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Toeplitz operators defined between Kothe spaces

Nazl1 Dogan

Fatih Sultan Mehmet Vakif University

Abstract. The aim of this paper is to define Toeplitz operators between Koéthe spaces, especially power
series spaces. We determine the conditions for continuity and compactness of these operators. We define

the concept of S-tameness of a family of continuous operators. We construct some conditions on S-tameness
for the families consisting of Toeplitz operators.

1. Introduction

The theory of Toeplitz operators defined on a Hilbert space such as the Hardy and the Bergman spaces
is well-studied. The significance of this theory lies in the connection between operator theory and function
spaces. The matrix of a Toeplitz operator defined on Hardy space of unit disk H*(D) is a Toeplitz matrix.
Moreover, any bounded operator on H?(ID) whose associated matrix is a Toeplitz matrix is a Toeplitz
operator. We direct the reader to [8] for more information about Toeplitz operators defined on H?(DD).
In recent years, Toeplitz operators, whose “associated” matrix is Toeplitz, are defined for more general
topological vector spaces. For instance, in [3], Domanski and Jasiczak developed the analogous theory for
the space of A(R) real analytic functions on the real line. This space is not a Banach space, even not a
metrizable space. In [6], Jasiczak introduced and characterized the class of Toeplitz operators on the Fréchet
space of all entire functions O(C).

In [6], Jasiczak defined a continuous linear operator on O(C) as a Toeplitz operator if its matrix is a
Toeplitz matrix. The matrix of an operator is defined with respect to the Schauder basis (z"),en,. In this
case, the symbol of a Toeplitz operator comes from the space O(C) ® (O(C)); here (O(C)); is the strong dual
of O(C). The space of entire functions O(C) is isomorphic to a power series space of infinite type A, (n).
By taking inspiration from Jasiczak paper [6], we will define Toeplitz operators on more general power
series spaces of finite or infinite type. Similarly, we will show that the symbol space is A.(a) ® (A,(a))’,

for r = 1,00. We will also search the compactness of these operators and mention the conditions for the
tameness of the families consisting of Toeplitz operators.
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2. Preliminaries

In this section, we provide some fundamental facts and definitions essential for the subsequent discus-
sions. We will use the standard terminology and notation of [9].

A complete Hausdorff locally convex space E whose topology defined by countable fundamental system
of seminorms (|| - |)ken is called a Fréchet space. A matrix (4, )rzen Of Non-negative numbers is called a
Kothe matrix if it is satisfies the following conditions:

1. For each n € N there exists a k € N with a,; > 0.
2. ayx < ayx+1 foreach n, ke IN.
For a Kothe matrix (k) ke,
©
K(a,y) = {x = (Xn)new ¢ Xk i= D) Pealanx < o0 forall ke ]N}
n=1

is called a Kothe space. Every Kéthe space is a Fréchet space. From Proposition 27.13 of [9], the dual space
of a Kothe space is

(K(any)) = {y = (Yn)neN | SUp |yna;;| < 400 for some k € ]N}.
neN

By Grothendieck-Pietsch Criteria [9][Theorem 28.15] a Kothe space K(a,,x) is nuclear if and only if for
every k € IN, there exists a [ > k so that

=€
Ap k

n=1 an,l

For a nuclear Kothe spaces, |x[x = sup,. [*1|a4x k € IN forms an equivalent system of seminorms to the
fundamental system of seminorms ||x[x = 3., |xx|au, k € IN, see Proposition 28.16 of [9].

Dynin-Mitiagin Theorem [9][Theorem 28.12] states that if a nuclear Fréchet space E with the sequence
of seminorms (|| f,||)nen has a Schauder basis (f,)xen, then it is canonically isomorphic to a nuclear Kothe
space defined by the matrix (| fullx)nken. So, nuclear Kéthe spaces hold a significant place in theory of
nuclear Fréchet space.

Let @ = (@), be a non-negative increasing sequence with V}Lr{} a, = . A power series space of finite

type is defined by

n=1

A (a) := {x = (%) pen ¢ ¥l := Z |xn|e_%“" < oo forallke IN}

and a power series space of infinite type is defined by
— — . — N ke,
Ay (a) = {x = (Xn)pen & ¥l = Z x| €% < oo for all k € IN} .
n=1

Power series spaces form an important family of Kothe spaces and they contain the spaces of holomorphic
functions on C? and D,

O(C%) = A (nt) and O(D) = A;(n?)

where D is the unit disk in C and d € IN.
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Let E and F be Fréchet spaces. A linear map T : E — F is called continuous if for every k € IN there exists
p € N and Ci > 0 such that
| Txlle < Cllx[p

forallx € E. Alinearmap T : E — Fis called compact if T(U) is precompact in F where U is a neighborhood
of zero of E.
In this paper, we fixed the symbol ¢, to denote the sequence

(0,0,...,0,1,0,...)

where 1 is in the n'" place and 0 is in the others.
We will use the following Lemma to determine the continuity and compactness of operators defined
between Kéthe spaces.

Lemma 2.1. Let K(a,,x) and K(by,x) be Kothe spaces.
a. T:K(anr) — K(byy) is a linear continuous operator if and only if for each k there exists m such that

| Ten]lx

neN llenllm

b. If K(by,x) is Montel, then T : K(a,x) — K(byx) is a compact operator if and only if there exists m such that for

all k
| Tenlle

nen €|

Proof. Lemma 2.1 of [2]. [

We want to note that a Fréchet space E is Montel if each bounded set in E is relatively compact and every
power series space is Montel, see Theorem 27.9 of [9].

In the next proposition, it will be shown that the continuity condition is sufficient to ensure that linear
operators defined only on the basis elements are well-defined.

Proposition 2.2. Let K(a, ), K(by,x) be Kothe spaces and (a,)uen € K(byx) be a sequence. Let us define a linear
map T : K(a,x) — K(byx) such as

[s 8]
Te, = a, and Tx = Z x,Te,

n=1
for everyn € Nand x = >, xne,. If the continuity condition

| Ten]lk

Vke N dme N
neN €nllm

holds, then T is well-defined and continuous operator.

Proof. Let x = Y~ ; X,e, be an arbitrary element of K(a,) and assume that for every k € IN there exists a

m € IN such that
| Ten |

neN €nlm

Now we define the sequence

N N
YN = Z T(xnen) = Z x,Tey
n=1 n=1
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forevery N € IN. Then for every k € IN, there exist € IN and C > 0 such that for sufficiently large N, M € I,
N>M,

N N
Terl _
lyn —ymle =1 25 wTE@)< ), IXzIHEzIIm el <C Z |xillex
I=M+1 I=M+1 " I=M+1

which is arbitrarily small, since |x|, = Y., |*|[lex]m < . This says that the sequence (yn)nen S K(bgn)
is a Cauchy sequence and therefore has a limit. Let us say the Zéim yn = y. Hence, we have
—o0

Y= 11m YN = Z x,T(en) = T(x) € K(bn)-

n=1
Therefore T is well-defined from K(ay ) to K(by,) and T is continuous from Lemma 2.1. O

A grading on a Fréchet space E is a sequence of seminorms {|| - |, : n € IN} which are increasing, that is,

el < llxll2 < Jlxfs <

for each x € E and which define the topology. Every Fréchet space admits a grading. A graded Fréchet
space is Fréchet space with a choice of grading. For more information, see [5]. In this paper, unless stated
otherwise, we will assume that all Fréchet spaces are graded Fréchet spaces.

A pair of graded Fréchet spaces (E, F) is called tame provided that there exists an increasing function
o :IN — N, such that for every continuous linear operator T from E to F, there exists an N and C > 0 such
that

ITx[l < Clx]lon) Vxe E and n > N.

A Fréchet space E is called tame if (E, E) is tame. Tameness gives us a kind of control on the continuity of
the operators. In [4], Dubinsky and Vogt used this notion to find a basis in complemented subspaces of
some infinite type power series spaces. We refer to [1] and [7] for the other studies about tameness.

In this paper, instead of all operators defined on a Fréchet space, we will restrict ourselves to a subfamily
of operators. With this aim, we will give the following definition.

Definition 2.3. Let S : N — IN be a non-decreasing function. A family of linear continuous operators A < L(E, F)
is called S-tame if for every operator T € A there exist ko € N and C > 0 such that

ITx(x < Clx|se) Vx € E, k = k.
S-tameness of a family can be given by considering only elements of bases similar to Lemma 2.1.

Lemma 2.4. Let K(a, ) and K(b, ) be Kothe spaces and S : N — IN be a non-decreasing function. A family of
linear continuous operators A < L(K(ayx), K(byx)) is S-tame if and only if for every operator T € A there exist
ko € N and C > 0 such that

I Tenlle < Clensw) Ve N,k > k.
Proof. Let us assume that for every T € A there exist a ko € IN and C > 0 such that
[Texlx < Clen|sw Vne N,k = k.

Then for every x = >,/ | x,e,, we can write

Z x,T(en)
n=1

This says that A is S-tame. The other direction is straightforward. [

o0

0 oL
. < Z ||| Tenlx < C Z % [len sy = C Z |Xulan,s@wy = Clxlls)
n=1 n=1

n=1

Tk =
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In this paper, we will call an operator which is defined between Kothe spaces as a Toeplitz operator if its
matrix is a Toeplitz matrix defined with respect to the Schauder basis (e,)sen. In sections 3 and 4, we will
concentrate on lower triangular Toeplitz matrices and upper triangular Toeplitz matrices, respectively. We
will determine the continuity and compactness of the operators whose associated matrix is related to these
matrices. By collecting the results obtained in sections 3 and 4, we share the results about the continuity
and compactness of a Toeplitz operator defined between power series spaces in section 5.

3. Operators Defined by A Lower Triangular Toeplitz Matrix

Let 6 = (0,)ueN, be any sequence. The lower triangular Toeplitz matrix defined by 6 is

6o 0 0 O
0 60 0 O
0, 01 6 O

03 0 01 0O

We want to define an operator Tg : K(ayx) — K(byx) by taking T@En as the n column of the above matrix,
that is,

20
Teen = (Or ot /0/ 60/ 91/ 62/ ot ) = Z ijnej
j=n

provided that Toen € K(by) for every n € IN. Therefore, for every x = Y./, x,e, € K(a,x), the operator To
is given by
ool
Tgx = Z angen.
n=1

In fact, we can not guarantee that the operator Tois correctly defined between two general Kéthe spaces
K(a,x) and K(b, 1), because we do not know if the series >/~ ; x, Tge, converges in K(b, ;) for every x € K(a, )
in this general case. Below, we will examine the cases where this operator can be correctly defined, and in

these cases, we will analyze the continuity and compactness of this operator. Throughout this paper, we
will assume that the sequences 0 satisfy the following condition

VnelN 3Js>n 0s # 0.

Otherwise, 6 produces a finite rank operator, which is obviously continuous and compact.
The idea of Proposition 3.1 is the same as [10, Theorem 2.1]. Therein one can also find a generalized
form of Theorem 3.3.

Proposition 3.1. Let K(a, ), K(b, ) be Kothe spaces and assume that O be a sequence and sy = min{t : 6; # 0}. If
T : K(ayx) — K(byx) is a continuous operator, then 6 € K(b,, i) and the following holds
VkeIN dmeIN,C >0 bpysyr < Cayy Vn e N.

Proof. Let To : K(aux) — K(byx) be a continuous operator. For every n € IN,

fgen = (0,...,0, B9, 61,92,...) = Z 9]',”6]' € K(bn,k).

j=n

Since i"gel € K(by ), this gives us 0 € K(b,x). By Lemma 2.1, for all k € IN there exist m € IN and C; > 0 such
that

oL
IToenllc = D 10j—nlbjx < Cillen|m = Cranm vneN.

j=n
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Then, for all n and j > n, we have |0;_,|bjx < C14,,,. Hence we can write that b, s x < Caay,, for some
C, > 0. This completes the proof. [

For compact f"g : K(ayx) — K(b,x) operators, the relationship between Kothe matrices (a,x)uken and
(bni)nken is as follows:

Proposition 3.2. Let K(a, ) and K(b, ) be Kothe spaces such that K(b, ) is Montel and assume that 6 € K(byx)
and so = min{t : 6; # 0}. If Tg : K(a,x) — K(b,x) is a compact operator, then the following holds

dmeIN VkeIN 3C>0 butsok < Caanm Vn e N.
Proof. The proof is similar to the proof of Proposition 3.1. [J
The converse of Proposition 3.1 is true when K(b,,x) is a power series space of finite type.

Theorem 3.3. Let K(ay ;) be a Kothe space, A1(B) be a power series space of finite type and assume that 0 be a
sequence and sy = min{t : 6, # 0}. Ty : K(a,x) — A1(B) is well-defined and continuous if and only if 0 € A1(B)
and the following condition holds:

Vke N ImeN,C>0 e~ thrt < Cayp vineN. (1)
Proof. If the operator Ty is continuous, Proposition 3.1 gives us that 8 € A;(f) and (1) holds. For the other

direction, let us assume 0 € A;(f). By using the condition (1) we have the following: for every k € IN, there
exist m € N and C;, C, > 0 such that

(o8] o8]
~ ~ 1 1 .
|Toeuk < |Toen|ox = Z |9H|e—éﬁf = Z |9j7n|e—§7ﬁfekz+2kﬁn+soe ZaaPrtso
j=n j=n+sg

0 53]
< Clan,m Z |Q].7n|e—ﬁﬁjek21ﬂﬁ”+50 = Clan,m Z |6jfn|e_mﬁje_m(ﬁj_ﬁn+m)
j=n+s0 j=n+so
x 1
< Clan,m Z |9j—n|e_mﬁj = Cl ”9H2(k+2)an,m = C2an,m
j=n+sp

for every n € IN. In the second line of the inequalites we use the fact that

1 1 1

K+2k 2k 2(k+2)

for every k € IN. Therefore, 'feen € A1(B) for every n € IN and for every k € IN there exist m € IN such that

I Toen |

7

e lenllm
that is, fg : K(anx) — A1(B) is well defined and continuous by Proposition 2.2. [J

We can characterize the compactness of the operators To: K (ank) — A1(B) as the follows.

Theorem 3.4. Let K(a,x) be a Kothe space, A1(B) be a power series space of finite type and assume that O be a
sequence and sp = min{t : 6; # 0}. Tg : K(anx) — A1(B) is compact if and only if 0 € A1(B) and the following
condition holds:

JmeN VkeN 3IC>0 e Pt < Cayy VneN. (2)
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Proof. 1f Ty is compact, then Ty is continuous and 0 € A (B) from Proposition 3.1. Proposition 3.2 says that
the condition (2) holds. For the other direction, assume that 6 € A;(B) and the condition (2) holds. By the

same calculation of the proof of Theorem 3.3, we can write that there exists an m € IN such that for all k € IN

| Toenk

neN  l€nllm
From Lemma 2.1, we can say that To : K(anr) — A1(B) is compact. [

Proposition 3.5. Let K(a,x) be a Kothe space and A1(B) be a power series space of finite type. Assume there exists a
non-decreasing function S : IN — IN such that the following condition holds:

Vke N 3C>0 e~ < Cay s VneN. (3)
Then, the family of the operators Ty : K(ayz) — A1(B) for 6 € A1(B), that is,
Ay = {To:0e M(B)}
is S-tame, where S(k) = S(2k) for every k € N.
Proof. Let 0 € A1(B). By using (3), for every k € IN, there exist C;, C; > 0 such that
fa Z 2 L 1 1 L 1 1 L 1
| Toen|s = Z |0j_nle™ 2P = Z 10 nle~2Pie™ 5P < (Z |8jn|g_2kﬁi> e~ wh < Cl(z |9jn|e—2kﬁ/)anls(2k)
j=n j=n j=n j=n

= — 13
< C1<Z |0j-nle Zkﬁ'”“) lenllsary < CillOllllenls < Callenlsw)-

j=n
Therefore, for every 0 € A;(B) and for all k € IN, there exists C > 0 so that we write
| Toenllk < Cllen| s,

that is, the family ﬁll is S-tame. O

Now we turn our attention to the power series space of infinite type. For the converse of Proposition
3.1, we need the stability condition on the sequence g when K(b,, ) is power series space of infinite type
A (B). A sequence f is called stable if

,8271

sup —— < .
nelN Fn

Theorem 3.6. Let f = (B,), be a stable sequence. To : K(ay) — A, (B) is well-defined and continuous if and
only if O € Ay, (B) and the following condition holds:

Vke N dmeN,C>0 P < Cay VneNN. (4)

Proof. Let assume 0 be a sequence and sy = min{t : 6; # 0}. If the operator Ty is continuous, Proposition
3.1 gives us that 0 € A.(B) and for every k € IN, there exist m € N, C > 0 such that

ekﬁn+50 < Can,m

and then we have
P < Caym
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for every n € IN. This says that (4) holds since § is an increasing sequence. For the converse, we assume
that g is stable. Then there exists an M > 1 such that

Bon < MBy Vn e N.
Since f is increasing we have the following: if j = 2t > 2n,

Bj = Bor < MB: < MBot—n = MBj_y < MBj 11

andif j =2t +1 > 2n,wehavet+1 > nand
Bj = Par+1 < Part2 < MBri1 < MPBoryo—n = MBj_ny1.

Therefore, we have

ﬁj < Mﬁjfﬂ‘l’l
for all j > 2n. Now let us assume that 8 € A, (B) and the condition (4) holds. Then, for every k € IN there
exist m € N, C1,C, > 0 such that

2n—1 e 2n—1 e

Toenl = 25 10l + D3 10j-ale® < D 10j-nle™ 4 3 [0jpleFimrrelfi iz
j=n j=2n j=n j=2n
2n—1 o6 oL
< eMkBn Z |9]._n| + Z |6]-_n|ngﬁ]*n+l < MKBn Z |9j_n|€Mkﬁf*“+1
j=n j=2n j=n

o
< Clan,m Z |9j—n|e1\/1kﬁj_"-'—1 <G HQHMk”enHm < C2||en||m'

j=n
holds for every n € IN. We employed that f; < MB; .1 for every j > 2n in the first line. Therefore,
i"gen € A (B) for every n € N and for all k € IN there exist m € IN such that

I Toen |

neN [€nllm

that is, Ty is well-defined and continuous by Proposition 2.2. [

We can characterize the compactness of the operators To : K(anx) = A (B) as the follows.

Theorem 3.7. Let = (), be a stable sequence. Ty : K(ayx) — Aoz (B) is compact if and only if 0 € A (B) and
the following condition holds:

ImeN VkeN 3IC>0 P < Caypm Vnz=k (5

Proof. Letassume 6 be asequenceand sy = min{t : 0; # 0}.1f Tois compact, then 6 € A;(B) from Proposition
3.1. Proposition 3.2 says that there exists a m € N such that for all k € IN there exists a C > 0 such that

ekﬂHSU < Cﬂn,m

for every n € IN. This says that the condition (5) is satisfied since f is an increasing sequence.
For the converse, assume that 8 € A,,(B) and (5) holds. By the same calculation of the proof of Theorem
3.6, we can write that there exists m € IN such that for all k e IN
[Toeuls
nsk lenllm

and then R
| Toen|

neN  enllm

From Lemma 2.1, we can say that To : K(anx) = Ay (B) is compact. O
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Proposition 3.8. Let f = (), be a non-negative increasing stable sequence with lim f, = 0. Assume that
n—oc
there exists a non-decreasing function S : IN — IN such that

Vke N 3C>0 ¢ < Cay s VneN. (6)
Then, the family of operators Ty : K(a,x) — A (B) for 0 € A, (B)
A, ={To: 0 € Ap(p)}

is S-tame, where S(k) = S(Mk) for every k € N and here M = sup %.
nelN “n

Proof. The proof is similar to the proof of Theorem 3.7. Let 8 € A, (B). In the proof of Theorem 3.6 we
showed that for all k,n € IN

28]
|Toen|x < M Z |@]._n|eMkﬁj—n+1 < M0 .

j=n
Using the condition (6), we can write that for all k € IN there exists a C > 0 such that
Hf"genHk < EMkﬁ”HeHMk < Ca,,,S(Mk) = Can,g(k).
Then we have the following

vk 3C >0 | Toenlx < Cllenllse

for every O € A (). This says that the family A, is S-tame. [

4. Operators Defined by an Upper Triangular Toeplitz Matrix

Let 0 = (0,)nen, be any sequence. The upper triangular Toeplitz matrix defined by 0 is

6 01 0, O3
0 6y 61 0O,
0O 0 6, 6

0 0 0 6

We want to define a linear operator YV"@ : K(anx) — K(bny) by taking T@en as the n'" column of the above
matrix, that is,

n
Toen = (On-1,01—,...,01,00,0,0,...) = > Ou_je;.
j=1
Therefore, for every x = Z,;f”zl xney € K(anx), the operator Tg is given by
~ :x ~
Tox = Z x, Toe,.
n=1

In fact, we can not guarantee that the operator Tois correctly defined between two general Kéthe spaces
K(a,x) and K(b, 1), because we do not know if the series >/__; x, Tge, converges in K(b,, ;) for every x € K(a, )
in this general case. Below, we will examine the cases where this operator can be correctly defined, and
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in these cases, we will analyze the continuity and compactness of this operator. Similiar to the previous
section, we will assume that the sequences 6 satisfy the following condition

VnelN ds>n 0; #0.

Otherwise, 0 produces a finite rank operator, which is obviously continuous and compact.

In [10, Theorem 2.2], you can find the same idea for Proposition 4.1 and a generalized form of Theorem
4.3 for G,,-spaces.
Proposition 4.1. Let K(a,, ), K(b, ) be Kothe spaces and assume that 6 be a sequence and sy = min{t : 6; # 0}. If
To : K(anx) — K(byy) is continuous, then 0 € (K(anx)) and the following holds:

Vke N dmeN,C>0 by_sok < Capm Vi > 3.

Proof. Let Tg : K(anx) — K(by) be a continuous operator. Then by Lemma 2.1, for all k € IN there exist
m € IN and C; > 0 such that

n
|Toenlc = D 10n—jlbjx < Cian,m  ¥neN.
j=1

Then, forallnand j <n
|6n7j|bj,k < Clan,m-

Since (b, k) is a Kothe matrix, there exists a kg € IN satisfying by, # 0. Let us take C; = —blckl . Then we can
Ko
write
|6n—1| < Czan,m

and this says that 0 € (K(a,,x))’. Further, we have that for every k € IN, there exist m € N and C; > 0 so that
|650|bn*50 < Clan,m

and c
1
b‘Vl*S[) S _an,m-
0Os,
C

|950|

hold for all n > sy. By choosing C = , we have

bnfso,k < C3an,m Vn > S0-
This completes the proof. [

For compact Ty : K(ayx) — K(b,x) operators, the relationship between Kothe matrices (a,x)uken and
(buj)n ke is as follows:

Proposition 4.2. Let K(a, ) and K(b, ) be Kothe spaces such that K(b, ) is Montel and assume that 6 € K(by )
and sp = min{t : 6; # 0}. If Tg : K(a,x) — K(b,x) is a compact operator, then the following holds

dmeN VkelN 3IC>0 bp—syx < Cayp Vn > sp.
Proof. The proof is similar to the proof of Proposition 4.1. [J
The converse of Proposition 3.1 is true when K(b, k) is a power series space of finite type.

Theorem 4.3. Let A («) be a nuclear power series space of infinite type, K(b, ) be a Kothe space and assume that 0
be a sequence and s) = min{t : 6; # 0}. The operator Ty : Ay, () — K(by ) is well-defined and continuous if and
only if 6 € (Ao ()" and the following condition holds:

VkeN dmeN,C>0 by s x < Ce™™ Vn > sp. (7)
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Proof. 1f the operator Ty is continuous, Proposition 4.1 gives us that 0 € (A, (a)) and (7) holds. Let us
assume that 6 € (A (a))’ and (7) holds. Then there exists some m; € IN and C; > 0 such that

|6y_1] < Cre™™ Vn e IN.

From the condition (7), for every k € IN, there exist m; € IN and C, > 0 such that

o n n—syp n—=syp
|Toen|x = Z |0n—jlbjx = Z |0u—jlbjx < C1 Z "=+ 1p iy
j=1 j=1 j=1
n—sp n—so n
< CZ Z M @41 g2 s, < Czemla,, Z eM2%jtsy — Czemlan Z Mm%
j=1 j=1 j=1+s0

On the other hand, A (a) is nuclear then Y.~ ; e~"% is convergent for some m3 € IN and then for some
D > 0 we have

n
Zemzaj < De(szrmg)an

j=1
since
n n oD
Z ele!]‘e—(mZ+M3)0(y, < Z elethe—(le-‘rmg,)a/ S Z e—m3aj — D < 400,
=1 =1 =1
Then we can write
n n
I Toen|x < Cae™ Z e < Cp™n Z e Dczernla,;e(mz+m3)an = DCallenl|my -+ +rms-
j=1+$0 j:1

Therefore, Tgen € K(by,x) for every n € IN and for all k € IN, there exist m = my + my + m3 € N such that

| Toenx

neN llenllm
that is, Ty is well defined and continuous by Proposition 2.2. []
We can characterize the compactness of the operators To: Ay (B) — K(b,x) as follows.

Theorem 4.4. Let A, () be a nuclear power series space of infinite type and K(b, i) be a Montel Kothe space.
To : Av.(a) = K(by ) is compact if and only if 0 € (A (@)’ and the following condition holds:

dmeIN VkeIN 3IC>0 by_sop < Ce™™ Vn > sg. (8)

Proof. 1f Ty is compact, 0 € (A (a))" from Proposition 4.1 and Lemma 2.1 says that there exists a m € IN
such that for all k e N _
| Toen]

n o lenllm

This gives us that there exists a C > 0 such that

n
10501Bn-sok < [Toeull = D 16u—ilbjx < Cleu]l = Ce™.
j=1

This says that the condition (8) is satisfied.
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For the converse, assume 6 € (A («))" and the condition (8) holds. By the same calculation of the proof
of the Theorem 4.3, we can write that there exists a m € IN such that for all k e IN

| Toenx

n o lenllm
Lemma 2.1 gives us that To: A, (a) = K(byx) is compact. O

Proposition 4.5. Let A.() be a nuclear power series space of infinite type and K(b, ) be a Kothe space. Assume
that there exists a non-decreasing function S : IN — IN such that the following condition holds

Vke N 3C>0 by < CeSa VneN. (9)
Then, the family of the operators To: Ay (a) > K(byx) for 6 € (A (a)), that is,
Ay =1{To: 0€ (Ar(a))'}
is 25-tame.

Proof. The proof is similiar to the proof of Theorem 4.3. Let us assume 0 € (A, ())’. Then there exists some
mi1 € N and C; > 0 such that
|Qn,1| < C1€m1a” Vn e IN.

Since A (a) is nuclear then Y/, e™"% is convergent for some m, € IN and using similiar to steps in the
proof of Theorem 4.3 we can show that there exists a D > 0 such that

n
Zekaj < De(k+mz)a',1
j=1
for every k € IN. For every k € IN satisfying S(k) > my + my, there exists C,, C3 > 0 such that
n n n
“Teen”k _ Z |6nfj|bj,k <G Z emlay,,,ﬂbj,k < Cpe™an Z S < C36m1ane(5(k)+mz)au < CSEZS(k)an — ”enHZS(k)-
j=1 j=1 j=1

Then, we have the following
[Toenllk < Callen2s)

for all k satisfying S(k) > my + my, that is, the family ?I, is 2S-tame. [

For the converse of Proposition 4.4, we need a stable sequence o when K(a, ) is power series space of finite
type A1 (a).

Theorem 4.6. Let o = (ay),c be a stable sequence. Ty : Ar(a) — K(buy) is well-defined and continuous if and
only if O € (A1(a))" and the following condition holds

Vke N ImeN,C>0 by < Ce™ o ¥n e N. (10)

Proof. Let assume 6 be a sequence and s) = min{t : 6, # 0}. If the operator Ty is continuous, Proposition
4.1 gives us that 0 € (A (a))" and for every k € IN, there exist m € IN, C > 0 such that

1 1
by < Ce~ im0 < Ce™ma

for every n € IN. This says that (10) holds since § is an increasing sequence. For the converse, we assume
that assume that « is stable, 0 € (A1(a))" and (10) holds. Then there exist some m; € N and C; > 0 such that

_ 1
|9n—1| <Cie m n Vn e IN.
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By stability of a, we will show that there exists M > 0 such that for every n € IN and j < # it holds that
an < M((Xn_j+1 +(X]'). (11)

Since «a is stable, there exists a M > 0 such that ay; < Ma; for every t € IN. Assume thatn = 2forn =2t +1
and1<j<n

ap < Aoppp < Moy < M(au—j1 + @)
sinceinthiscaset+1 < jort+1<n—j+1andthenwehavea, j;1 +a; > a;,1. Therefore the inequality

(11) is satisfied. By using the condition (10), we can write that for every k € IN, there exist m, € IN and
C, > 0 such that

7Lan+s 7ian
b}’l,k < C2€ my 0 < Cze ny
for every n € IN. Let us say m3 = min(m;,m,). Then we have

T ; - 1 . 1.
[Toealk = D 16u—jlbjx < C1Cy Y e M e m®
j:l j:l

n n
_ 1 . . _ 1 _ 1
<GG Z e (i) Ci1GC Z e M%< CiCone” MM
j=1 j=1
Now we choose a my4 € IN so that my > m3M, then

: (— L +L)“n
4+ — <0 and Lim ne' msM T m7" = (),
TH3M My n—w

Then there exists a D > 0 such that for all n € IN
_ 1 _ 1
ne m3MaV‘ S De ny An
and for some C3 > 0 and for alln € N
~ _ 1 _ 1
[Toen|lk < C1Cone” ™M™ < Cae” ™™ < Csllen|m,-
Therefore, for all k € IN, there exist m € IN such that

| Toen]lx

neN  ll€nllm
that is, "_7"9 : A1(a) = K(by ) is well-defined and continuous by Proposition 2.2. [J

The following theorem characterize the compactness of the operators To : Ar(@) = K(bug).

Theorem 4.7. Let o = (ay,)ueN be a stable sequence and K(by, i) be a Montel Kithe space. Ty : A1(a) — K(byy) is
compact if and only if O € (A1(a))" and the following condition holds:

JmeN VkeN 3IC>0 by < Ce n Vn >k (12)

Proof. Let assume O be a sequence and sy = min{t : 6; # 0}. If the operator Tp is continuous, then
0 € (A1(a))" from Proposition 4.1 and Proposition 4.2 says that for every k € IN, there existm € IN, C > 0
such that

by < Ce™ m%+s < Ce™

for every n € IN. This says that (12) holds since « is an increasing sequence.
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For the converse, assume that 6 € (A1(a))’ and the condition (12) holds. By the same calculation of the
proof of the Theorem 4.6, we can write that there exists m € IN such that for all k € IN

|Toex |

leznm

thatis, Tg : A1(a) — K(ay) is compact from Lemma 2.1. [J

a ) )
Proposition 4.8. Let a = (ay)nen be astable sequence and M = sup =21 Assume that there exists a non-decreasing
neN &n

function S : IN — IN such that the following condition hold:
Vke N 3C >0 by < Ce™ 509 Ve N. (13)
Then, the family of the operators To: A1(a) — K(by) for 6 € (A1(B))’, that is,
Ay ={To:0€ (M)}
is S-tame where S(k) = (M + 1)S(k) for every k € N.

Proof. The proof is similar to the proof of the Theorem 4.6. Since 0 € (A;(a))’, there exists some m; € IN and
C1 > 0 such that

|9n 1| C1€ '"1 n Vn e IN.
By using (13), we can write that for every k € IN satisfying S(k) > m;, there exists a C;, C3, C4 > 0 such that

HTGenHk_Z|9n ]|b]k Clze "'1 = Hlb <C223 ml =it S(k)a/
j=1 j=1 j=1

n n
1 1 1 1

56 (@n—j+1+a —vsm — s N — a,
Z TSl () < Gy ) e I = Cone” WO < Cye” TR < Coenl sy

j=1

Then for all k € IN satisfying S(k) > m;, then, we have the following
| Toenlk < Cslenllsnyseo

that is the family Ay is S-tame, where § (k) =M +1)S(k) forallke N. O

5. Toeplitz Operators Defined between Power Series Spaces

When given a Toeplitz matrix

6 01 0
01 0y 0_1

6, 6, 6y - |

one can express this matrix as a sum of a lower and an upper Toeplitz matrix in the following way:

O 6.1 6 -\ [0 0 0 -\ (00 04 0,
6, 6y 0.4 --- 6, 6, 0 --- 0 96’ 0 4
6, 6, 6 =6, 6O 9’0 ) 0 96’
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Here 6y = 6 + 0; and we can choose 0, and 0 to be non-zero. Let define the sequences

~

6 = (6),61,0,,65,...)

and

~

0= (61,6_1,0_560_s,...).

Therefore every Toeplitz matrix can be associated with two sequences. Denoting the operator defined by
the Toeplitz matrix as Ty, one can write this operator as a sum of two operators defined by a lower and an
upper Toeplitz matrix, that is,

Ty = f@ +Té.

In this section, we collect some results regarding the continuity and compactness of a Toeplitz operator
by utilizing the theorems proven in the previous sections.

Theorem 5.1. Let o be a stable sequence. A Toeplitz operator Tg : A1(a) — A1(B) is well-defined and continuous if
0 € Ai(B) @ (A1(a))" and the following condition holds:

Vke N 3meNN,C >0 e iPr < Cem it VneN. (14)

Proof. Let assume that Toeplitz matrix associated with Ty is given by sequnces 0 and 0. We can choose 0,
and 6 to be non-zero. Then Toeplitz operator Ty is defined as

Ty = ?@ +T§.

From Theorem (3.3), fé is well-defined and continous if and only if 0e A1(B) and the condition (14) is
satisfied. From Theorem 4.6, Yv"é is well-defined and continous if and only if 0 € (A1(a)) and the condition

(14) is satisfied. Therefore, these give us that Ty is well-defined and continuousif 0 = 66 € A B)D(A1(a))’
and the condition (14) is satisfied. [

Theorem 5.2. Let v be a stable sequence. A Toeplitz operator Tg : A1(a) — A1(B) is compact if a 6 € Aq(B) @
(A1(a))" and the following condition holds:

JmeN VYkeN 3C>0 e iPr < Cem Vn > k. (15)
Proof. The proof is similar to the proof of Theorem 5.1 and follows from Theorem 3.4 and Theorem 4.7. [
Remark 5.1. The condition in Theorem 15 is satisfied for the sequences a = (1)yen and f = (1) e

Theorem 5.3. Let f be a stable sequence and A..(a) be a nuclear power series space of infinite type. A Toeplitz
operator Tg : Ag, (@) — Ao (B) is well-defined and continuous if 0 € Ao (B) ® (A (@) and the following condition
holds:

Vke N ImeN,C>0 kb < Ceman Yn = k. (16)
Proof. This follows from Theorem 3.6 and Theorem 4.3. [J

Theorem 5.4. Let f be a stable sequence and A..(a) be a nuclear power series space of infinite type. A Toeplitz
operator T : Ay () — Aoy (B) is compact if 0 € Ao (B) ® (A ()" and the following condition holds:

IJme N Vke N 3C>0 b < Cemn vn = k. (17)
Proof. This follows from Theorem 3.7 and Theorem 4.4. [J

Remark 5.2. The condition in Theorem 5.4 is satisfied for the sequences a = (n*)yen and B = (1) e
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Theorem 5.5. Let A, (a) be a nuclear power series space of infinite type and A1(B) be a nuclear power series spaces
of finite type. To : A () — A1(B) is well-defined, continuous and compact if 0 € A1(B) @ (A (B))'.

Proof. Continuity follows from Theorem 3.3 and Theorem 4.3. Compactness follows from Theorem 3.4 and
Theorem 4.4. [

Remark 5.3. By considering the conditions in Proposition 3.1 or Proposition 4.1, the Toeplitz operator Ty is not well
defined from A1(a) to A (B).
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