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Toeplitz operators defined between Köthe spaces

Nazlı Doğan

Fatih Sultan Mehmet Vakıf University

Abstract. The aim of this paper is to define Toeplitz operators between Köthe spaces, especially power
series spaces. We determine the conditions for continuity and compactness of these operators. We define
the concept of S-tameness of a family of continuous operators. We construct some conditions on S-tameness
for the families consisting of Toeplitz operators.

1. Introduction

The theory of Toeplitz operators defined on a Hilbert space such as the Hardy and the Bergman spaces
is well-studied. The significance of this theory lies in the connection between operator theory and function
spaces. The matrix of a Toeplitz operator defined on Hardy space of unit disk H2pDq is a Toeplitz matrix.
Moreover, any bounded operator on H2pDq whose associated matrix is a Toeplitz matrix is a Toeplitz
operator. We direct the reader to [8] for more information about Toeplitz operators defined on H2pDq.
In recent years, Toeplitz operators, whose ”associated” matrix is Toeplitz, are defined for more general
topological vector spaces. For instance, in [3], Domański and Jasiczak developed the analogous theory for
the space of ApRq real analytic functions on the real line. This space is not a Banach space, even not a
metrizable space. In [6], Jasiczak introduced and characterized the class of Toeplitz operators on the Fréchet
space of all entire functions OpCq.

In [6], Jasiczak defined a continuous linear operator on OpCq as a Toeplitz operator if its matrix is a
Toeplitz matrix. The matrix of an operator is defined with respect to the Schauder basis pznqnPN0 . In this
case, the symbol of a Toeplitz operator comes from the spaceOpCq` pOpCqq1b here pOpCqq1b is the strong dual
of OpCq. The space of entire functions OpCq is isomorphic to a power series space of infinite type Λ8pnq.
By taking inspiration from Jasiczak paper [6], we will define Toeplitz operators on more general power
series spaces of finite or infinite type. Similarly, we will show that the symbol space is Λrpαq ` pΛrpαqq1,
for r � 1,8. We will also search the compactness of these operators and mention the conditions for the
tameness of the families consisting of Toeplitz operators.
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2. Preliminaries

In this section, we provide some fundamental facts and definitions essential for the subsequent discus-
sions. We will use the standard terminology and notation of [9].

A complete Hausdorff locally convex space E whose topology defined by countable fundamental system
of seminorms p} � }kqkPN is called a Fréchet space. A matrix pan,kqk,nPN of non-negative numbers is called a
Köthe matrix if it is satisfies the following conditions:

1. For each n PN there exists a k PNwith an,k ¡ 0.

2. an,k ¤ an,k�1 for each n, k PN.

For a Köthe matrix pan,kqn,kPN,

Kpan,kq �

"
x � pxnqnPN : }x}k :�

8̧

n�1

|xn|an,k   8 for all k PN
*

is called a Köthe space. Every Köthe space is a Fréchet space. From Proposition 27.13 of [9], the dual space
of a Köthe space is

pKpan,kqq
1 �

"
y � pynqnPN

���� sup
nPN

|yna�1
n,k |   �8 for some k PN

*
.

By Grothendieck-Pietsch Criteria [9][Theorem 28.15] a Köthe space Kpan,kq is nuclear if and only if for
every k PN, there exists a l ¡ k so that

8̧

n�1

an,k

an,l
  8.

For a nuclear Köthe spaces, }x}k � supnPN |xn|an,k, k P N forms an equivalent system of seminorms to the
fundamental system of seminorms }x}k �

°8
n�1 |xn|an,k, k PN, see Proposition 28.16 of [9].

Dynin-Mitiagin Theorem [9][Theorem 28.12] states that if a nuclear Fréchet space E with the sequence
of seminorms p} fn}qnPN has a Schauder basis p fnqnPN, then it is canonically isomorphic to a nuclear Köthe
space defined by the matrix p} fn}kqn,kPN. So, nuclear Köthe spaces hold a significant place in theory of
nuclear Fréchet space.

Let α � pαnqnPN be a non-negative increasing sequence with lim
nÑ8

αn � 8. A power series space of finite
type is defined by

Λ1 pαq :�

#
x � pxnqnPN : }x}k :�

8̧

n�1

|xn| e�
1
k αn   8 for all k PN

+

and a power series space of infinite type is defined by

Λ8 pαq :�

#
x � pxnqnPN : }x}k :�

8̧

n�1

|xn| ekαn   8 for all k PN

+
.

Power series spaces form an important family of Köthe spaces and they contain the spaces of holomorphic
functions on Cd andDd,

OpCdq � Λ8pn
1
d q and OpDdq � Λ1pn

1
d q

whereD is the unit disk in C and d PN.
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Let E and F be Fréchet spaces. A linear map T : E Ñ F is called continuous if for every k PN there exists
p PN and Ck ¡ 0 such that

}Tx}k ¤ Ck}x}p

for all x P E. A linear map T : E Ñ F is called compact if TpUq is precompact in F where U is a neighborhood
of zero of E.

In this paper, we fixed the symbol en to denote the sequence

p0, 0, . . . , 0, 1, 0, . . . q

where 1 is in the nth place and 0 is in the others.
We will use the following Lemma to determine the continuity and compactness of operators defined

between Köthe spaces.

Lemma 2.1. Let Kpan,kq and Kpbn,kq be Köthe spaces.

a. T : Kpan,kq Ñ Kpbn,kq is a linear continuous operator if and only if for each k there exists m such that

sup
nPN

}Ten}k

}en}m
  8.

b. If Kpbn,kq is Montel, then T : Kpan,kq Ñ Kpbn,kq is a compact operator if and only if there exists m such that for
all k

sup
nPN

}Ten}k

}en}m
  8.

Proof. Lemma 2.1 of [2].

We want to note that a Fréchet space E is Montel if each bounded set in E is relatively compact and every
power series space is Montel, see Theorem 27.9 of [9].

In the next proposition, it will be shown that the continuity condition is sufficient to ensure that linear
operators defined only on the basis elements are well-defined.

Proposition 2.2. Let Kpan,kq, Kpbn,kq be Köthe spaces and panqnPN P Kpbn,kq be a sequence. Let us define a linear
map T : Kpan,kq Ñ Kpbn,kq such as

Ten � an and Tx �
8̧

n�1

xnTen

for every n PN and x �
°8

n�1 xnen. If the continuity condition

@k PN Dm PN sup
nPN

}Ten}k

}en}m
  8

holds, then T is well-defined and continuous operator.

Proof. Let x �
°8

n�1 xnen be an arbitrary element of Kpan,kq and assume that for every k P N there exists a
m PN such that

sup
nPN

}Ten}k

}en}m
  8.

Now we define the sequence

yN �
Ņ

n�1

Tpxnenq �
Ņ

n�1

xnTen
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for every N PN. Then for every k PN, there exist m PN and C ¡ 0 such that for sufficiently large N,M PN,
N ¡ M,

}yN � yM}k � }
Ņ

l�M�1

xlTpelq}k ¤
Ņ

l�M�1

|xl|}el}m
}Tel}k

}el}m
¤ C

Ņ

l�M�1

|xl|}el}m

which is arbitrarily small, since }x}m �
°8

n�1 |xn|}en}m   8. This says that the sequence pyNqNPN � Kpbk,nq
is a Cauchy sequence and therefore has a limit. Let us say the lim

NÑ8
yN � y. Hence, we have

y � lim
NÑ8

yN �
8̧

n�1

xnTpenq � Tpxq P Kpbk,nq.

Therefore T is well-defined from Kpak,nq to Kpbk,nq and T is continuous from Lemma 2.1.

A grading on a Fréchet space E is a sequence of seminorms t} � }n : n PNu which are increasing, that is,

}x}1 ¤ }x}2 ¤ }x}3 ¤ . . .

for each x P E and which define the topology. Every Fréchet space admits a grading. A graded Fréchet
space is Fréchet space with a choice of grading. For more information, see [5]. In this paper, unless stated
otherwise, we will assume that all Fréchet spaces are graded Fréchet spaces.

A pair of graded Fréchet spaces pE,Fq is called tame provided that there exists an increasing function
σ : NÑ N, such that for every continuous linear operator T from E to F, there exists an N and C ¡ 0 such
that

}Tx}n ¤ C}x}σpnq @x P E and n ¥ N.

A Fréchet space E is called tame if pE,Eq is tame. Tameness gives us a kind of control on the continuity of
the operators. In [4], Dubinsky and Vogt used this notion to find a basis in complemented subspaces of
some infinite type power series spaces. We refer to [1] and [7] for the other studies about tameness.

In this paper, instead of all operators defined on a Fréchet space, we will restrict ourselves to a subfamily
of operators. With this aim, we will give the following definition.

Definition 2.3. Let S :NÑN be a non-decreasing function. A family of linear continuous operatorsA � LpE,Fq
is called S-tame if for every operator T P A there exist k0 PN and C ¡ 0 such that

}Tx}k ¤ C}x}Spkq @x P E, k ¥ k0.

S-tameness of a family can be given by considering only elements of bases similar to Lemma 2.1.

Lemma 2.4. Let Kpan,kq and Kpbn,kq be Köthe spaces and S : N Ñ N be a non-decreasing function. A family of
linear continuous operators A � LpKpan,kq,Kpbn,kqq is S-tame if and only if for every operator T P A there exist
k0 PN and C ¡ 0 such that

}Ten}k ¤ C}en}Spkq @n PN, k ¥ k0.

Proof. Let us assume that for every T P A there exist a k0 PN and C ¡ 0 such that

}Ten}k ¤ C}en}Spkq @n PN, k ¥ k0.

Then for every x �
°8

n�1 xnen, we can write

}Tx}k �

���� 8̧

n�1

xnTpenq

����
k
¤

8̧

n�1

|xn|}Ten}k ¤ C
8̧

n�1

|xn|}en}Spkq � C
8̧

n�1

|xn|an,Spkq � C}x}Spkq.

This says thatA is S-tame. The other direction is straightforward.
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In this paper, we will call an operator which is defined between Köthe spaces as a Toeplitz operator if its
matrix is a Toeplitz matrix defined with respect to the Schauder basis penqnPN. In sections 3 and 4, we will
concentrate on lower triangular Toeplitz matrices and upper triangular Toeplitz matrices, respectively. We
will determine the continuity and compactness of the operators whose associated matrix is related to these
matrices. By collecting the results obtained in sections 3 and 4, we share the results about the continuity
and compactness of a Toeplitz operator defined between power series spaces in section 5.

3. Operators Defined by A Lower Triangular Toeplitz Matrix

Let θ � pθnqnPN0 be any sequence. The lower triangular Toeplitz matrix defined by θ is�������
θ0 0 0 0 � � �
θ1 θ0 0 0 � � �
θ2 θ1 θ0 0 � � �
θ3 θ2 θ1 θ0 � � �
...

...
...

...
. . .

������
.

We want to define an operator pTθ : Kpan,kq Ñ Kpbn,kq by taking pTθen as the nth column of the above matrix,
that is, pTθen � p0, � � � , 0, θ0, θ1, θ2, � � � q �

8̧

j�n

θ j�ne j

provided that pTθen P Kpbn,kq for every n P N. Therefore, for every x �
°8

n�1 xnen P Kpan,kq, the operator pTθ
is given by pTθx � 8̧

n�1

xnpTθen.

In fact, we can not guarantee that the operator pTθ is correctly defined between two general Köthe spaces
Kpan,kq and Kpbn,kq, because we do not know if the series

°8
n�1 xnpTθen converges in Kpbn,kq for every x P Kpan,kq

in this general case. Below, we will examine the cases where this operator can be correctly defined, and in
these cases, we will analyze the continuity and compactness of this operator. Throughout this paper, we
will assume that the sequences θ satisfy the following condition

@n PN Ds ¡ n θs � 0.

Otherwise, θ produces a finite rank operator, which is obviously continuous and compact.
The idea of Proposition 3.1 is the same as [10, Theorem 2.1]. Therein one can also find a generalized

form of Theorem 3.3.

Proposition 3.1. Let Kpan,kq, Kpbn,kq be Köthe spaces and assume that θ be a sequence and s0 � mintt : θt � 0u. IfpTθ : Kpan,kq Ñ Kpbn,kq is a continuous operator, then θ P Kpbn,kq and the following holds

@k PN Dm PN,C ¡ 0 bn�s0,k ¤ Can,m @n PN.

Proof. Let pTθ : Kpan,kq Ñ Kpbn,kq be a continuous operator. For every n PN,

pTθen � p0, . . . , 0, θ0, θ1, θ2, . . . q �
8̧

j�n

θ j�ne j P Kpbn,kq.

Since pTθe1 P Kpbn,kq, this gives us θ P Kpbn,kq. By Lemma 2.1, for all k PN there exist m PN and C1 ¡ 0 such
that

}pTθen}k �
8̧

j�n

|θ j�n|b j,k ¤ C1}en}m � C1an,m @n PN.
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Then, for all n and j ¥ n, we have |θ j�n|b j,k ¤ C1an,m. Hence we can write that bn�s0,k ¤ C2an,m for some
C2 ¡ 0. This completes the proof.

For compact pTθ : Kpan,kq Ñ Kpbn,kq operators, the relationship between Köthe matrices pan,kqn,kPN and
pbn,kqn,kPN is as follows:

Proposition 3.2. Let Kpan,kq and Kpbn,kq be Köthe spaces such that Kpbn,kq is Montel and assume that θ P Kpbn,kq

and s0 � mintt : θt � 0u. If pTθ : Kpan,kq Ñ Kpbn,kq is a compact operator, then the following holds

Dm PN @k PN DC ¡ 0 bn�s0,k ¤ Can,m @n PN.

Proof. The proof is similar to the proof of Proposition 3.1.

The converse of Proposition 3.1 is true when Kpbn,kq is a power series space of finite type.

Theorem 3.3. Let Kpan,kq be a Köthe space, Λ1pβq be a power series space of finite type and assume that θ be a
sequence and s0 � mintt : θt � 0u. pTθ : Kpan,kq Ñ Λ1pβq is well-defined and continuous if and only if θ P Λ1pβq
and the following condition holds:

@k PN Dm PN,C ¡ 0 e�
1
k βn�s0 ¤ Can,m @n PN. (1)

Proof. If the operator pTθ is continuous, Proposition 3.1 gives us that θ P Λ1pβq and (1) holds. For the other
direction, let us assume θ P Λ1pβq. By using the condition (1) we have the following: for every k PN, there
exist m PN and C1,C2 ¡ 0 such that

}pTθen}k ¤ }pTθen}2k �
8̧

j�n

|θ j�n|e�
1
2k β j �

8̧

j�n�s0

|θ j�n|e�
1
2k β j e

1
k2�2k

βn�s0 e�
1

k2�2k
βn�s0

¤ C1an,m

8̧

j�n�s0

|θ j�n|e�
1
2k β j e

1
k2�2k

βn�s0 � C1an,m

8̧

j�n�s0

|θ j�n|e
� 1

2pk�2q β j e�
1

k2�2k
pβ j�βn�s0 q

¤ C1an,m

8̧

j�n�s0

|θ j�n|e
� 1

2pk�2q β j � C1}θ}2pk�2qan,m � C2an,m

for every n PN. In the second line of the inequalites we use the fact that

1
k2 � 2k

�
1
2k

�
1

2pk � 2q

for every k PN. Therefore, pTθen P Λ1pβq for every n PN and for every k PN there exist m PN such that

sup
nPN

}pTθen}k

}en}m
  8,

that is, pTθ : Kpan,kq Ñ Λ1pβq is well defined and continuous by Proposition 2.2.

We can characterize the compactness of the operators pTθ : Kpan,kq Ñ Λ1pβq as the follows.

Theorem 3.4. Let Kpan,kq be a Köthe space, Λ1pβq be a power series space of finite type and assume that θ be a
sequence and s0 � mintt : θt � 0u. pTθ : Kpan,kq Ñ Λ1pβq is compact if and only if θ P Λ1pβq and the following
condition holds:

Dm PN @k PN DC ¡ 0 e�
1
k βn�s0 ¤ Can,m @n PN. (2)
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Proof. If pTθ is compact, then pTθ is continuous and θ P Λ1pβq from Proposition 3.1. Proposition 3.2 says that
the condition (2) holds. For the other direction, assume that θ P Λ1pβq and the condition (2) holds. By the
same calculation of the proof of Theorem 3.3, we can write that there exists an m PN such that for all k PN

sup
nPN

}pTθen}k

}en}m
  8.

From Lemma 2.1, we can say that pTθ : Kpan,kq Ñ Λ1pβq is compact.

Proposition 3.5. Let Kpan,kq be a Köthe space and Λ1pβq be a power series space of finite type. Assume there exists a
non-decreasing function S :NÑN such that the following condition holds:

@k PN DC ¡ 0 e�
1
k βn ¤ Can,Spkq @n PN. (3)

Then, the family of the operators pTθ : Kpan,kq Ñ Λ1pβq for θ P Λ1pβq, that is,

pA1 � tpTθ : θ P Λ1pβqu

is S̃-tame, where S̃pkq � Sp2kq for every k PN.

Proof. Let θ P Λ1pβq. By using (3), for every k PN, there exist C1,C2 ¡ 0 such that

}pTθen}k �
8̧

j�n

|θ j�n|e�
2
2k β j �

8̧

j�n

|θ j�n|e�
1
2k β j e�

1
2k β j ¤

� 8̧

j�n

|θ j�n|e�
1
2k β j



e�

1
2k βn ¤ C1

� 8̧

j�n

|θ j�n|e�
1
2k β j



an,Sp2kq

¤ C1

� 8̧

j�n

|θ j�n|e�
1
2k β j�n�1



}en}Sp2kq ¤ C1}θ}2k}en}S̃pkq ¤ C2}en}S̃pkq.

Therefore, for every θ P Λ1pβq and for all k PN, there exists C ¡ 0 so that we write

}pTθen}k ¤ C}en}S̃pkq,

that is, the family pA1 is S̃-tame.

Now we turn our attention to the power series space of infinite type. For the converse of Proposition
3.1, we need the stability condition on the sequence β when Kpbn,kq is power series space of infinite type
Λ8pβq. A sequence β is called stable if

sup
nPN

β2n

βn
  8.

Theorem 3.6. Let β � pβnqnPN be a stable sequence. pTθ : Kpan,kq Ñ Λ8pβq is well-defined and continuous if and
only if θ P Λ8pβq and the following condition holds:

@k PN Dm PN,C ¡ 0 ekβn ¤ Can,m @n PN. (4)

Proof. Let assume θ be a sequence and s0 � mintt : θt � 0u. If the operator pTθ is continuous, Proposition
3.1 gives us that θ P Λ8pβq and for every k PN, there exist m PN, C ¡ 0 such that

ekβn�s0 ¤ Can,m

and then we have
ekβn ¤ Can,m
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for every n P N. This says that (4) holds since β is an increasing sequence. For the converse, we assume
that β is stable. Then there exists an M ¡ 1 such that

β2n ¤ Mβn @n PN.

Since β is increasing we have the following: if j � 2t ¥ 2n,

β j � β2t ¤ Mβt ¤ Mβ2t�n � Mβ j�n ¤ Mβ j�n�1

and if j � 2t � 1 ¥ 2n, we have t � 1 ¥ n and

β j � β2t�1 ¤ β2t�2 ¤ Mβt�1 ¤ Mβ2t�2�n � Mβ j�n�1.

Therefore, we have
β j ¤ Mβ j�n�1

for all j ¥ 2n. Now let us assume that θ P Λ8pβq and the condition (4) holds. Then, for every k P N there
exist m PN, C1,C2 ¡ 0 such that

}pTθen}k �
2n�1̧

j�n

|θ j�n|ekβ j �
8̧

j�2n

|θ j�n|ekβ j ¤
2n�1̧

j�n

|θ j�n|ekβ2n �
8̧

j�2n

|θ j�n|eMkβ j�n�1 ekβ j�Mkβ j�n�1

¤ eMkβn

2n�1̧

j�n

|θ j�n| �
8̧

j�2n

|θ j�n|eMkβ j�n�1 ¤ eMkβn

8̧

j�n

|θ j�n|eMkβ j�n�1

¤ C1an,m

8̧

j�n

|θ j�n|eMkβ j�n�1 ¤ C1}θ}Mk}en}m ¤ C2}en}m.

holds for every n P N. We employed that β j ¤ Mβ j�n�1 for every j ¥ 2n in the first line. Therefore,pTθen P Λ8pβq for every n PN and for all k PN there exist m PN such that

sup
nPN

}pTθen}k

}en}m
  8

that is, pTθ is well-defined and continuous by Proposition 2.2.

We can characterize the compactness of the operators pTθ : Kpan,kq Ñ Λ8pβq as the follows.

Theorem 3.7. Let β � pβnqnPN be a stable sequence. pTθ : Kpan,kq Ñ Λ8pβq is compact if and only if θ P Λ8pβq and
the following condition holds:

Dm PN @k PN DC ¡ 0 ekβn ¤ Can,m @n ¥ k. (5)

Proof. Let assumeθ be a sequence and s0 � mintt : θt � 0u. If pTθ is compact, thenθ P Λ1pβq from Proposition
3.1. Proposition 3.2 says that there exists a m P N such that for all k PN there exists a C ¡ 0 such that

ekβn�s0 ¤ Can,m

for every n PN. This says that the condition (5) is satisfied since β is an increasing sequence.
For the converse, assume that θ P Λ8pβq and (5) holds. By the same calculation of the proof of Theorem

3.6, we can write that there exists m PN such that for all k PN

sup
n¥k

}pTθen}k

}en}m
  8

and then

sup
nPN

}pTθen}k

}en}m
  8.

From Lemma 2.1, we can say that pTθ : Kpan,kq Ñ Λ8pβq is compact.
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Proposition 3.8. Let β � pβnqnPN be a non-negative increasing stable sequence with lim
nÑ8

βn � 8. Assume that
there exists a non-decreasing function S :NÑN such that

@k PN DC ¡ 0 ekβn ¤ Can,Spkq @n PN. (6)

Then, the family of operators pTθ : Kpan,kq Ñ Λ8pβq for θ P Λ8pβq

pA8 � tTθ : θ P Λ8pβqu

is S̃-tame, where S̃pkq � SpMkq for every k PN and here M � sup
nPN

α2n

αn
.

Proof. The proof is similar to the proof of Theorem 3.7. Let θ P Λ8pβq. In the proof of Theorem 3.6 we
showed that for all k,n PN

}pTθen}k ¤ eMkβn

8̧

j�n

|θ j�n|eMkβ j�n�1 ¤ eMkβn}θ}Mk.

Using the condition (6), we can write that for all k PN there exists a C ¡ 0 such that

}pTθen}k ¤ eMkβn}θ}Mk ¤ Can,SpMkq � Can,S̃pkq.

Then we have the following

@k DC ¡ 0 }pTθen}k ¤ C}en}S̃pkq

for every θ P Λ8pβq. This says that the family pA8 is S̃-tame.

4. Operators Defined by an Upper Triangular Toeplitz Matrix

Let θ � pθnqnPN0 be any sequence. The upper triangular Toeplitz matrix defined by θ is�������
θ0 θ1 θ2 θ3 � � �
0 θ0 θ1 θ2 � � �
0 0 θ0 θ1 � � �
0 0 0 θ0 � � �
...

...
...

...
. . .

������

We want to define a linear operator qTθ : Kpan,kq Ñ Kpbn,kq by taking qTθen as the nth column of the above
matrix, that is, qTθen � pθn�1, θn�2, . . . , θ1, θ0, 0, 0, . . . q �

ņ

j�1

θn� je j.

Therefore, for every x �
°8

n�1 xnen P Kpan,kq, the operator qTθ is given by

qTθx � 8̧

n�1

xnqTθen.

In fact, we can not guarantee that the operator qTθ is correctly defined between two general Köthe spaces
Kpan,kq and Kpbn,kq, because we do not know if the series

°8
n�1 xnqTθen converges in Kpbn,kq for every x P Kpan,kq

in this general case. Below, we will examine the cases where this operator can be correctly defined, and
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in these cases, we will analyze the continuity and compactness of this operator. Similiar to the previous
section, we will assume that the sequences θ satisfy the following condition

@n PN Ds ¡ n θs � 0.

Otherwise, θ produces a finite rank operator, which is obviously continuous and compact.
In [10, Theorem 2.2], you can find the same idea for Proposition 4.1 and a generalized form of Theorem

4.3 for G8-spaces.

Proposition 4.1. Let Kpan,kq, Kpbn,kq be Köthe spaces and assume that θ be a sequence and s0 � mintt : θt � 0u. IfqTθ : Kpan,kq Ñ Kpbn,kq is continuous, then θ P pKpan,kqq
1 and the following holds:

@k PN Dm PN,C ¡ 0 bn�s0,k ¤ Can,m @n ¡ s0.

Proof. Let qTθ : Kpan,kq Ñ Kpbn,kq be a continuous operator. Then by Lemma 2.1, for all k P N there exist
m PN and C1 ¡ 0 such that

}qTθen}k �
ņ

j�1

|θn� j|b j,k ¤ C1an,m @n PN.

Then, for all n and j ¤ n
|θn� j|b j,k ¤ C1an,m.

Since pbn,kq is a Köthe matrix, there exists a k0 P N satisfying b1,k0 � 0. Let us take C2 �
C1

b1,k0
. Then we can

write
|θn�1| ¤ C2an,m

and this says that θ P pKpan,kqq
1. Further, we have that for every k PN, there exist m PN and C1 ¡ 0 so that

|θs0 |bn�s0 ¤ C1an,m

and
bn�s0 ¤

C1

θs0

an,m.

hold for all n ¡ s0. By choosing C �
C1

|θs0 |
, we have

bn�s0,k ¤ C3an,m @n ¡ s0.

This completes the proof.

For compact qTθ : Kpan,kq Ñ Kpbn,kq operators, the relationship between Köthe matrices pan,kqn,kPN and
pbn,kqn,kPN is as follows:

Proposition 4.2. Let Kpan,kq and Kpbn,kq be Köthe spaces such that Kpbn,kq is Montel and assume that θ P Kpbn,kq

and s0 � mintt : θt � 0u. If qTθ : Kpan,kq Ñ Kpbn,kq is a compact operator, then the following holds

Dm PN @k PN DC ¡ 0 bn�s0,k ¤ Can,m @n ¡ s0.

Proof. The proof is similar to the proof of Proposition 4.1.

The converse of Proposition 3.1 is true when Kpbn,kq is a power series space of finite type.

Theorem 4.3. LetΛ8pαq be a nuclear power series space of infinite type, Kpbn,kq be a Köthe space and assume that θ
be a sequence and s0 � mintt : θt � 0u. The operator qTθ : Λ8pαq Ñ Kpbn,kq is well-defined and continuous if and
only if θ P pΛ8pαqq1 and the following condition holds:

@k PN Dm PN,C ¡ 0 bn�s0,k ¤ Cemαn @n ¡ s0. (7)
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Proof. If the operator qTθ is continuous, Proposition 4.1 gives us that θ P pΛ8pαqq
1

and (7) holds. Let us
assume that θ P pΛ8pαqq1 and (7) holds. Then there exists some m1 PN and C1 ¡ 0 such that

|θn�1| ¤ C1em1αn @n PN.

From the condition (7), for every k PN, there exist m2 PN and C2 ¡ 0 such that

}qTθen}k �
ņ

j�1

|θn� j|b j,k �
n�s0̧

j�1

|θn� j|b j,k ¤ C1

n�s0̧

j�1

em1αn� j�1 b j,k

¤ C2

n�s0̧

j�1

em1αn� j�1 em2α j�s0 ¤ C2em1αn

n�s0̧

j�1

em2α j�s0 � C2em1αn

ņ

j�1�s0

em2α j .

On the other hand, Λ8pαq is nuclear then
°8

n�1 e�m3αn is convergent for some m3 P N and then for some
D ¡ 0 we have

ņ

j�1

em2α j ¤ Depm2�m3qαn

since
ņ

j�1

em2α j e�pm2�m3qαn ¤
ņ

j�1

em2α j e�pm2�m3qα j ¤
8̧

j�1

e�m3α j � D   �8.

Then we can write

}qTθen}k ¤ C2em1αn

ņ

j�1�s0

em2α j ¤ C2em1αn

ņ

j�1

em2α j ¤ DC2em1αn epm2�m3qαn � DC2}en}m1�m2�m3 .

Therefore, qTθen P Kpbn,kq for every n PN and for all k PN, there exist m � m1 � m2 � m3 PN such that

sup
nPN

}qTθen}k

}en}m
  8,

that is, qTθ is well defined and continuous by Proposition 2.2.

We can characterize the compactness of the operators qTθ : Λ8pβq Ñ Kpbn,kq as follows.

Theorem 4.4. Let Λ8pαq be a nuclear power series space of infinite type and Kpbn,kq be a Montel Köthe space.qTθ : Λ8pαq Ñ Kpbn,kq is compact if and only if θ P pΛ8pαqq1 and the following condition holds:

Dm PN @k PN DC ¡ 0 bn�s0,k ¤ Cemαn @n ¡ s0. (8)

Proof. If qTθ is compact, θ P pΛ8pαqq1 from Proposition 4.1 and Lemma 2.1 says that there exists a m P N
such that for all k PN

sup
n

}qTθen}k

}en}m
  8.

This gives us that there exists a C ¡ 0 such that

|θs0 |bn�s0,k ¤ }qTθen} �
ņ

j�1

|θn� j|b j,k ¤ C}en}m � Cemαn .

This says that the condition (8) is satisfied.
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For the converse, assume θ P pΛ8pαqq1 and the condition (8) holds. By the same calculation of the proof
of the Theorem 4.3, we can write that there exists a m PN such that for all k PN

sup
n

}qTθen}k

}en}m
  8.

Lemma 2.1 gives us that qTθ : Λ8pαq Ñ Kpbn,kq is compact.

Proposition 4.5. Let Λ8pαq be a nuclear power series space of infinite type and Kpbn,kq be a Köthe space. Assume
that there exists a non-decreasing function S :NÑN such that the following condition holds

@k PN DC ¡ 0 bn,k ¤ CeSpkqαn @n PN. (9)

Then, the family of the operators qTθ : Λ8pαq Ñ Kpbn,kq for θ P pΛ8pαqq1, that is,

qA8 � tqTθ : θ P pΛ8pαqq1u

is 2S-tame.

Proof. The proof is similiar to the proof of Theorem 4.3. Let us assume θ P pΛ8pαqq1. Then there exists some
m1 PN and C1 ¡ 0 such that

|θn�1| ¤ C1em1αn @n PN.

Since Λ8pαq is nuclear then
°8

n�1 e�m2αn is convergent for some m2 P N and using similiar to steps in the
proof of Theorem 4.3 we can show that there exists a D ¡ 0 such that

ņ

j�1

ekα j ¤ Depk�m2qαn

for every k PN. For every k PN satisfying Spkq ¥ m1 � m2, there exists C2,C3 ¡ 0 such that

}qTθen}k �
ņ

j�1

|θn� j|b j,k ¤ C1

ņ

j�1

em1αn� j�1 b j,k ¤ C2em1αn

ņ

j�1

eSpkqα j ¤ C3em1αn epSpkq�m2qαn ¤ C3e2Spkqαn � }en}2Spkq.

Then, we have the following
}qTθen}k ¤ C2}en}2Spkq

for all k satisfying Spkq ¥ m1 � m2, that is, the family qA8 is 2S-tame.

For the converse of Proposition 4.4, we need a stable sequence αwhen Kpan,kq is power series space of finite
type Λ1pαq.

Theorem 4.6. Let α � pαnqnPN be a stable sequence. qTθ : Λ1pαq Ñ Kpbn,kq is well-defined and continuous if and
only if θ P pΛ1pαqq1 and the following condition holds

@k PN Dm PN,C ¡ 0 bn,k ¤ Ce�
1
mαn @n PN. (10)

Proof. Let assume θ be a sequence and s0 � mintt : θt � 0u. If the operator qTθ is continuous, Proposition
4.1 gives us that θ P pΛ1pαqq

1
and for every k PN, there exist m PN, C ¡ 0 such that

bn,k ¤ Ce�
1
mαn�s0 ¤ Ce�

1
mαn

for every n P N. This says that (10) holds since β is an increasing sequence. For the converse, we assume
that assume that α is stable, θ P pΛ1pαqq1 and (10) holds. Then there exist some m1 PN and C1 ¡ 0 such that

|θn�1| ¤ C1e�
1

m1
αn @n PN.
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By stability of α, we will show that there exists M ¡ 0 such that for every n PN and j ¤ n it holds that

αn ¤ Mpαn� j�1�α jq. (11)

Since α is stable, there exists a M ¡ 0 such that α2t ¤ Mαt for every t PN. Assume that n � 2t or n � 2t� 1
and 1 ¤ j ¤ n

αn ¤ α2t�2 ¤ Mαt�1 ¤ Mpαn� j�1 � α jq

since in this case t� 1 ¤ j or t� 1 ¤ n� j� 1 and then we have αn� j�1 �α j ¥ αt�1. Therefore the inequality
(11) is satisfied. By using the condition (10), we can write that for every k P N, there exist m2 P N and
C2 ¡ 0 such that

bn,k ¤ C2e�
1

m2
αn�s0 ¤ C2e�

1
m2
αn

for every n PN. Let us say m3 � minpm1,m2q. Then we have

}qTθen}k �
ņ

j�1

|θn� j|b j,k ¤ C1C2

ņ

j�1

e�
1

m1
αn� j�1 e�

1
m2
α j

¤ C1C2

ņ

j�1

e�
1

m3
pαn� j�1�α jq ¤ C1C2

ņ

j�1

e�
1

Mm3
αn ¤ C1C2ne�

1
m3Mαn

Now we choose a m4 PN so that m4 ¡ m3M, then

�
1

m3M
�

1
m4

  0 and lim
nÑ8

nep�
1

m3M�
1

m4
qαn � 0.

Then there exists a D ¡ 0 such that for all n PN

ne�
1

m3Mαn ¤ De�
1

m4
αn

and for some C3 ¡ 0 and for all n PN

}qTθen}k ¤ C1C2ne�
1

m3Mαn ¤ C3e�
1

m4
αn ¤ C3}en}m4 .

Therefore, for all k PN, there exist m PN such that

sup
nPN

}qTθen}k

}en}m
  8,

that is, qTθ : Λ1pαq Ñ Kpbn,kq is well-defined and continuous by Proposition 2.2.

The following theorem characterize the compactness of the operators qTθ : Λ1pαq Ñ Kpbn,kq.

Theorem 4.7. Let α � pαnqnPN be a stable sequence and Kpbn,kq be a Montel Köthe space. qTθ : Λ1pαq Ñ Kpbn,kq is
compact if and only if θ P pΛ1pαqq1 and the following condition holds:

Dm PN @k PN DC ¡ 0 bn,k ¤ Ce�
1
mαn @n ¥ k. (12)

Proof. Let assume θ be a sequence and s0 � mintt : θt � 0u. If the operator pTθ is continuous, then
θ P pΛ1pαqq1 from Proposition 4.1 and Proposition 4.2 says that for every k P N, there exist m P N, C ¡ 0
such that

bn,k ¤ Ce�
1
mαn�s0 ¤ Ce�

1
mαn

for every n PN. This says that (12) holds since α is an increasing sequence.
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For the converse, assume that θ P pΛ1pαqq1 and the condition (12) holds. By the same calculation of the
proof of the Theorem 4.6, we can write that there exists m PN such that for all k PN

sup
n

}qTθen}k

}en}m
  8,

that is, qTθ : Λ1pαq Ñ Kpan,kq is compact from Lemma 2.1.

Proposition 4.8. Letα � pαnqnPN be a stable sequence and M � sup
nPN

α2n

αn
. Assume that there exists a non-decreasing

function S :NÑN such that the following condition hold:

@k PN DC ¡ 0 bn,k ¤ Ce�
1

Spkqαn @n PN. (13)

Then, the family of the operators qTθ : Λ1pαq Ñ Kpbn,kq for θ P pΛ1pβqq1, that is,

qA1 � tqTθ : θ P pΛ1pαqq
1u

is S̃-tame where S̃pkq � pM � 1qSpkq for every k PN.

Proof. The proof is similar to the proof of the Theorem 4.6. Since θ P pΛ1pαqq1, there exists some m1 PN and
C1 ¡ 0 such that

|θn�1| ¤ C1e�
1

m1
αn @n PN.

By using (13), we can write that for every k PN satisfying Spkq ¥ m1, there exists a C2,C3,C4 ¡ 0 such that

}qTθen}k �
ņ

j�1

|θn� j|b j,k ¤ C1

ņ

j�1

e�
1

m1
αn� j�1 b j,k ¤ C2

ņ

j�1

e�
1

m1
αn� j�1 e�

1
Spkqα j

¤ C2

ņ

j�1

e�
1

Spkq pαn� j�1�αnq ¤ C3

ņ

j�1

e�
1

MSpkqαn � C3ne�
1

MSpkqαn ¤ C4e�
1

pM�1qSpkqαn ¤ C4}en}pM�1qSpkq

Then for all k PN satisfying Spkq ¥ m1, then, we have the following

}qTθen}k ¤ C3}en}pM�1qSpkq

that is the family qA1 is S̃-tame, where S̃pkq � pM � 1qSpkq for all k PN.

5. Toeplitz Operators Defined between Power Series Spaces

When given a Toeplitz matrix �����
θ0 θ�1 θ�2 � � �
θ1 θ0 θ�1 � � �
θ2 θ1 θ0 � � �
...

...
...

. . .

����
,
one can express this matrix as a sum of a lower and an upper Toeplitz matrix in the following way:�����

θ0 θ�1 θ�2 � � �
θ1 θ0 θ�1 � � �
θ2 θ1 θ0 � � �
...

...
...

. . .

����
�
�����
θ10 0 0 � � �
θ1 θ10 0 � � �
θ2 θ1 θ10 � � �
...

...
...
. . .

����
�
�����
θ20 θ�1 θ�2 � � �
0 θ20 θ�1 � � �
0 0 θ20 � � �
...

...
...

. . .

����
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Here θ0 � θ10 � θ
2
0 and we can choose θ10 and θ20 to be non-zero. Let define the sequences

pθ � pθ10, θ1, θ2, θ3, . . . q

and qθ � pθ20 , θ�1, θ�2, θ�3, . . . q.

Therefore every Toeplitz matrix can be associated with two sequences. Denoting the operator defined by
the Toeplitz matrix as Tθ, one can write this operator as a sum of two operators defined by a lower and an
upper Toeplitz matrix, that is,

Tθ � pT
pθ �

qT
qθ.

In this section, we collect some results regarding the continuity and compactness of a Toeplitz operator
by utilizing the theorems proven in the previous sections.

Theorem 5.1. Let α be a stable sequence. A Toeplitz operator Tθ : Λ1pαq Ñ Λ1pβq is well-defined and continuous if
θ P Λ1pβq ` pΛ1pαqq1 and the following condition holds:

@k PN Dm PN,C ¡ 0 e�
1
k βn ¤ Ce�

1
mαn @n PN. (14)

Proof. Let assume that Toeplitz matrix associated with Tθ is given by sequnces pθ and qθ. We can choose θ10
and θ20 to be non-zero. Then Toeplitz operator Tθ is defined as

Tθ � pT
pθ �

qT
qθ.

From Theorem (3.3), pT
pθ is well-defined and continous if and only if pθ P Λ1pβq and the condition (14) is

satisfied. From Theorem 4.6, qT
qθ is well-defined and continous if and only if qθ P pΛ1pαqq1 and the condition

(14) is satisfied. Therefore, these give us that Tθ is well-defined and continuous ifθ � pθ`qθ P Λ1pβq`pΛ1pαqq1

and the condition (14) is satisfied.

Theorem 5.2. Let α be a stable sequence. A Toeplitz operator Tθ : Λ1pαq Ñ Λ1pβq is compact if a θ P Λ1pβq `
pΛ1pαqq1 and the following condition holds:

Dm PN @k PN DC ¡ 0 e�
1
k βn ¤ Ce�

1
mαn @n ¥ k. (15)

Proof. The proof is similar to the proof of Theorem 5.1 and follows from Theorem 3.4 and Theorem 4.7.

Remark 5.1. The condition in Theorem 15 is satisfied for the sequences α � pnqnPN and β � pn2qnPN.

Theorem 5.3. Let β be a stable sequence and Λ8pαq be a nuclear power series space of infinite type. A Toeplitz
operator Tθ : Λ8pαq Ñ Λ8pβq is well-defined and continuous if θ P Λ8pβq` pΛ8pαqq1 and the following condition
holds:

@k PN Dm PN,C ¡ 0 ekβn ¤ Cemαn @n ¥ k. (16)

Proof. This follows from Theorem 3.6 and Theorem 4.3.

Theorem 5.4. Let β be a stable sequence and Λ8pαq be a nuclear power series space of infinite type. A Toeplitz
operator Tθ : Λ8pαq Ñ Λ8pβq is compact if θ P Λ8pβq ` pΛ8pαqq1 and the following condition holds:

Dm PN @k PN DC ¡ 0 ekβn ¤ Cemαn @n ¥ k. (17)

Proof. This follows from Theorem 3.7 and Theorem 4.4.

Remark 5.2. The condition in Theorem 5.4 is satisfied for the sequences α � pn2qnPN and β � pnqnPN.
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Theorem 5.5. Let Λ8pαq be a nuclear power series space of infinite type and Λ1pβq be a nuclear power series spaces
of finite type. Tθ : Λ8pαq Ñ Λ1pβq is well-defined, continuous and compact if θ P Λ1pβq ` pΛ8pβqq1.

Proof. Continuity follows from Theorem 3.3 and Theorem 4.3. Compactness follows from Theorem 3.4 and
Theorem 4.4.

Remark 5.3. By considering the conditions in Proposition 3.1 or Proposition 4.1, the Toeplitz operator Tθ is not well
defined from Λ1pαq to Λ8pβq.
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