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Abstract. In this paper, the concept of coordinatewise widely orthant dependent (CWOD) random vectors
is introduced. Some results on complete moment convergence of CWOD sequence and the convergence
properties of moving average processes based on CWOD are established in real separable Hilbert spaces. In
particular, the complete integral convergence and the complete convergence of moving average processes
based on CWOD are derived in Theorems 2.7 and 2.8, both of which guarantee the corresponding complete

moment convergence result (see Theorem 2.10). Theses conclusions are generalizations of [6], [15], [16],
[22] and [26].

1. Introduction

In many stochastic models, the assumption that random variables are independent is not reasonable.

One of the important dependent structure is widely orthant dependent (WOD) random variables which
was introduced by Wang et al. [27] as follows.

Definition 1.1. Let {X,,n > 1} be a sequence of random variables, if there exists a sequence of finite real numbers
{gu(n),n = 1} such that forallx; e R, 1 <i<mn,

n
P(X: > 1, Xo > X, , Xy > %) < gu(n) [ [ P(X > x0),
i=1

then we say that random variables {X,,, n > 1} are widely upper orthant dependent (WUOD). If there exits a sequence
of finite real numbers {gr(n),n > 1} such that forall x; € R, 1 <i<n,

n
lP(}(l < xerZ <X, /Xn < x‘rl) < gL(”) H]P(Xl < xi)r
i=1
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then we say that random variables {X,,n > 1} are widely lower orthant dependent (WLOD). If they are both
WUOD and WLOD, then we say that the random variables {X,,n > 1} are widely orthant dependent (WOD), and
gu(n), gL(n),n > 1 are called dominating coefficients.

From the definition of WOD random variables, many other dependent structure can be induced. When
gu(n) = gr(n) = M for some positive constant M, the random variables {X,,n > 1} are called extended
negatively dependent (END). The concept of extended negative dependence was introduced by Liu [20].
In the case M = 1 the notion of END random variables reduced to the so called negative orthant depen-
dence (NOD) or negative dependence (ND) random variables which was introduced by Lehmann [18].
Meanwhile, Lehmann also introduced that random variables {X,, n > 1} are said to be pairwise negatively

dependent (PND) if for all x, y € R and for all i # j,

PX; <x,X;<y) <P(X; <x)P(X; <),
which is equivalent to for all x, ¥ € R and for all i # j,

P(X; > x, X; > y) < P(X; > x)P(X; > y).

Joag-Dev and Proschan [10] pointed out that negatively associated (NA) random variables must be NOD
and NOD is not necessarily NA. Negatively superadditive dependence (NSD) is a notion proposed by Hu
[8], he emphasized that NSD implies NOD. Christofides and Vaggelatou [2] indicated that NA implies NSD.
From the above statements, we can conclude that independent random variables, NA random variables,
NSD random variables, NOD random variables and END random variables all belong to WOD random
variables. Therefore it is of great value to study the convergence behaviours of the WOD group.

As usual, let H denote a real separable Hilbert space with the norm || - || generated by an inner product
(-,-) and let {e;, j € B} (B is a set of positive integers) be an orthonormal basis in H. For any random vector
X in H, define X/ = (X, ¢;) to denote the jth component of X, then X = Lien XWe;.

In [6], Hien etal. introduced the notions of coordinatewise negative dependence (CND) and pairwise and
coordinatewise negative dependence (PCND) for random vectors in Hilbert spaces, which are extensions of
the concepts of ND and PND to real separable Hilbert spaces. Since WOD structure is a natural extension of
ND and PND, now we extend the concept of WOD to real separable Hilbert spaces and give the definition
of coordinatewise widely orthant dependence (CWOD).

Definition 1.2. Let {X,,n > 1} be a sequence of random vectors in H. If for all j € B, the sequences of random
variables {( Xy, ej),n > 1} are WOD with the common dominating coefficients gy (n) and gp(n), then random vectors
{Xy,n > 1} are said to be CWOD, gy (n) and g1(n) are called the dominating coefficients of {X,, n > 1}.

In the definition of CWOD, between two different coordinates, there are no WOD requirements and
repetitions are even rational. The following examples can help us better understand this concept. Consider
the real separable Hilbert space ¢, of all square summable real sequences with inner product

Xy = inyi forx = (x1,%2,+), y = (Y1, Y2, +)-
i=1
Let {e,, n > 1} denote the orthonormal basis of £, with 1 in its nth position and 0 elsewhere. Let {X;,i > 1}
be a sequence of real-valued WOD random variables and let p = (p1,p2,-** ,pn,--*) € 2, then {Y,, =
(p1Xn, P2 X, ,PnXn, ---),n 2 1} is a sequence of CWOD random vectors in {,. More generally, if for any

j=>1, {an, n > 1} is a sequence of real-valued WOD random variables and for each n > 1, 27):1 (X,, j)z < o0
a.s., then{X, = Y jeB Xnjej, 1 = 1} is a sequence of CWOD random vectors in 5.

It is well known that complete convergence and complete moment convergence play important roles in
the probability limit theory and mathematical statistics. A sequence of random variables {X,,,n > 1} is said
to converge completely to random variable X if for any ¢ > 0,

21{)(|xn —X|>€) < 0.

n>1
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This concept was introduced by Hsu and Robbins [7]. Moreover, they proved that the sequence of arithmetic
means of independent identically distributed (i.i.d.) random variables converges completely to the expected
value if the variance of the summands is finite. The Borel-Cantelli lemma ensures that complete convergence
implies almost sure convergence. The concept of complete moment convergence can be found in Chow [1]
as follows.

Definition 1.3. Let {X,,, n > 1} be sequence of random variables and a,, > 0,b, > 0,9 > 0. If for any € > 0,

Y a5 1Xl - €] < o,

n=1
then {X,,, n > 1} is said to be complete moment convergence.

It can be easily proved that complete moment convergence implies complete convergence. Recently,
some researchers investigated complete moment convergence in Hilbert spaces. For example, Ko [11,
14] established the complete moment convergence of CNA random vectors, Wu et al. [30] and Ko [15]
established the complete moment convergence of the weighted sums of p*—mixing random vectors, Ko [13]
derived the complete moment convergence for CAANA random vectors, Ko [17] investigated the complete
moment convergence for weighted sums of CANA random vectors.

Definition 1.4. Suppose that {Y;, —oo < i < oo} is a doubly infinite sequence of random variables and {a;, —co < i <
oo} is a sequence of absolutely summable real numbers. A moving average process generated by {Y;, —co < i < oo} is
defined as

0o

Xn = Z ain-M. (1)

=—00

Moving average processes is a concept with extensive applications in electronics, financial mathematics,
time series and so on. So it is of great significance to investigate its limiting properties. On the complete
moment convergence part, Qu [22] investigated the complete moment convergence of moving average
processes under END random variables, Li and Zhang [19] showed the complete moment convergence of
moving average processes under NA random variables, Wang and Shen [26] and Guan et al. [4] established
the complete moment convergence of moving average processes generated by m-WOD random variables,
Zhou [31] investigated the complete moment convergence of moving average processes based on ¢p—mixing
random variables, Zhou and Lin [32] established the complete moment convergence of moving average
processes based on p—mixing random variables and so on.

We point out the results above were established in classical probability space. To our best knowledge,
no one considered the complete moment convergence of moving average processes in Hilbert spaces. In
this paper, we will obtain some convergence conclusions about CWOD random vectors and the moving
average processes generated by CWOD random vectors in real separable Hilbert spaces. In particular,
the complete integral convergence and the complete convergence of moving average processes based on
CWOD are derived in Theorems 2.7 and 2.8, both of which guarantee the complete moment convergence
of moving average processes based on CWOD ( see Theorem 2.10). Throughout this paper, the symbol C
denotes a positive constant which is not necessarily the same one in each of its appearance.

2. Main results

Before giving the main results, we need to recall two domination conditions in Hilbert spaces. Let
{X,,n = 1} be a sequence of H-valued random vectors, Wu et al. [30] introduced that sequence {X,,,n > 1}
is coordinatewise stochastically upper dominated by a random vector X, if there exists a positive constant
C such that the following inequality holds forall j€ B,n > 1and t > 0,

r(

X0

> t) < CP(|X9] > t). 2
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Rosalsky and Thanh [23] proved that (2) is equivalent to
1P(|X§,f)| > t) <P (x9] > 1). 3

Another domination condition was introduced by Huan et al. [9]. Let {X,,n > 1} be a sequence of
H-valued random vectors, we say that sequence {X,,, n > 1} is coordinatewise weakly upper bounded by a
random vector X, if there exists a positive constant C such that the following inequality holds for all j € B,
n>1landt >0,

L Z P(|x7] > ) < cp (x| > 1). (4)
k=1

Thanh [25] proved that (4) is equivalent to

% Z P (|X,(f)| > t) <P (X7 > t). 5)
k=1

From Example 2.1 showed in Gut [5], it is obvious that (4) is weaker than (2), and both of them are weaker
than identical distribution.

In addition, we still need to recall the concept of slowly varying function, which was introduced by
Seneta [24]. A real-valued function k() is said to be regularly varying with index of regular variation p € IR
if it is a positive and measurable function on [A, o0) for some A > 0, and for each A > 0,

lim h1x)

= AP
X—00 h(x) AP

A regularly varying function with the index of regular variation p = 0 is called to be slowly varying. A
useful conclusion related to slowly varying function is that

{zﬁzl nh(n) = O (K*h(K)), if o > -1, ©

Yo nh(n) = O (k**1h(k)), if & < 1.

2.1. Complete moment convergence of CWOD random vectors

Theorem 2.1. Let p be a positive real number such that 1 <p < 2. Let {Y;,i > 1} be a sequence of CWOD random
vectors with dominating coefficient g(n) = O(n°) for some 0 < 6 < %, where 1 < r < 2 and h(-) be a slowly varying

function. Assume that {Y;,1 > 1} is coordinatewise weakly upper bounded by a random vector Y. If
Y EYO ™ h(Y0]) < o, @)
jeB

then for any € > 0,

i né‘z‘ih(n)JE[

n=1

n
Yi
k=1

_gn;} . ®)

Corollary 2.2. Under the conditions of Theorem 2.1, ifr = p,i.e. 0 < 6 < %—1, then} g E |Y(f)((1+6)p h (|y(f) |”) < oo
implies

i n_l_%h(n)]E [

n=1

Y
k=1

- sn;] < o0, 9)
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Remark 2.3. Qu [22] considered complete moment convergence of moving average processes based on END assump-

tion as
> 1 1 1
anz*ﬁh(n)na Zxk - enp] < oo, (10)
n=1 k=1 +

(e8]

where {Xi, k > 1} is a moving average process defined as X, = Y,io_o, aiYiwn, {8, —00 < i < oo} is a sequence of
absolutely summable real numbers and {Y;, —co < i < oo} is a sequence of identically distributed END random
variables with EY1 = 0. We extend (10) to CWOD random vectors in Hilbert spaces, but here we do not consider the
moving average processes based on CWOD or using the method provided in [22], the primary cause is that according

to Qu’s method,
n (o) n (o]
Z X = Z Zﬂi+kYi = Z aniYi,
k=1

i=—o00 k=1 i=—00

where ay; = Y.;_q Aivk, but inequality (23) does not apply to {Y;, —co < i < 0o}, {Yi, =00 < i < 00} o {Zj, —00 < i <
oo} (refer to the proof of Theorem 2.1 for the definitions of Yy and Zy;).

Theorem 2.4. Let p be a positive real number such that 1 < p < 2. Let {Y;,i > 1} be a sequence of mean zero CWOD
random vectors with dominating coefficient g(n) = O (nb log™ n) for some 0 <0 < %, where 1 < v < 2 and h(-) be

a slowly varying function. Assume that {Y;,i > 1} is coordinatewise weakly upper bounded by a random vector Y. If
(7) holds, then for any € > 0,

Z nb 2 h(n)E [max
1<s<n

n=1

k=1

Corollary 2.5. Under the conditions of Theorem 2.4, ifr = p,i.e. 0 < 6 < %—1, then}. ;5 E |Y(/)'(1+6)” h (|y(]’) |” ) < 00
implies

Z n_l_%h(n)]E [max
1<s<n

n=1

- en;] < 0. (11)
+

S

e

- en;] < o0. (12)
+

Remark 2.6. When ¥ ;s E|[YV)P < oo, Ko [15] established the complete moment convergence of H-valued p*-mixing
random vectors

(o)
_1-1
E n ~ *E|max
1<k<n

n=1

k

Z ani Y

- enﬂl’] < 00, (13)
+

where {ay;, 1 < i< n,n > 1} is a set of real numbers such that sup, ., n1 Yl lanil® < oo. Obuviously, this inequality
is satisfied for a,; = 1. Lemma 2.2 in [15] showed that p*-mixing random vectors {Y;,i > 1} satisfy the maximal

inequality ,
] <C) B,
i=1

which means g(n) = 1 compared with (23). But Ko did not consider the slowly varying function, so Theorem 2.4
extends Ko’s result from p*-mixing random vectors to CWOD random vectors in a certain sense.

k

Y

i=1

1<k<n

E [max

2.2. Complete moment convergence of moving average processes based on CWOD

Firstly, we will give a complete integral convergence result for a moving average process generated by
CWOD random vectors.
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Theorem 2.7. Let p be a positive real number such that 1 < p < 2. Let {a;, —co < i < oo} be an absolutely summable
sequence of real numbers and {X,, = Y.i2_., a;Yisn,n > 1} be a moving average process generated by a sequence of

mean zero CWOD random vectors {Y;, —co < i < oo} with dominating coefficient g(n) = O(n®) for some 6 > 0.
Assume that {Y;, —co < i < oo} is coordinatewise stochastically upper dominated by a random vector Y. If

YEN <oo, (14)
j€B
then
max Xil| > t]| < o0. 15
Z n(n1+(‘) log n)l/P j(;”"log n)l/p [1<s<n Z k ( )

n=

Theorem 2.8 is a complete convergence result for a moving average process generated by CWOD random
vectors.

Theorem 2.8. Let p be a positive real number such that 1 < p < 2. Let {a;, —oo < i < oo} be an absolutely summable
sequence of real numbers and {X,, = Yio_, 4;Yiwn,n > 1} be a moving average process generated by a sequence of
mean zero CWOD random vectors {Y;, —co < i < oo} with dominating coefficient g(n) = O(n®) for some 6 > 0.
Assume that {Y;, —oo < i < oo} is coordinatewise stochastically upper dominated by a random vector Y. If (14) holds,

then for any € > 0,

= 1
Z -P {max
n 1<s<n

n=1

£
k=1

Remark 2.9. Theorem 3.3 in Hien et al. [6] considered (16) under the case that {X,,, n > 1} is a sequence of identically
distributed mean zero PCND random vectors and 6 = 0, so Theorem 2.8 is a generalization of the work of Hien et al.
from PCND random vectors to moving average processes under CWOD random vectors.

> e(n'*?log? n)l/”} < 00, (16)

Combing Theorems 2.7 and 2.8, we finally achieve the following complete moment convergence con-
clusion.

Theorem 2.10. Under the conditions of Theorem 2.7 (or Theorem 2.8), we can also get

3l -

Remark 2.11. Ko [16] considered (15) and (17) under the condition that {X,,,n > 1} is a sequence of coordinatewise
PNQD random vectors and 6 = 0. Therefore, Theorems 2.7 and 2.10 extend Ko’s work from coordinatewise PNQD
random vectors to moving average processes generated by CWOD random vectors.

. 1+6 1/p
Z T Tog? n)l/PIE[1<s<n ¢(n'*log’n) ] < 0. (17)
+

n=1

3. Lemmas

In this section, we present some lemmas which will be used to prove the main results of the paper.
Firstly, we give three lemmas about WOD random variables, which can be found in Ding et al. [3] and
Wang et al. [28].

Lemma 3.1. ([28]) Let {X,,,n > 1} be WLOD (WUOD) with dominating coefficients gr(n),n > 1 (gu(n),n > 1).
If functions {f,(-),n > 1} are nondecreasing, then {f,(X,),n > 1} are still WLOD (WUOD) with dominating
coefficients gr(n),n > 1 (gu(n),n > 1); if functions {f,(-),n > 1} are nonincreasing, then {f,(X,),n > 1} are still
WLOD (WUOD) with dominating coefficients gr(n),n > 1 (gu(n),n > 1).
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Lemma 3.2. ([28]) Let p > 1 and {X,,,n > 1} be a sequence of WOD random variables with E|X,|P < oo for each
n > 1. Define g(n) = max{gu(n), gr.(n)}. Assume that EX,, = 0 for each n > 1 when p > 2. Then there exist positive

constants c1(p) and cy(p) depending only on p such that

E i Xi
i=1

p n

<[ei(p) + c2(p)g(m] ) | EIX, forl<p<2,
i=1

and

p n

<ai(p) ) EIX + ca(p)g(n)

i=1

E Z X;
i=1

i=1

n p/2
ZlE|Xi|2] , forp>2.

(18)

(19)

Lemma 3.3. ([3]) Let p > 1 and {X,,, n > 1} be a sequence of WOD random variables with EX,, = 0 and [E|X,,|P < oo
foreach n > 1. Define g(n) = max{gu(n), g.(n)}. Then there exist positive constants ci(p) and co(p) depending only

on p such that
P

k n
E max L Xi|| <lealp) + ca(p)g(n)]log? n; EIXilP, for1<p<2,
and
k P n n p/2
. p P p 12
E|max 2 Xi|| <cip)log n;IE|X,| + c2(p)g(n) log n(; E|X|

(20)

(21)

We extend Lemmas 3.2 and 3.3 to CWOD random vectors in Hilbert spaces under the condition1 < p < 2.

Lemma 3.4. Let 1 < p < 2 and {X,,,n > 1} be a sequence of CWOD random vectors in H with E |X,(1j)|p < oo for
each n > 1 and each j € B. Define g(n) = max{gu(n), gr(n)}. Then there exist positive constants c1(p) and ca(p)

depending only on p such that

n
2x
i=1

In particular,

p n
E <[a(p) + ca(pgm] Y, Y EIXPP, for1<p <2,

jeB i=1

2

(Y. Xi|| <ler+cagm] ) EIXI2
i=1 i=1

Proof. For 1 <p <2, from C, inequality and Lemma 3.2, we have

n p n 2\P/2
E(Y x| =E [Z Y X0
i=1 jeB |i=1
. 2\P/2
<) E [ Y xV
jeB i=1
n P
Y el
jeB  |i=1

<[er(p) + ca(p)g(m)] ) | ZH: E 'Xl('j)'p '

jeB i=1

The proof is completed. [

(22)

(23)
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Lemma 3.5. Let 1 < p < 2 and {X,,n > 1} be a sequence of CWOD random vectors in H with EX,, = 0 and

E 'Xilj) 'p < oo for each n > 1 and each j € B. Define g(n) = max{gu(n), g.(n)}. Then there exist positive constants
c1(p) and cy(p) depending only on p such that

k P n
E [1m]?x Z X|| < leip) + c2(p)g(n)] log? n Z Z EIXPP, fori<p<2. (24)
S | ey jeB i=1
In particular,
n 2 n
. 2 112
E [{13]?’(1 ; Xil|| <lc1+ c2g(n)]log™n ; E||I X~ (25)

Proof. The proof of Lemma 3.5 is similar to that of Lemma 3.4, so we omit it. [J

According to the properties of stochastic domination shown in Wu [29] and using the same proof
procedure as Lemma 3.1 in [21], we have the following lemma.

Lemma 3.6. If H-valued sequence {X,,, n > 1} is coordinatewise stochastically upper dominated by a random vector
X, then forall j € B, p > 0, M > 0 and for any k > 1, we have

i) E[x0[ I{|X,‘j)| < M} <E[XO[" [{|x0| < M} + MPP (|X0] > M),
(i) E X0 I{'X]((j)| > M} < E[xOf 1{jx%]| > M.

Lemma 3.7. If H-valued sequence {X,, n > 1} is coordinatewise weakly upper bounded by a random vector X in H,
then for all j € B, p > 0, we have

o )P 1y ol )P

i) if E|XO] < oo, then n ¥ E[x| < E[x0",
k=1

(ii) for any M > 0,

7l Z E (|ij)|p I {|X,(f)| < M}) < E (X0 1{[x7| < M}) + MPP (|XV] > M),

(iii) n~! é B (X0 f{[x7] > m}) < (x0T 1{[x0] > M),

Lemma 3.8. ([30]) If {Y;,1 <i < n}and {Z;,1 < i < n} are sequences of random vectors, then for any q > r > 0,
e > 0and a > 0, the following inequalities hold:

|

E [max

q r

n

Y (¥i+7)

i=1

n

e

i=1

n

Yo

i=1

q
] + C,E [max

+ C,E

7

- ea] <G, (e‘q + L)a"’ﬂE
g-r

+

n

>

i=1

n

L7

i=1

Zk‘(Yi +7Z)
pc

1<k<n q-—r 1<k<n 1<k<n

r
- ea] <C, (s“’ + L)LI""]E (max
+

,]’

1 ] <1
Crz{' fo<rsl, (26)

where

21 ifr> 1.
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4. Proof of main results

Proof. [Proof of Theorem 2.1] For any n > 0 and j € B, set

V) = WY < o) - YOL{[Y0] <) 4 i {10 5 i),
(7)
Yo = ZjeB Yn]z €j;

and

1

20 =P YD = (YP + nP) 1Y) < —nt} 4 (YP = n) 1{Y? > nliv},
{Zm = Z‘]EB Zm

By the definition of CWOD, for any j € B, sequence {Yl(,j), 1<i< n} is WOD, then sequence {Yfl?,n >1,1<i< n}
is WOD from Lemma 3.1, so sequence {Y,;,n > 1,1 <i < n} is CWOD. Applying Lemmas 3.8 and 3.4 to (8)

gives
i Yill — en;J
i=1 +
Z (Yni + Zni)
i=1
n 2 n
Z Ym' Z Zm
=1 i=1
<C i ntE (mg(n) Z EIIY il + ci ni v h(n) Z E1Z]
i i=1
<C Z 52 h(n)g(n) Z Y E IY(])| I{|Y(])‘ < nl/P}

i né‘z‘ih(n)na[

n=1

- r_p_1
= Z ne " rh(n)E
n=1

<C Z ny 2 h(n)n_%lE
n=1

1
— &Enr
+

+C 2 v =2 h(n)E
n=1

i=1 jeB
n CZ np- h(n)g(n)z Z ]P{|Y(/)‘ > nl/rJ}
i=1 jeB
+C2nﬂ ”h(”)ZZ]EIY(])| {|Y<J|>n1/p}
i=1 jeB
=L+ +I;. ]

For I; , I, and I3, Lemma 3.7 and standard calculation will show that

I =C i 1572 hn)g(n) i Y E ‘ij)r 1{|Y§f)| < nl/”}
n=1

i=1 jeB
<C 2 —1- 2+"h(n)z E |y(])| I{)Y(])| < nl/P}
n=1 j€B
+ CZ i () ) P{|Y O] > )
j€B

=C Z i1 n(n) Z E[yO[ Z k=) < [y0] < k17)

n=1 jGB k=1
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+C2nﬂ “%(n)ZZ P < [YO] < (k+ 1)U}

j€B k=n
=C Y E|Y0[ Z [Z n2—1—5+'5h(n)]1{(k — D < YO < kP
j€B k=1 \n=k
o k
+C Z Z (Z n;_lJ’oh(n)] Pk < [YO] < (k+ 1)V}
jeB k=1 \n=1
<C Y Y KT hoE YO Ttk =11 < [Y0] < k)
j€B k=1
+C Z Z ki PR k17 < Y] < (k + 1)17)
jeB k=1

<C Y EYO[ " h([Y?f) < 00

j€B
=T g 33 (] )
i=1 jeB
<CZ 1 () Y P{[YO] > nll)
B
<00, -
and
I —CZ i~ vh(n)z Y E ’Y(])| {|Y<f | > nl/P}
i=1 jeB
<Y Z nv 5 () Z E YO I{k < [Y0] < (k+ 1)1}
j€B n=1
=CY i [Zk" n;_l_;h(n)] EYO|T{k7 < [Y0)] < (k+1)"7)
jeB k=1 \n=1

scz Z KT hOE[YD) [k < [YO] < (k+ 1)17)

j€B k
<CZ ‘ (;>| h )y(])'

jeB

Thus, (8) holds and the proof of Theorem 2.1 is ended. [
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Proof. [Proof of Theorem 2.4] We only show the difference between the proof of Theorems 2.1 and 2.4. Note

that EY; = 0, applying Lemmas 3.8 and 3.5 to (11) gives

(o)
r_n_1 1
E nr > Ph(n)]E[max —enf’]
1<s<n
+
- énﬂ]
n

S

Ly

i=1

n=1
= Z i 2 h(n)IE [ma<x Z (Yi - EY))
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2]
<C Z i "2 h(n)g(n) log? n Z EllYil? +C Z () Z E||Z,l

<CZ”V S h(n)g(n) log? ”ZZ ’Ym‘ 1{‘y<1’<n1/p}

Z (Yo = EY.s)

1<s<

<C Z ni_z_il’h(n)n_%]E [max

+C Z nr- vh(n)lE [max Z (Zyi —EZ,)

n=1

i=1 jeB
+cZW hongogtn ) YR {0 )
i=1 jeB
. CZTI” ”h(n)ZZ]EIY(])| {|Y(J | > nl/l’}
i=1 jeB
<Y o Y Y BT (] <)
n=1 =1 jeB
Ci n§—2+6h(n)i Z ]P{|Y§j)' > nl/l’}
— i=1 jeB
+CZW ”h(”)ZZ]EIY(])| {|Y<J|>n1/p}
i=1 jeB

<oo. (by the proof of Theorem 2.1)

Proof. [Proof of Theorem 2.7] It is not hard to observe that

i+s

Y=Y Y Y ¥

i=—co k=1 i=—co  k=i+1

10383

(27)

Considering that {a;, —co < i < co} is absolutely summable, we assume that }_., ;. 2l < 1. For any t > 0
and j € B, set

and

YO = -ty < t}+Y,ﬁf>1{|Y§j>|st}+t1{yfj’>t},

th = Z]‘eB Y(])e]/

Zit = Ljes ZI(<]t) €j-

{Z;(];) YYD = (V0 YD > i)+ (YO 4 ) 1Y <
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Since
S
P max Z‘Xk >t
S i+s
=P {2;2(1 Z a; Z Yl > t]
i=—oc0  k=i+1
i+s
=P {2{2 Z a; Z Yy —EY))|| > t]
i=—co  k=i+1
) i+s oo i+s
<P | max Z a; Z (Y — EYy)| > t/ZJ +JP[{23S>; Z a; Z (Zui — EZi)|| > t/2],
i=—co  k=i+1 i=—co  k=i+1
we need to prove
) co ) i+s
P | max a; (Yie = EYy)|| > t/2]dt < 0,
Z n(n1+5 log n)l/p j(;“ﬂog 2 )1p (15591 i_Z—oo zk;1
and
) co o i+s
P | max a; (Zit = EZyy)|| > t/2|dt < 0.
Z n(n1+5 log n)l/p j(;“ﬂog 2 )ip [15591 i_Z_oo Zk_ziﬂ

For I;, by Markov’s inequality, Cauchy’s inequality, Lemmas 3.5 and 3.6, we have

E

[e9]

1
L <C —f
; n (n1+5 10g2 n)]/p (n'10g? n) """ [1<s<n

i+s

Z a; Z (Yre — EYy)

i=—co  k=i+1

) 0o oo i+s
<C Z - f E| Y laif2 - jail""? max|| Y (Vi — EYi)
n“‘5 log’ 71) P J(merogn) S =l 55
00 i+s
<y — f (Zml] ZmluE{max Y (Vi - Evi)
1p 146 p
n=11 n1+‘> log? n) (n'+*1og?n) i=—oo k=i+1
- (n)log™n & dt
<cy Il . f LYY e
n=1 n(n IOg n)Hp (m+010g?n) " iET k=i+1

00 1 ‘
R [ e D R (]
j€EB n ) ( )

=1 n(n1+5 log“n =0 k=itl

— nlog*n
o @ N (1
oy — fnmm nWZmZE‘Y |1{’y ‘<t}

Ip
jeB n=1 n(n1+5 log n) —o  k=itl

= nlloghn *° ,
<)y —=—— f(mmogzn)”f’ﬂ)(lww>t)dt

jeB n=1 (n“b log? n) 4

[} ) 2 0
S Iy N T
e (n1+5 logz n) Ip (n+010g2 n)" t

E
]_
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(28)

(29)

(30)

dt
t2
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=iy + Ipp.

The standard computation will show that

Iy

and

Iip =

= nllog’n * ,
=y Yy —=—— j; o) P([Y?] > t)dt

jeB n=1 (n1+5 log? n)l/p

<CZZ n log n 1E|Y |I{|Y(])) >( 1+610g n)l/P}

j€B n=1 7’l1+6 10

_CZi n®log’ n - Z]E|Y(])II{< 140 10g? i ) < |Y(j)| < ((i + 1)1 log?(i + 1))1/p}

]€Bn1 7’11+61 2 )

_CZ Z (Z #ggz:)l/p]]]i (Y(1)|I{(i1+6 10g2 i)l/P < )y(1)| < ((i + 1)1+ logz(i + 1))1/p}

jeB i=1 \n=1

SCZ]E|Y(7)'§‘ i log?i) 1 {('1+6log2 )" < |v0) g((i+1)1+610g2(i+1))””}

jeB =1
<C Y EYU) <o,
jeB

cyy EL ”"g” P
jeB :1 (n1+5 log2 n) o

n1+5 log® n

st n® log n f((”l Yo logz(i+1)) dt
<C E[YO] 1{]y?| <t
B n Z:f (n1+<5 log? n Up Z (i 108%0) " | | {| | }
= nllogtn 1 , ‘ ‘ ‘
= B Zf (n1+0 loggz n)l/p = (i1 log? z’)””]E |Y(]))21{|Y(])‘p < i+ 1) log*(i+ 1)
Jeb n= i=n

IA
(@)

w
o]
T i1

L ndlogin 1 )2 N .
E YO YO < (i + 1)1 log?(i + 1)
[ — <n1+5 10g2 n)l/l?] 1 (i1+5 logz 1)1/}’7 | } {l | }

CY ¥ LB NP I{OF < 41 g+ )

(i1+o log iy

IA
=

€B i=1

.

i log i 2 i .
:C;; W |y(])| mzll{mlﬂs logzm < ’YU)F < (m + 1)1+ logz(m+ 1)}

_cZi(i ,”L.Z]IEM)IZI{M” log?m < [YO[ < (m + 1) log2(n + 1)

2
o8 i i (140 log™ )P

8

SCZ y(})( Z 1+510g )1 i {“blog i< [YO < (i +1)*°log? (z+1)}

j€B i=1
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Hence, the proof of (29) is completed.
For I, by Markov’s inequality and the proof process of I;;, we can derive

0 1 00 o] i+s dt
< _ E Z EZ
I _CZ n(n“b log )L/ '[(vnm)log 2 )1 [{232’2 ;oollz kgl( ki — BZk) ]

i+n

E|Z
7’11+b log n)l/F’ j(‘n“"log n)l/p Z |ail Z | kt”

i=—o00 k=i+1

<Y e
) ) j i dt
<C Z;‘ Zl (n1+o IOg Tl)l/P \f(nlﬂﬁl R )W E |Y(])‘ I{|Y(])| > i’} T

((+1)*0 log?(i+1)) " dt

3 (j) ) 1+ /p}_
ZBIZf n1+‘5log n)1p Zﬁ“ﬂ 2y ]E|Y] |I{‘Y] | >( " log ) ;
Y ; () { 7 145 ] UP}
SC;Z (n1+0 log? nylp & Z 7E |Y |I |Y | > ( og’i )
2 [ n®log®n Y
<C) Z(Z{ g n)l/p] IE)Y‘])II{|Y”|>(1+610g ) p}

i®log” i 1/
SCXZ WIEWYU |I{|Y(])‘ > ( 1+6 log ) V}

jeB i=1

SCZIE‘Y’)F < oo.
j€B

Consequently, (30) is proved and the proof of Theorem 2.7 is complete. [J

Proof. [Proof of Theorem 2.8] We also assume that )i, 12l < 1. Forany t > 0 and j € B, set

YEZL) = —n'*?log? nI{ij) < —-n'*?log? n} + ng)1{|Y§j)| < n'*?log? n}
+nito log2 nl {Yz(.j) > pl+o log2 n} ,
Yin = Ljes Yy o5
and 0 _ D _ (Y0, o 1e0 D - 1481002
VAMES Y1 -Y, (Y +n'*0 log? n) {Yi < -n""log n}
(Yz(']) 1+6 log? n) {Yz(']) > n1* Jog? n},
Zin =Y ZVe;.
Similar to (28), (16) can be estimated as

o 1 . S 1/p
Z_Ip{max 3 x> ¢ (nte0s }
n 1<s<n =

n=1
<i 1]1’ max i a; i (Yin — EYy,) >é/2( 1+510g n)l/p
) n=1 " fsssn i=—00 Zk i+1 ’ " (31)
=1 ) i+s "
1+6
+;EP{{E§<§ l;oa’kgl(zkn EZ,)|| > 6/2( log? n) }
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Markov’s inequality, Cauchy’s inequality, Lemma 3.5-3.6 and the proof method shown in Theorem 2.7 will
guarantee that
i+s

Z (Ykn - lEYkn)

8

i+s

Z a; ) (Vi — EYp)

i=—c0  k=i+1

1
I <C — (max
=1 1 (n1+5 log2 fsssn

o)

sci ;)WIE[Z a2 - |a; |1/2 max

|

n=1 1 (n“" log”n i=—co k=i+1
00 g(n)log n i+n
<C lail ) ENYl
Zf n (n“él 2/p I_Z:—oo k;l ‘ (32)
= 7 log n 1/p
<C —=—E|YV 1{ Y| < (n*°log® n }
jeB Zf (n“b log )z/p | | | ) ( )
+ CZ Z n® log® nlP {IY(i)I > (n”‘5 log? n)l/p}
j€B n=1
<CY E|YOf <o
jeB
and
00 i+s
I SCZ ﬁ [{Esazr(: Z a; Z (an ]Ean) ]
n=1 n(n +5log?n i=—co  k=i+l
0 o1 i+n
<y BT o8’ G Y il Y Bzl
n=1 1’1(111+5 10g 1’l i=—00 k=i+1 (33)
=7 log n 1/p
<)y —S5 e I{Y(f) > (1 log? n }
et R
<C 1E1W>|’” < co.
j€B

The proof of Theorem 2.8 is completed. [

Proof. [Proof of Theorem 2.10] By Theorems 2.7 and 2.8,
1 1/p
- X 1+(§ 1
n1+6 log n)l/p [1<s<n Z k og 11) ]
+

- 146 1p
L iog? n)l/Pf [{Eixn ZXk > s( log” n) +t]dt
) (n1+b log n)l/V
P
nz“ n(nl+o log n)l/r f TSsen

¥

1 00
+ Z —_—— ) max Z X
= n(n1*2log” n)/P J(n+ 10 n) /P T<s<n

L
2)

> e (n“" log? n)l/p + t} dt

> e( 1+ ]og? n)l p+t]dt
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) lﬂ’(m ZX > & (""" log? “)W]

1 00
+ _— Xl > t|d
; n(n1+ 10g2 n)l/p j(‘n““ log? n)l/}” [1<s<n Z k
<oo.
O
5. Examples

In this section, we present an example to illustrate the sharpness of Theorem 2.10. This example is
inspired by Example 3.4 of Ko [16], it will show that the converse of Theorem 2.10 is not true.

Example 5.1. Consider the real separable Hilbert space €, of all square summable real sequences with inner product

o)

xy) = inyiforx = (x1,x2,2), ¥ = (Y1, Y2, ).

i=1

Let {Y, Yy, n > 1} be a sequence of i.i.d £>-valued CWOD random vectors with
]p(y(j) = _j—l/p) = ]P(y(]') = j—l/p) = %for all j € B.

And (X, = Y2 aiYiwn,n > 1} is a moving average process generated by {Y,Y,,,n > 1} with Y.7°_ |ajl = 1. Then
(17) holds, but (14) fails.

In fact, for any € > 0,

1=—00

|

Z ————FE|ma —5( 1+ ]og? n)l/p
n(nl+o log mtr - |1ss < .

n=1

) o ‘ 1/p
= P Xel| = & (n'*? log? +uld

; n(nl+o log n)l/r L [{235); ZJ M= E<n 8 n) i
= max Xkl > t|d

an n(nl+d log n)/p I(,ﬂm log? n)l/ﬂ [1<s<n Z k

2

s 00
<C Z max
n(nl+d log n)l/P e(n1* log? 7Z)W t2 1<s<n

- i+s

<C — [ ma a; Y (by the proof of I, in Theorem 2.7
> 1 i+n ‘

< N S ' |

_CZZ: n(n+ log? n)2/r _Zoo|al|k;1]E“Yk|| (by the proof of I in Theorem 2.7)
- 1

<C ) o oy B

£ (1% log? w2

; 02
<c 1 (n1+d log n)2/p Z;JIE|Y |

8
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(S
1 1
= Z 2 4/p Z a2 | <%
~i n2/rlog™" n =
but ,
Z]Ely(j)r] = Z - = 0.
jeB jeB J
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