B = @)1+ Bz — plP + Oullty — pIP?
+ 20, ((f = pF)p, Xna1 — p)
< by = plPP + (1 — au)(1 + B)lllxn — pIIF + €nllxn — x|l — pll
+ el = Xna )] + Oulitn — pIF + 2000{(f — uF)p, Xue1 — p)
< adllxy — pIP + (1= an Dl — pl? + enllxn — xuallll — pll + €nlln = x4 ll)] (50)
+ O(llxn = pll + nlly — xu-all)® + Oulltn = pI* + 200((f = uF)p, Xus1 — )
<1 = an(t = )y — pIP + enllxn = x0-1ll2lxn — pll + €nllxn — Xu1ll)
+ Ollty — pIP + Bulllxcy — pll + enllxn — xu-1ll)* + 2a,((f = UE)p, Xns1 — p)
<[1 = an(t = )y — pIF + (enllxn — xu-1l12 + Oy + OuMM + 20, ((f — uE)p, Xns1 — P)

2(f - uFp, % —p) M e,
(ZU Bt =P Mgl

— 11— _ —_ |2 —_
= [1 - ay(z = )l = pIF + a(x = ) . —=

6, + 6,M
+ —)]
&y

7

where sup, . {llx; — pll + €allxy — xp-all, Ity — pll*} < M for some M > 0.

Step 4. We show that {x,} converges strongly to the unique solution x* € Q of the HVI (15). In fact,
putting p = x*, we deduce from (50) that

. . 2((f — uF)x", xp1 — X*)
v = 1R < 11— (@ = 8)ly — X1 + ez — ) L T)_ 5 =

M ¢ 6, + 6,M
+ (_nszn — Xp1ll + ! )]
T—0 ay a

n

(51)

Putting T, = ||x, — x*|[>, we show the convergence of {T',;} to zero by the following two cases.
Case 1. Suppose that there exists an integer ny > 1 such that {I';} is nonincreasing. Then the limit
limy e Iy =d < +00 and limy,—, 00 (T'y — I'n11) = 0. Putting p = x*, from (48) and {B,} C [a,b] C (0, 1) we obtain

(1= b—a, {1+ 6,)°[(1 = on)llpn — qull® + @ = V)(lyn = zall® + 1y — gulP)]
+ V(1 = V)llzn = S"tallP} < (1 = Bn — a1 + 6,)°[(1 = a)llpn — qul®
+ (L =)(Ilyn = zalP® + llyn — gal>)] + v(1 = V)llzo — S"tal?}
<l = XN = e = X1 + (@ + Oy + 0,)My =Ty = Ty + (@ + O, + 0,)Ms.

Noticing 0 < v < 1, 0 < liminf,,«(1 — 0,), @y — 0, 6, - 0, 6, - 0and I, — T,,;1 — 0, one has
Al_l;l;lo”pn - Qn“ = Jl_l;l;lollyn - Zn” = 351010 “yn - %H = V]ZEI‘JO ||Zn - Sntn“ =0. (52)
Thus, we get

”Pn —zyl| < ”Pn - qn” + ”qn - yn” + ”]/n —zZyl =0 (n— oo) (53)
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Also, from (2) and (21), we obtain that
Xns1 = %I = [1Bu(n = x7) + (1 = Bu)(S"ty = X°) + tu(f(xn) — uFS"t,)I
< NIBalitn = %) + (1 = Bu)(S"tn = XM + 2 (f (x4) = uFS" ), Xps1 — )
< Bullew = x1P + (1 = BIIS" by = 1> = Bu(L = Bu)llxy — S"tul P
+ 2l (f(xn) = pES™ tp)llllxn41 — 7|
< Bullxn = I + (1 = B)(1 + 0,)l|zn = X1 = Bu(1 = u)llxu — S"tull?
+ 2a (I f Con)ll + |HES talDlIxns1 — X7
< Bl + 6,2l = X'l + @uM1)* + (1= Ba)(1 + 0,)*(llxy = x°ll + @My )?
= Bu(L = Bl = S"tul® + 2au (I f )| + IUFS" tl Dl xs1 — 7|
= (L+ 0, (Il = X'l + €aM1)* = Bu(L = Bu)llxy — S"tl?
+ 2a (I f Con)ll + |HES talDlIxns1 — X7
= (1+ 0,)llxy = XIP + (1 + 0, M [2]|x, — 7| + My ]
= Bu(1 = Ba)llxu = S"tull* + 200, (Il f )| + IUFS" tull) s = 271,
which immediately arrives at
Bu(1 = Bu)llxy = S"tull® < (1 + 6,)*lxy = X°IP = [lxus1 — x|

+ (1 + 0n) M1 [2llx, — x|l + @uMi] + 20, (L f Gl + NUES™ tal)) X1 — x|
< (1+0,)°T, = Topg + (1 + 0,)2a, My [2T2 + auMy] + 20, (|| f ()| + [|[LFS™t,]))T 2

n+1°
Since {f,} € [a,b] C (0,1), 6,0, a, >0, T, —Ty11 — 0and lim,_e I, = d < +00, from the boundedness
of {f(x,)}, {5"t,}, we infer that
lim ||x,, — S"t,|| = 0,

which together with (52), leads to

Ixn = yall < llxw = S"tall + 1S tn — zall + 2 = yull > 0 (n — o). (54)
In addition, it follows from (43) that

1Xp41 = xull = “anf(xn) +(1- ﬁn)(sntn - Xy) — anHFSntn“

. . (55
<NIS"tn = xull + an(ll fCe)ll + |uES™tall) > 0 (1 — o). )
Using the similar arguments to those of (37), we obtain

lim sup{(f — uF)x", xp+1 —x*) < 0.

Note that {a,,(t — 0)} € [0,1], Yy @n(T — 6) = 00, and

im Sup[2<(f —HRY X ) M
n—o0 T—0 =0

En O
(=2l — xp1ll +
Ay ay

Consequently, applying Lemma 2.9 to (51), one has lim,,_,c [lx,, — x*||* = 0.
Case 2. Suppose that A{I',,,} € {T';} s.t. Iy, < Iov1, Yk € N, where N is the set of all positive integers.
Define the mapping ¢ : N — N by

P(n) := maxfk < n: T <Tiiq).

By Lemma 2.11, we get
Fl/,(n) < r¢(n)+1 and T, < Fl/,(,,)“.

In the remainder of the proof, using the same arguments as in Case 2 of Step 4 in the proof of Theorem 3.5,
we obtain the desired assertion. [
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