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Abstract. In the paper, with the aid of a derivative formula for the ratio of two differentiable functions,
in view of a monotonicity rule for the ratio of two differentiable functions, in terms of the Hessenberg
determinants, the authors present a Maclaurin power series expansion of the logarithm of the normalized
remainder of the Maclaurin power series expansion of the sine function, and demonstrate the decreasing
property of the ratio of two logarithms of two normalized remainders of the Maclaurin power series
expansion of the sine function.

1. Motivations

We first recall some known results, introduce a sequence of functions, and state our main aims.

1.1. Known results
In [8, pp. 42 and 55], we looked up the Maclaurin power series expansions
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where the Bernoulli numbers B2k are generated by
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From the series expansion (1.2), we acquire
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In the paper [14], the authors established the following results.

1. The even function

Q(x) =

ln
6(x − sin x)

x3 , 0 < |x| < ∞

0, x = 0
(1.4)

has a Maclaurin power series expansion
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where the determinant

C2n = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
(0

0
)
c0 0 0 · · · 0

c1 0
(1

1
)
c0 0 · · · 0

0
(2

0
)
c1 0

(2
2
)
c0 · · · 0

c2 0
(3

1
)
c1 0 · · · 0

...
...

...
...

. . .
...

0
(2n−4

0
)
cn−2 0

(2n−4
2

)
cn−3 · · · 0

cn−1 0
(2n−3

1
)
cn−2 0 · · · 0

0
(2n−2

0
)
cn−1 0

(2n−2
2

)
cn−1 · · ·

(2n−2
2n−2

)
c0

cn 0
(2n−1

1
)
cn−1 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣ci, j
∣∣∣
(2n)×(2n)

,

ci, j =


1 + (−1)i

2
ci/2, 1 ≤ i ≤ 2n, j = 1;(

i − 1
j − 2

)
1 + (−1)i− j+1

2
c(i− j+1)/2, 1 ≤ i ≤ 2n, 2 ≤ j ≤ 2n,

and the scalars
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2. The even function

R(x) =
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is decreasing on [0, π].
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1.2. A sequence of even functions

We now introduce a sequence of even functions, which extend and generalize the functions Q(x) and
R(x), as follows.

1.2.1. The first function
The sinc function

sinc x =


sin x

x
, x , 0

1, x = 0

arises frequently in signal processing and the theory of Fourier transforms. The Maclaurin power series
expansion of the power function sincr x for r ∈ R, the series expansion (3.5) on Page 10455 below, has been
studied in [22] and applied in [6, 7, 10, 14, 21]. On the set

S =
∞⋃

k=0

(2kπ, (2k + 1)π) ∪ (−(2k + 1)π,−2kπ), (1.7)

the sinc function sinc x is positive; on the set

∞⋃
k=0

((2k + 1)π, (2k + 2)π) ∪ (−(2k + 2)π,−(2k + 1)π),

the sinc function sinc x is negative; the points ±kπ for k ≥ 1 are real zeros of sinc x.
The first function we are introducing is
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x
, x ∈ S;

0, x = 0.
(1.8)

The function Q0(x) has the limits

lim
x→(±2kπ)±

Q0(x) = −∞, k = 1, 2, . . . and lim
x→(±(2k+1)π)∓

Q0(x) = −∞, k = 0, 1, 2, . . . .

The reciprocal of the function Q0(x) is defined by

1
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0, x = ±(2k + 2)π,±(2k + 1)π, k = 0, 1, 2, . . . .

The limit limx→0
1

Q0(x) = ∞ is valid.

1.2.2. The second function
We now discuss a generalization of sinc x, which is

SinRn(x) =
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(1.9)

for n ≥ 0. It is obvious that SinR0(x) = sinc x for x ∈ R.
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Let

SRn(x) = sin x −
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for n ≥ 1 and x ∈ R. It is well known that the quantity SRn(x) is called the nth remainder or tail of the series
expansion (1.1). It is easy to see that the function

SinRn(x) =
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for n ≥ 1 and x ∈ R is even.
We call the quantity SinRn(x) defined for n ≥ 1 by (1.9) the normalized remainder of the Maclaurin

power series expansion of the sine function sin x. In [29], the normalized remainder SinRn(x) for n ≥ 1 was
proved to be positive and decreasing in x ∈ (0,∞) and to be concave in x ∈ (0, π); see also [11, Remark 7].

Considering the positivity of SinRn(x) for n ≥ 1 on (0,∞), we introduce the second even function

Qn(x) =
{

ln SinRn(x), 0 < |x| < ∞
0, x = 0

(1.11)

for n ≥ 1. It is obvious that Q1(x) = Q(x) defined by (1.4) on (−∞,∞).

1.2.3. The third function
Basing on the domains of Q0(x) and Qn(x) for n ≥ 1, we now introduce the third even function

Rm,n(x) =
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Qn(x)
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Qn(x)
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(m + 1)(2m + 3)
(n + 1)(2n + 3)

, x = 0, n > m ≥ 0,

(1.12)

where S denotes the closure of the set S defined by (1.7).
It is obvious that R0,1(x) = R(x) on [−π, π], which is defined by (1.6).

1.3. Aims of this paper
In this paper, we will consider the following problems:

1. What are the monotonicity and concavity of the functions Q0(x) on (0, π) and Qn(x) on (0,∞) for n ≥ 1?
2. Expand the functions Qn(x) for n ≥ 0 into a Maclaurin power series at the origin x = 0.
3. What is the monotonicity of the functions Rm,n(x) for n > m ≥ 0?

The motivations and reasons why we consider these three problems are purely due to our hobby and
interest in mathematics, rather than due to their history, backgrounds, and applicability in mathematical
sciences.

By virtue of properties of the normalized remainder SinRn(x) for n ≥ 1 in [29], we see easily that the
function Qn(x) for n ≥ 1 is decreasing and concave in x ∈ (0,∞), because a concave function must be a
logarithmically concave function but the converse is not true. It is straightforward that

Q′0(x) =
1

tan x
−

1
x
< 0 and Q′′0 (x) =

1
x2 −

1
sin2 x

< 0 (1.13)
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on (0, π). Hence, the function Q0(x) is decreasing and concave on (0, π). On the other hand, the series
expansion (1.3) shows us that the function Q0(x) is decreasing and concave on (0, π). In a word, the first
problem has been completely solved.

The Maclaurin power series expansions of the functions Q0(x) and Q1(x) around x = 0 are just the series
expansions (1.3) and (1.5).

The decreasing property of R0,1(x) on (0, π) has been proved in [14, Theorem 2].
In this paper, we will completely solve the second problem by expanding Qn(x) for n ≥ 0 into a Maclaurin

power series at the origin x = 0, and partially solve the third problem by showing the decreasing property
of R0,2(x) on (0, π).

2. Lemmas

For smoothly proceeding, we need the following lemmas.

Lemma 1. Let u(x) and v(x) , 0 be two n-time differentiable functions on an interval I for a given integer n ≥ 0.
Then the nth derivative of the ratio u(x)

v(x) is

dn

dxn

[u(x)
v(x)

]
= (−1)n

∣∣∣W(n+1)×(n+1)(x)
∣∣∣

vn+1(x)
, n ≥ 0, (2.1)

where the matrix

W(n+1)×(n+1)(x) =
(
U(n+1)×1(x) V(n+1)×n(x)

)
(n+1)×(n+1)

,

the matrix U(n+1)×1(x) is an (n+ 1)× 1 matrix whose elements satisfy uk,1(x) = u(k−1)(x) for 1 ≤ k ≤ n+ 1, the matrix
V(n+1)×n(x) is an (n + 1) × n matrix whose elements are

vℓ, j(x) =


(
ℓ − 1
j − 1

)
v(ℓ− j)(x), ℓ − j ≥ 0

0, ℓ − j < 0

for 1 ≤ ℓ ≤ n + 1 and 1 ≤ j ≤ n, and the notation |W(n+1)×(n+1)(x)| denotes the determinant of the (n + 1) × (n + 1)
matrix W(n+1)×(n+1)(x).

The formula (2.1) is a reformulation of [4, p. 40, Exercise 5)]. See also the papers [19, 20] and those
papers collected at https://qifeng618.wordpress.com/2020/03/22/some-papers-authored-by-dr-prof-feng-qi-
and-utilizing-a-general-derivative-formula-for-the-ratio-of-two-differentiable-functions.

Lemma 2 (Monotonicity rule for the ratio of two functions [2, Theorem 1.25]). For a, b ∈ R with a < b, let
λ(x) and µ(x) be continuous on [a, b], differentiable on (a, b), and µ′(x) , 0 on (a, b). If the ratio λ

′(x)
µ′(x) is increasing on

(a, b), then both λ(x)−λ(a)
µ(x)−µ(a) and λ(x)−λ(b)

µ(x)−µ(b) are increasing in x ∈ (a, b).

3. Maclaurin power series expansion

In this section, with the aid of the derivative formula (2.1), we expand the functions Qn(x) defined
by (1.8) and (1.11) for n ≥ 0 into a Maclaurin power series around the origin x = 0.

Theorem 1. For n ≥ 0, the function Qn(x) can be expanded into the Maclaurin power series

Qn(x) = −
∞∑

m=1

∣∣∣W(2m)×(2m)(0; n)
∣∣∣ x2m

(2m)!
, x ∈

{
(−π, π), n = 0;
(−∞,∞), n ≥ 1,

(3.1)

https://qifeng618.wordpress.com/2020/03/22/some-papers-authored-by-dr-prof-feng-qi-and-utilizing-a-general-derivative-formula-for-the-ratio-of-two-differentiable-functions
https://qifeng618.wordpress.com/2020/03/22/some-papers-authored-by-dr-prof-feng-qi-and-utilizing-a-general-derivative-formula-for-the-ratio-of-two-differentiable-functions
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where the determinant
∣∣∣W(2m)×(2m)(0; n)

∣∣∣ is given by∣∣∣W(2m)×(2m)(0; n)
∣∣∣ = ∣∣∣U(2m)×1(0; n) V(2m)×(2m−1)(0; n)

∣∣∣
(2m)×(2m)

with the (2m) × 1 matrix

U(2m)×1(0; n) =
(

1 + (−1)k

2
(−1)k/2(2n+k+1

k
) )

1≤k≤2m

and the (2m) × (2m − 1) matrix

V(2m)×(2m−1)(0; n) =

1 + (−1)q− j

2
(−1)(q− j)/2

(q−1
j−1

)
(2n+q− j+1

q− j

)


1≤q≤2m
1≤ j≤2m−1

.

Proof. It is immediate that

Q′n(x) =
SinR′n(x)
SinRn(x)

→ 0, x→ 0.

Utilizing the derivative formula (2.1) and considering the even property of Qn(x) for n ≥ 1, we acquire
Q(2m+1)

n (0) = 0 and

lim
x→0

Q(2m)
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= −
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= −
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)
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,
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,
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(
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SinR(q− j)

n (0), 1 ≤ q ≤ 2m, 1 ≤ j ≤ 2m − 1.

Employing the series expression (1.10), we derive SinR(2ℓ+1)
n (0) = 0 for ℓ ≥ 0 and

SinR(2ℓ)
n (0) =

(−1)ℓ(2n+2ℓ+1
2ℓ

) , ℓ ≥ 0.

Hence, it follows that

uk,1(0; n) =

0, 1 ≤ k = 2ℓ − 1 ≤ 2m − 1

SinR(2ℓ)
n (0), 1 ≤ k = 2ℓ ≤ 2m

=


0, 1 ≤ k = 2ℓ − 1 ≤ 2m − 1

(−1)ℓ(2n+2ℓ+1
2ℓ

) , 1 ≤ k = 2ℓ ≤ 2m

=
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0, 1 ≤ k = 2ℓ − 1 ≤ 2m − 1

(−1)k/2(2n+k+1
k

) , 1 ≤ k = 2ℓ ≤ 2m



F. Wang, F. Qi / Filomat 38:29 (2024), 10447–10462 10453

=
1 + (−1)k

2
(−1)k/2(2n+k+1

k
)

for 1 ≤ k ≤ 2m and

vq, j(0; n) =


0, q − j < 0
0, 1 ≤ q − j = 2ℓ − 1 ≤ 2m − 1(
q − 1
j − 1

)
SinR(q− j)

n (0), 0 ≤ q − j = 2ℓ − 2 ≤ 2m − 1

=


0, q − j < 0
0, 1 ≤ q − j = 2ℓ − 1 ≤ 2m − 1(
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)
SinR(2ℓ−2)

n (0), 0 ≤ q − j = 2ℓ − 2 ≤ 2m − 1

=
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0, q − j < 0
0, 1 ≤ q − j = 2ℓ − 1 ≤ 2m − 1
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j−1

)
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=
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2
(−1)(q− j)/2

(q−1
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)
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)
for 1 ≤ q ≤ 2m and 1 ≤ j ≤ 2m − 1.

In conclusion, we obtain

Qn(x) =
∞∑

m=0

Q(m)
n

xm

m!
=

∞∑
m=1

Q(2m)
n

x2m

(2m)!
= −

∞∑
m=1

∣∣∣W(2m)×(2m)(0; n)
∣∣∣ x2m

(2m)!

for n ≥ 0 and x ∈ (−π, π) or x ∈ (−∞,∞). The proof of Theorem 1 is complete.

Remark 1. The determinant
∣∣∣W(2m)×(2m)(0; n)

∣∣∣ can be alternatively formulated as
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2m ) 0
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.
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In particular, when m = 3, 2, 1, we obtain

∣∣∣W6×6(0; n)
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1
(2n+1

0 ) 0 0 0 0

−1
(2n+3

2 ) 0 (1
1)

(2n+1
0 ) 0 0 0

0 −1
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2 ) 0 (2
2)

(2n+1
0 ) 0 0

1
(2n+5

4 ) 0
−(3

1)
(2n+3

2 ) 0 (3
3)

(2n+1
0 ) 0

0 1
(2n+5

4 ) 0
−(4

2)
(2n+3

2 ) 0 (4
4)

(2n+1
0 )

−1
(2n+7

6 ) 0 (5
1)

(2n+5
4 ) 0

−(5
3)

(2n+3
2 ) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(
2n2 + 5n + 3

)3 (
2n2 + 9n + 10

)
− 30

(
4n2 + 6n − 1

) (2n+7
6

)
(n + 1)3(n + 2)(2n + 3)3(2n + 5)

(2n+7
6

) ,

∣∣∣W4×4(0; n)
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1
(2n+1

0 ) 0 0

−1
(2n+3

2 ) 0 (1
1)

(2n+1
0 ) 0

0 −1
(2n+3

2 ) 0 (2
2)

(2n+1
0 )

1
(2n+5

4 ) 0
−(3

1)
(2n+3

2 ) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

3
(
2n2 + n − 4

)
(n + 1)2(n + 2)(2n + 3)2(2n + 5)

,

and ∣∣∣W2×2(0; n)
∣∣∣ = ∣∣∣∣∣∣∣ 0 1

(2n+1
0 )

−1
(2n+3

2 ) 0

∣∣∣∣∣∣∣ = 1
2n2 + 5n + 3

.

Remark 2. Comparing the series expansion (1.3) with the series expansion (3.1) for n = 0 yields a determi-
nantal representation

|B2k| =
k

22k−1

∣∣∣W(2k)×(2k)(0; 0)
∣∣∣ , k ≥ 1 (3.2)

for the Bernoulli numbers B2k, that is,

|B2k| =
k

22k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0 · · · 0
−1
3 0 1 0 0 0 · · · 0
0 −1

3 0 1 0 0 · · · 0
1
5 0 −1 0 1 0 · · · 0
0 1

5 0 −2 0 1 · · · 0
−1
7 0 1 0 −10

3 0 · · · 0
...

...
...

...
...

...
. . .

...

0 (−1)k−1

2k−1 0
(−1)k−2(2k−2

2 )
(0+2k−3

2k−4 ) 0
(−1)k−3(2k−2

4 )
(0+2k−5

2k−6 ) · · · 1

(−1)k

2k+1 0 (−1)k−1 0
(−1)k−2(2k−1

3 )
(0+2k−3

2k−4 ) 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for k ≥ 1. In particular, we obtain

|B2| =

∣∣∣W2×2(0; 0)
∣∣∣

2
=

1
6
, |B4| =

∣∣∣W4×4(0; 0)
∣∣∣

4
=

1
30
, |B6| =

3
25

∣∣∣W6×6(0; 0)
∣∣∣ = 1

42
.
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Remark 3. Letting n = 0 in (3.1) and differentiating give

Q′0(x) = −
∞∑

m=1

∣∣∣W(2m)×(2m)(0; 0)
∣∣∣ x2m−1

(2m − 1)!
, x ∈ (−π, π)

and

Q′′0 (x) = −
∞∑

m=0

∣∣∣W(2m+2)×(2m+2)(0; 0)
∣∣∣ x2m

(2m)!
, x ∈ (−π, π).

Comparing these two with the quantities in (1.13) results in

x
tan x

= 1 −
∞∑

m=1

∣∣∣W(2m)×(2m)(0; 0)
∣∣∣

(2m − 1)!
x2m, x ∈ (−π, π) (3.3)

and ( x
sin x

)2

= 1 +
∞∑

m=0

∣∣∣W(2m+2)×(2m+2)(0; 0)
∣∣∣

(2m)!
x2m+2, x ∈ (−π, π). (3.4)

In [1, p. 75, Entry 4.3.70], it was listed that

cot z =
1
z
−

∞∑
k=1

(−1)k−122k

(2k)!
B2kz2k−1, |z| < π.

Comparing this series expansion with (3.3) recovers the determinantal expression (3.2) for the Bernoulli
numbers B2k.

Remark 4. The central factorial numbers of the second kind T(n, k) for n ≥ k ≥ 0 can be generated [5, 15] by

1
k!

(
2 sinh

x
2

)k

=

∞∑
n=k

T(n, k)
xn

n!
.

In [5, Proposition 2.4, (xii)] and [23, Chapter 6, Eq. (26)], it was established that T(0, 0) = 1 and

T(n, k) =
1
k!

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)( k
2
− ℓ

)n

for n ≥ k ≥ 0 but (n, k) , (0, 0).
In [22, Theorem 4.1], it was established that,

1. when r < 0 is a real number, the series expansion(sin x
x

)r

= 1 +
∞∑

m=1

(−1)m
[ 2m∑

k=1

(−r)k

k!

k∑
j=1

(−1) j
(
k
j

)
T(2m + j, j)(2m+ j

j

) ]
(2x)2m

(2m)!
(3.5)

is convergent in x ∈ (−π, π);
2. when r ≥ 0, the series expansion (3.5) is convergent in x ∈ (−∞,∞);

where the rising factorial (r)k is defined by

(r)k =

k−1∏
ℓ=0

(r + ℓ) =

r(r + 1) · · · (r + k − 1), k ≥ 1;
1, k = 0.
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Letting r = −2 in (3.5) gives

( x
sin x

)2

= 1 +
∞∑

m=1

(−1)m
[ 2m∑

k=1

(k + 1)
k∑

j=1

(−1) j
(
k
j

)
T(2m + j, j)(2m+ j

j

) ]
(2x)2m

(2m)!
, x ∈ (−π, π). (3.6)

Comparing (3.4) with (3.6) and equating lead to

∣∣∣W(2m)×(2m)(0; 0)
∣∣∣ = (−1)m

(2m)(2m − 1)

2m∑
k=1

(k + 1)
k∑

j=1

(−1) j
(
k
j

)
T(2m + j, j)(2m+ j

j

) , m ≥ 1.

Further making use of the relation (3.2) arrives at

|B2m| =
(−1)m

22m(2m − 1)

2m∑
k=1

(k + 1)
k∑

j=1

(−1) j
(
k
j

)
T(2m + j, j)(2m+ j

j

) , m ≥ 1.

This formula is similar to, but different from, the identity

B2m =
22m−1

22m−1 − 1

2m∑
k=1

k∑
j=1

(−1) j+1

(
k
j

)
T(2m + j, j)(2m+ j

j

) , m ≥ 1

in [7, Theorem 4.1], which was applied in the proof of Corollary 1 in [9].

Remark 5. Theorem 1 in this paper is a generalization of [14, Theorem 1].

4. Decreasing property

In this section, by virtue of the monotonicity rule recited in Lemma 2, we prove that the function R0,2(x)
is decreasing on (0, π).

Theorem 2. The function R0,2(x) is decreasing on (0, π).

Proof. From the definition in (1.12), it follows that

R0,2(x) =
ln

[
5!
x5

(
sin x − x + x3

3!

)]
ln sin x

x

, 0 < |x| < π.

It is straightforward that

d
d x

ln
[ 5!
x5

(
sin x − x +

x3

3!

)]
=

6x cos x − 30 sin x − 2x3 + 24x
6x sin x + x4 − 6x2 .

Making use of the first derivative in (1.13) yields

d
d x ln

[
5!
x5

(
sin x − x + x3

3!

)]
d

d x ln sin x
x

=
2(x3
− 12x + 15 sin x − 3x cos x) sin x

(x3 − 6x + 6 sin x)(sin x − x cos x)

and [ (x3
− 12x + 15 sin x − 3x cos x) sin x

(x3 − 6x + 6 sin x)(sin x − x cos x)

]′
=

−T(x)
4(x3 − 6x + 6 sin x)2(sin x − x cos x)2 ,
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where

T(x) = 4x7
− 72x5 + 264x3 + 144x − 9x5 cos x − 9x3 cos x + 198x cos x + 24x3 cos(2x) − 144x cos(2x)

− 3x5 cos(3x) + 81x3 cos(3x) − 198x cos(3x) + 93x4 sin x − 549x2 sin x − 54 sin x − 2x6 sin(2x)

+ 60x4 sin(2x) − 144x2 sin(2x) − 72 sin(2x) + 21x4 sin(3x) − 81x2 sin(3x) + 18 sin(3x) + 36 sin(4x)

=
1

54

∞∑
k=8

(−1)kS(k)
x2k+1

(2k + 1)!

=
1

54

∞∑
k=4

[
(4k + 2)(4k + 3)

S(2k)
S(2k + 1)

− x2
]S(2k + 1)

(4k + 3)!
x4k+1

and

S(k) = 243 × 24k+5
− 8 × 32k

(
8k5
− 104k4 + 580k3

− 703k2 + 2163k + 972
)

+ 27 × 22k
(
8k6
− 36k5 + 290k4

− 351k3 + 503k2
− 198k − 576

)
− 648

(
24k5

− 184k4 + 148k3
− 137k2

− 163k − 12
)

= 7776 × 32k
[(4

3

)2k

−
8k5
− 104k4 + 580k3

− 703k2 + 2163k + 972
972

]
+ 648

(
8k6
− 36k5 + 290k4

− 351k3 + 503k2
− 198k − 576

)
×

(22k

24
−

24k5
− 184k4 + 148k3

− 137k2
− 163k − 12

8k6 − 36k5 + 290k4 − 351k3 + 503k2 − 198k − 576

)
.

It is easy to verify that

8k6
− 36k5 + 290k4

− 351k3 + 503k2
− 198k − 576

= 8(k − 8)6 + 348(k − 8)5 + 6530(k − 8)4 + 67809(k − 8)3 + 410639(k − 8)2 + 1369962(k − 8) + 1955664
> 0, k ≥ 8.

By induction, we can arrive at(4
3

)2k

−
8k5
− 104k4 + 580k3

− 703k2 + 2163k + 972
972

> 0, k ≥ 10

and

22k

24
−

24k5
− 184k4 + 148k3

− 137k2
− 163k − 12

8k6 − 36k5 + 290k4 − 351k3 + 503k2 − 198k − 576
> 0, k ≥ 8.

Moreover, numerical computation gives

S(8) = 215348170752 and S(9) = 14719784361984.

Consequently, the sequence S(k) is positive for k ≥ 8.
We claim that the sequence

(4k + 2)(4k + 3)
S(2k)

S(2k + 1)
, k ≥ 4 (4.1)

is increasing, that is,

(4k + 6)(4k + 7)
S(2k + 2)
S(2k + 3)

> (4k + 2)(4k + 3)
S(2k)

S(2k + 1)
, k ≥ 4.
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This inequality can be reformulated as

(2k + 3)(4k + 7)S(2k + 1)S(2k + 2) > (2k + 1)(4k + 3)S(2k)S(2k + 3) (4.2)

for k ≥ 4, that is, the sequence

64k
[
5877462609408(k − 4)9 + 39472831259904(k − 4)8 + 196342134897472(k − 4)7

+730097994024712(k − 4)6 + 2014535981948876(k − 4)5 + 4007358824520542(k − 4)4

+5376959126388333(k − 4)3 + 4133484135723492(k − 4)2 + 868746111722577(k − 4)

−707080673557332
]
+ 27 × 28k+3

(
524288k13 + 3735552k12 + 18546688k11 + 65630208k10

+174176256k9 + 388783872k8 + 1039877632k7 + 89567376k6 + 117719408k5 + 988449720k4

+556139052k3 + 170461233k2 + 110225934k + 30779595
)
+ 81 × 24k

[
4110967986688(k − 4)9

+30920619750144(k − 4)8 + 170234785243200(k − 4)7 + 691384393694904(k − 4)6

+2057371425719188(k − 4)5 + 4383401348467698(k − 4)4 + 6380703192978083(k − 4)3

+5789501374332684(k − 4)2 + 2661504373407231(k − 4) + 286553966419476
]

+1944
[
1133133824(k − 4)9 + 13971296256(k − 4)8 + 113369713152(k − 4)7

+634689396096(k − 4)6 + 2497060922976(k − 4)5 + 6891012178308(k − 4)4

+13049925954580(k − 4)3 + 16138319947155(k − 4)2 + 11749819839327(k − 4)

+3846043491534
]
+ 28k+334k+2

[
1254400(k − 14)7 + 102037760(k − 14)6

+3460657408(k − 14)5 + 62705578352(k − 14)4 + 641678111260(k − 14)3

+3538255310240(k − 14)2 + 8452271478129(k − 14) + 1859190048117
]

+2187 × 212k+17(8k + 9)

24k
−

(
92160k8

− 303104k7 + 311808k6
− 933440k5

−2725992k4
− 2651276k3

− 2019162k2
− 854289k − 66879

)
18432(8k + 9)


+16 × 34k+1


131072(k − 4)11 + 5357568(k − 4)10 + 99696640(k − 4)9 + 1118859264(k − 4)8

+8449651200(k − 4)7 + 45287008128(k − 4)6 + 176490543328(k − 4)5

+501911255076(k − 4)4 + 1024728330068(k − 4)3

+1440024128235(k − 4)2 + 1270102753719(k − 4) + 544466994750



×



9 × 34k

2
−


62914560(k − 4)12 + 2902589440(k − 4)11 + 61055680512(k − 4)10

+774376570880(k − 4)9 + 6595463086080(k − 4)8 + 39726293521920(k − 4)7

+173317513116288(k − 4)6 + 550395775653920(k − 4)5

+1255946637183108(k − 4)4 + 1987551374800804(k − 4)3

+2028126908873955(k − 4)2 + 1144415164087359(k − 4) + 236105909426862


131072(k − 4)11 + 5357568(k − 4)10 + 99696640(k − 4)9 + 1118859264(k − 4)8

+8449651200(k − 4)7 + 45287008128(k − 4)6 + 176490543328(k − 4)5

+501911255076(k − 4)4 + 1024728330068(k − 4)3

+1440024128235(k − 4)2 + 1270102753719(k − 4) + 544466994750




is positive for k ≥ 4. By induction, we prove that the sequences

24k
−

(
92160k8

− 303104k7 + 311808k6
− 933440k5

− 2725992k4

−2651276k3
− 2019162k2

− 854289k − 66879

)
18432(8k + 9)
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and

9 × 34k

2
−


62914560(k − 4)12 + 2902589440(k − 4)11 + 61055680512(k − 4)10 + 774376570880(k − 4)9

+6595463086080(k − 4)8 + 39726293521920(k − 4)7 + 173317513116288(k − 4)6

+550395775653920(k − 4)5 + 1255946637183108(k − 4)4 + 1987551374800804(k − 4)3

+2028126908873955(k − 4)2 + 1144415164087359(k − 4) + 236105909426862


131072(k − 4)11 + 5357568(k − 4)10 + 99696640(k − 4)9 + 1118859264(k − 4)8

+8449651200(k − 4)7 + 45287008128(k − 4)6 + 176490543328(k − 4)5

+501911255076(k − 4)4 + 1024728330068(k − 4)3 + 1440024128235(k − 4)2

+1270102753719(k − 4) + 544466994750


are positive for k ≥ 4, so the inequality (4.2) is valid for k ≥ 14. Furthermore, numerical computation
shows that the inequality (4.2) is valid for 4 ≤ k ≤ 14. Therefore, the inequality (4.2) is valid for k ≥ 4.
Consequently, the sequence (4.1) is increasing in k ≥ 4, with

lim
k→4

[
(4k + 2)(4k + 3)

S(2k)
S(2k + 1)

]
=

2937
587

< π2 and lim
k→4

[
(4k + 2)(4k + 3)

S(2k)
S(2k + 1)

]
=

3697387
225268

> π2.

The first three terms of the Maclaurin power series expansion for 54T(x) is

6∑
k=4

[
(4k + 2)(4k + 3)

S(2k)
S(2k + 1)

− x2
]S(2k + 1)

(4k + 3)!
x4k+1 =

x17P
(
x2

)
2439237690489600000

,

where

P
(
x2

)
= −2462313709x10 + 74884614633x8

− 1728814760640x6

+ 28375522583760x4
− 295162342675200x2 + 1476817377235200.

It is straightforward that

P(u) = −2462313709u5 + 74884614633u4
− 1728814760640u3

+ 28375522583760u2
− 295162342675200u + 1476817377235200,

P′(u) = −12311568545u4 + 299538458532u3
− 5186444281920u2

+ 56751045167520u − 295162342675200,

P′′(u) = −4
(
12311568545u3

− 224653843899u2 + 2593222140960u − 14187761291880
)
.

The polynomial P′′(u) of degree 3 has a unique real zero

u0 =

3 3

√
19 ×

(
584360753784815184016105681949

+10
√

8263590327886093680044880445264204913316496543704023838910

)
12311568545

−
88324652717204321223 × 192/3

12311568545 3

√
584360753784815184016105681949

+10
√

8263590327886093680044880445264204913316496543704023838910

+
74884614633
12311568545

= 9.0456 . . .

which is the unique maximum point of P′(u) and

P′(u0) =
4617

1866122555439895734412857478625
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×



3√

19


198073438903262812228227057248057864704628006298724649424803

+11687215075696303680322113638980
×
√

8263590327886093680044880445264204913316496543704023838910


 584360753784815184016105681949
+10
√

8263590327886093680044880445264204913316496543704023838910


2/3

−


29441550905734773741 × 192/3

×


1850791504480481548237203146300898847367927315039529417206803

+23374430151392607360644227277960
×
√

8263590327886093680044880445264204913316496543704023838910


 584360753784815184016105681949

+10
√

8263590327886093680044880445264204913316496543704023838910


4/3

−3964399353509542244016553369901128368383


= −1013

× 6.691 · · · .

Accordingly, the polynomial P′(u) of degree 4 is negative, and then the polynomial P(u) of degree 5 is
decreasing. Numerical computation gives

P
(
π2

)
= 1476817377235200 − 295162342675200π2 + 28375522583760π4

− 1728814760640π6 + 74884614633π8
− 2462313709π10

= 1014
× 1.456 · · · .

As a result, the polynomial P
(
x2

)
of degree 10 is positive in x ∈ [0, π]. Consequently, the first three terms of

the Maclaurin power series expansion for 54T(x) is positive in x ∈ (0, π].
In a word, the function T(x) is positive on (0, π].
By virtue of the monotonicity rule in Lemma 2, we obtain that the function R0,2(x) is decreasing on (0, π).

The required proof is complete.

Remark 6. Can one find a new and more effective method to prove the decreasing property of the function
Rn,m(x) for all n > m ≥ 0?

5. Connections with generalized hypergeometric functions

For α1 ∈ C and β1, β2 ∈ C \ {0,−1,−2, . . . }, the generalized hypergeometric function 1F2(α1; β1, β2; z) is
defined [8, p. 1020] by

1F2(α1; β1, β2; z) =
∞∑

n=0

(α1)n

(β1)n(β2)n

zn

n!
, z ∈ C.

In [29, p. 16], Qi and his coauthors derived the relation

SinRn(x) = 1F2

(
1; n + 1,n +

3
2

;−
x2

4

)
, n ∈N. (5.1)

As done in [11, Remark 7] and [16, Section 5], by the relation (5.1), we can restate main results of this paper
in terms of the generalized hypergeometric function 1F2 as follows.

1. The logarithmic function

ln SinRn(x) = ln
[

1F2

(
1; n + 1,n +

3
2

;−
x2

4

)]
, n ∈N
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can be expanded into

ln
[

1F2

(
1; n + 1,n +

3
2

;−
x2

4

)]
= −

∞∑
m=1

∣∣∣W(2m)×(2m)(0; n)
∣∣∣ x2m

(2m)!
, x ∈ (−∞,∞).

2. The ratio

ln SinR2(x)
ln sin x

x

=
ln

[
1F2

(
1; 3, 7

2 ;− x2

4

)]
ln sin x

x

is decreasing on (0, π).

6. Conclusions

In this paper, the logarithm of the normalized remainder SinRn(x) for n ≥ 0, that is, the function Qn(x)
for n ≥ 0, was expanded into a Maclaurin power series (3.1) and the function R0,2(x) was proved to be
decreasing on (0, π).

The concept and idea of normalized remainders, also known as normalized tails, of the Maclaurin power
series expansions of analytic functions originated from Qi and his joint paper [12]. Since then, Qi and his
coauthors set up and investigated normalized remainders of the Maclaurin power series expansions of
several elementary functions. We now systematically sum up as follows.

1. The normalized remainders of the Maclaurin power series expansion of the tangent function tan x
were introduced and studied in the paper [12] and another two manuscripts by Qi and his coauthors.

2. The normalized remainders of the Maclaurin power series expansion of the square tan2 x of the tangent
function tan x were defined and investigated in [27].

3. The normalized remainders of the Maclaurin power series expansion of the function x
ex −1 , the gener-

ating function of the Bernoulli numbers Bn for n ≥ 0, were defined and considered in the paper [28].
Due to the study in [28], we discovered in [25, 28] some properties of the ratios of two Bernoulli
polynomials Bn(t) on (0, 1

2 ) for n ≥ 1.
4. The normalized remainders of the Maclaurin power series expansions of the sine function sin x were

researched in this paper, in the articles [14, 16, 29], and in [11, Remark 7].
5. The normalized remainders of the Maclaurin power series expansions of the cosine function cos x

were discussed in this paper, in the articles [13, 16, 17, 24, 26, 29], and in [11, Remark 7].
6. The normalized remainders of the Maclaurin power series expansions of the inverse sine, cosine, and

tangent functions arcsin x, arccos x, and arctan x were looked into in a forthcoming manuscript by Qi
and his coauthors.

7. The normalized remainders of the Maclaurin power series expansions of the exponential function ex

were researched in [3, 18].
8. The normalized remainders of the Maclaurin power series expansions of the power function

(
arcsin z

z

)q

for q ∈Nwere investigated in a forthcoming manuscript by Qi and his coauthors.

We believe that normalized remainders of the Maclaurin power series expansions of analytic functions,
initially and originally invented by Qi, will be interesting objects attracting mathematicians in the world to
further deeply and intrinsically investigate.
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