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Abstract. In this article, a system of Yang-Baxter-type matrix equations is studied, XAX = BXB, XBX =
AXA, which “generalizes” the matrix Yang-Baxter equation and exhibits a broken symmetry. We investigate
the solutions of this system from various geometric and topological points of view. We analyze the existence
of doubly stochastic solutions and intertwining solutions to the system and describe the conditions for their
existence. Furthermore, we characterize the case when A and B are idempotent orthogonal complements.
i.e., A2 = A,B2 = B,AB = BA = 0. We also completely characterize the set of solutions for n = 2 using
commutative algebraic techniques.

1. Introduction

For a given pair of square matrices, A,B ∈Mn(K), whereK = R or C,

XAX = BXB
XBX = AXA

}
(1)

will be called as a system of Yang-Baxter matrix equations. Yang-Baxter equations are extremely useful
equations that have been found to have multiple uses in physics, computer science, and many areas of
pure mathematics. This equation arises in the context of physics as, in knot theory, if we take the following
braids, which are two among the generators of a braid group, and call the first one A and the second one B
as in Figure 1, we see that ABA = BAB as braids in Figure 2.
This is not a coincidence that the braids satisfy the equation AXA = XAX; it was observed by Artin [4]
(especially in [3]) in his development of the famous and pioneering theory of braid groups. As a result of
the above relations among the generators of a braid group, it makes sense to study the matrix equation that
we call YBE.
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A = B =

Figure 1:

BAB = ABA =

Figure 2:

While working on the paper [25], dealing with the Yang-Baxter equation, namely AXA = XAX, the authors
observed the usefulness of the results, which owe to the symmetry of the equation. It was observed that,
from the pure matrix equation perspective, it is much better if we deal with the equation XYX = YXY,
where both X,Y are treated as variables. This equation has the advantage of being homogeneous; thus,
many results can be simplified. When specialized, the homogeneous equation, in turn, gives the results for
the original YBE. Motivated by this, we will call the equation

XYX = YXY

as the homogeneous matrix Yang-Baxter equation. Let V be the set of solutions of it over the matrix algebra
Mn(K) ( for a suitable field K). We observe the following for the space V. Owing to the symmetry of the
equations, this has a Z2 action that flips the coordinates. Continuing our efforts towards simplification,
instead of working with the whole V, it is much better to work with the Z2 quotient of it; let us denote the
quotient by X. It will be very interesting to understand the geometry of this object using various tools such
as commutative algebra and algebraic geometry. We, taking advantage of the homogeneity of the equation,
can look at the projective zero set associated with it, namely, {(X,Y) ∈ P2n2

−1
| XYX = YXY}. Let us call this

variety as Y. It is easily observed that this is not an irreducible subset of the projective space, owing to the
trivial components {(X, 0)|X , 0} and {(0,X)|X , 0}, where 0 represents the zero matrix of an appropriate
dimension. So instead, we can look at the projective algebraic set {(X,Y) ∈ Pn2

−1
× Pn2

−1
| XYX = YXY}.

This gets rid of the problems arising out of the trivial solutions of the YBE, and further, if we take a quotient
by the action of Z2, denoted as Z, we have a much larger chance of asking the following,

when is this an irreducible projective variety?

This question is interesting, and the authors believe it has a good chance of getting interesting answers.
The reason for believing so is that in the paper [23], L. Lu has given the connected components of the space
of solutions in some special cases, which turn out to have linear structures.
It was also observed that towards obtaining good results in the YBE, the main hindrance was the trivial
solution X = A; this was also observed in the other articles as well, say in [23]. This trivial solution gives
rise to the lack of simplicity of the solutions of the equation. The homogeneous version of the equation
does not solve this problem. But, if we allow a different matrix Z and twist the equation as XYX = ZXZ,
we have removed the trivial solution, which gives rise to cluttering the attempts at solving the equation.
Now, we have lost the beautiful symmetry of the equation, so we have to look at its twin pair XZX = YXY.
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This system of the Yang-Baxter type equation will be called a system of YBE. The authors understand that
it is not really a system of YBE as the authors in [25] showed that a true system is just equivalent to a single
Yang-Baxter equation, so we have decided to give the honour of being a system of YBE to this system of
equations.
This system of equations, when specialized for A = B, gives back the original YBE and gives freedom from
difficulties regarding the trivial solutions. In this paper, we will show that the solutions are not far from
the single Yang-Baxter matrix equation even though we are considering the system. Indeed, in Lemma
3.1 below, we show that a solution of the system is a particular solution to a Yang-Baxter equation. In

other words, the matrix X solves the system (1) if and only if the matrix X̂ :=
(

0 X
X 0

)
solves the YBE

ÂX̂Â = X̂ÂX̂, where Â =
(
0 A
B 0

)
. This, in our thoughts, is a very interesting result, as the symmetry of the

original YBE is broken, yet it contains a large amount of information regarding the solutions of YBE.
The first advantage that we obtain from freeing the equation of the symmetry is the possibility of investi-
gating the equation when the pair A,B are not only idempotents but also orthogonal, a condition that has
no non-trivial parallel in the single Yang-Baxter equation. Also, in the single YBE scenario, it was observed
that the nilpotent coefficient matrix case is the most interesting and important. A generalization of this for
the system is the case that A,B are zero-divisors (i.e., AB = BA = 0). So, it makes ample sense to investigate
the system of YBE when the coefficients satisfy

AB = BA = 0.

Yang Baxter equations are extremely useful fundamental equations in mathematics and physics. This
equation has shown up in unexpected forms in many parts of mathematics and mathematical physics.
With the advent of quantum computers and quantum computing in general, the Yang Baxter equations
have come into new focus as they are used to design quantum gates for a quantum computer. There are
numerous articles exploring this area, namely, [30], [20] and [18] in the areas of neural networks.
It has been proved that the variety of commuting nilpotent matrices are irreducible [5, 6]. A number of
geometric papers concerning the YBE have come up recently, namely the papers [12] and [23]. Also, a
recent paper investigated the case for the coefficient matrix A to be a permutation matrix and found the
solutions in the convex hull of the permutation matrices (i.e., the stochastic matrices) [15]. Such geometric
understanding of the YBE uses many geometric and topological tools, such as the fixed point theory. A
comprehensive and systematic analysis of the solution set to the YBE AXA = XAX has been done by Dinčić
and Djordjević in [12] and [13]. Huang et al. [19] explored all non-commuting solutions of the Yang-Baxter
matrix equation for a class of diagonalizable matrices, while Adam et al. [1] considered the equation for
involutive matrices. In addition, Saeed Ibrahim Adam et al. [26] provided solutions to the Yang-Baxter-like
matrix equation when A3 = A. Similarly, Kumar et al., in [21], provided explicit solutions for the singular
Yang-Baxter-like matrix equation and their numerical computation. In addition, the Yang-Baxter-like matrix
equation has been investigated for diagonalizable coefficient matrices in [9, 10, 19, 24, 27, 34, 35]. Many
articles explored the solution set for the coefficient matrix having rank restrictions, such as in [29, 32, 33].
Furthermore, there has been significant interest in set-theoretic solutions of the Yang-Baxter equation.
Castelli et al. [8] investigated the indecomposable involutive set-theoretic solutions of the Yang-Baxter
equation of prime-power size, while Lebed and Vendramin [22] focused on the structure groups of set-
theoretic solutions to the Yang-Baxter equation. The study of these equations was motivated by Drinfeld’s
work on unsolved problems in quantum group theory [16].

1.1. Structure of the article
In the “Preliminaries” section, we recall some basic results and prove a few small lemmas, which are used
in the following sections. In the third section, we investigate the spectral relation between the solutions to
(1) and coefficient matrices A and B. Cases are discussed when both coefficient matrices are non-singular,
when one is singular and the other is non-singular, and when both are singular. A nonzero solution X to
(1) is said to be an intertwining solution if AX = XB and BX = XA. In the same section section, we describe
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intertwining solutions to (1) and have drawn conditions for the existence of such solutions. In section
four, we have investigated the existence of doubly stochastic solutions to the system using topological
tools like Brouwer’s fixed point theorem. Two square matrices A and B are called idempotent orthogonal
complements, when A2 = A,B2 = B, and AB = BA = 0. Section five gives a complete characterization
of solutions to (1) when A and B are idempotent orthogonal complements. In the final section, we have
found solutions to the system when the coefficient matrices are of dimension 2, using the Gröbner basis
techniques.

2. Preliminaries

In this section, we recall some of the established results for the Yang-Baxter type matrix equation AXA =
XAX, which will help the reader to draw a general picture of the solution set of the matrix equation and to
understand the following sections as well.

Definition 2.1. Let Sol(A) denote the set of all solutions to the Yang-Baxter matrix equation, AXA = XAX, where
A ∈Mn(K).

Lemma 2.2. [25] (see also [13]) For any 1 ∈ GLn(K), 1Sol(A)1−1 = Sol(1A1−1).

Theorem 2.3. [25] If A = λI + B is a Jordan block, then we have the following

1. If λ , 0 and det(X) , 0, then X ≃ A.
2. If λ , 0 and det(X) = 0, then X = 0.
3. If λ = 0, then the YBE AXA = XAX do not have any invertible solution X.

Lemma 2.4. [25] When A =



A1 0 . . . 0
0 A2 . . . 0
.
.
.
0 0 ... Am


block diagonal matrix, with Ai being square matrix of order ni,

X =



X1 0 . . . 0
0 X2 . . . 0
.
.
.
0 0 ... Xm


, is a solution to the YBE with coefficient matrix A, where Xi is a solution for the YBE

AiYAi = YAiY.

Theorem 2.5 (Sylvester, [28]). Given matrices A ∈ Kn×n and B ∈ Km×m, the Sylvester equation AX +XB = C has
a unique solution X ∈ Kn×m for any C ∈ Kn×m, if and only if A and −B do not share any eigenvalue.

Theorem 2.6. [31] The matrix equation AXB − CXD = E, where, A,C ∈ Rm×m, and D,B ∈ Rn×n has a unique
solution X ∈ Rn×m if and only if,

i) A − λC and D − λB are regular matrix pencils, and

ii) their spectra, σ(A,C) and σ(D,B) have an empty intersection.

Definition 2.7. [2] Let Tn = {xa = xa1
1 xa2

2 . . . x
an
n /ai ∈ N} ⊂ K[x1, . . . , xn]. We define the lexicographical order on

Tn with x1 > x2 > · · · > xn as follows:

For a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Nn
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xa < xb
⇔

the first coordinates from the left ai and bi in a and b,
which are different, satisfy ai < bi.

(2)

So, in the case of two variables x1 and x2, we have

1 < x2 < x2
2 < x3

2 < · · · < x1 < x2x1 < x2
2x1 < · · · < x2

1 < . . .

Definition 2.8. [2] A set of non-zero polynomials G = {11, 12, . . . , 1t} contained in an ideal I ⊂ K[x1, . . . , xn], is
called a Gröbner basis for I if for all f ∈ I, such that f , 0, there exists i ∈ {1, . . . , t}, such that lp(1i) divides lp( f ),
where lp( f ) is the leading power product of f .

Using the term order as defined above, one proceeds to perform a “multivariable division” on the set of
polynomial generators of the given ideal I. At the same time, we pick up any “remainder” that is obtained
through this process. A result of this process is a collection of generators that divides any element f of
the ideal without leaving any nontrivial ‘ remainder”. This set of generators is called a Gröbner base of
the ideal. This “multivariable” generalization of division algorithm has many applications all throughout
mathematics. One of the many applications of Gröbner basis is in the field of elimination theory, in which
one “eliminates” a number of variables from a given set of equations. Once the variables are eliminated,
the resulting equations with fewer variables may be solved easily in some situations.

Theorem 2.9. [11] Let ℸ be a field, and let I be an ideal in ℸ[x1, · · · , xn]. Let G be a Gröbner basis for I with respect
to the lexicographic order with x1 > x2 > · · · > xn. Then for any 1 ≤ t ≤ n, G ∩ ℸ[xt, . . . , xn] is a Gröbner basis for
the ideal I ∩ ℸ[xt, . . . , xn].

The above theorem is a key tool in finding solutions in many cases in this paper. We have used Macaulay2
[17] for computing the Gröbner basis.

3. Spectral Solutions to the System of Yang-Baxter Type Matrix Equations

As previously mentioned, the system (1) is closely connected to a single YBE via the following Lemma:

Lemma 3.1. The matrix X solves the system (1) if and only if the matrix X̂ :=
(

0 X
X 0

)
solves the equation

ÂX̂Â = X̂ÂX̂, (3)

where Â =
(
0 A
B 0

)
.

Proof. We can rewrite (1) in the block form as follows.

(
0 A
B 0

) (
0 X
X 0

) (
0 A
B 0

)
=

(
0 X
X 0

) (
0 A
B 0

) (
0 X
X 0

)
.

This gives the result. Note that these are some special solutions for the Yang-Baxter equation

ÂŶÂ = ŶÂŶ. (4)

This transition actually reduces the initial problem: instead of finding all solutions to (4) (which remains an

open problem), we restrict to finding all solutions which have the constant anti-diagonal form
(

0 X
X 0

)
.

This relation allows us to generalize numerous results proved for the original YBE (obtained in papers
[12–15, 25]) to our system (1). In this section, we proceed to prove some of those results.
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Theorem 3.2. Let Sol(A,B) denotes the set of all solutions to (1). For any 1 ∈ Gln(K), Sol(1A1−1, 1B1−1) =
1Sol(A,B)1−1.

Proof. Let X ∈ Sol(A,B). This happens if and only if,

1X1−11A1−11X1−1 = 1B1−11X1−11B1−1

and

1X1−11B1−11X1−1 = 1A1−11X1−11A1−1

This gives 1X1−1
∈ Sol(1A1−1, 1B1−1).

As a result of the above Theorem 3.2, if A and B are simultaneously diagonalizable, then any solutions to
(1) can be obtained from the following equivalent system of equations.

YJAY = JBYJB and YJBY = JAYJA,

where JA, JB denote Jordan canonical forms of A and B respectively. Further, if A and B are simultaneously
diagonalizable and similar. Then (1) is equivalent to the Yang-Baxter equation: YJAY = JAYJA.

Lemma 3.3. Let X be set of all simultaneous solutions to (1) and to the equation CXC = XCX, where C := A + B.
Further, assume the pencils A + λB and A − λB are regular matrix pencils. Then, the set X contains only a unique
solution (X = 0) if and only if the spectra of the pencils have an empty intersection.

Proof. If X0 ∈ X, then we have X0AX0 = BX0B and X0BX0 = AX0A. Adding these equations gives,

X0(A + B)X0 = (A + B)X0(A + B) − (AX0B + BX0A). (5)

Since we have XCX = CXC, this implies AX0B + BX0A = 0.
Note that the above equation, AX0B+BX0A = 0, is similar to the generalized Sylvester’s equation. The rest
follows from the generalized Sylvester’s equation Theorem 2.6 (unique solution case).

Theorem 3.4. Let X be set of all simultaneous solution to (1) and CXC = XCX, where C = A + B. The following
are true.

(a) Let one of the coefficient matrices be non-singular (without loss of generality, let us assume A is non-singular),
and the pencils A + λB and A − λB are regular. If X contains a non-trivial solution, then BA−1 has a pair of
eigenvalues (µ1, µ2), such that their sum is zero.

(b) If A and B are invertible, and for some X ∈ X, (X,A,B) commute pairwise, then X = 0.

Proof. (a) By Theorem 2.6 and Lemma 3.3, if (1) has a non-trivial solution, then σ(A,B) ∩ σ(A,−B) is
non-empty. Let’s say λ0 ∈ σ(A,B) ∩ σ(A,−B). Then,

det(A + λ0B) = 0 and det(A − λ0B) = 0

⇒ det(I + λ0BA−1) = 0 and det(I − λ0BA−1) = 0

Which means, there exist a µ1, µ2 ∈ σ(BA−1), such that 1 + λ0µ1 = 0 and 1 − λ0µ2 = 0. Now, since A is
invertible, λ = 0 can not be an eigenvalue for the pencils A + λB and A − λB. Which, along with the
last pair of equations imply µ1 + µ2 = 0.

(b) If X,A,B are mutually commutative, and A,B are invertible, then by the above lemma, we have

AXB + BXA = 0
=⇒ 2ABX = 0

Which gives, X = 0.
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Similar conditions can be drawn when B is invertible, as the equation AX0B+BX0A = 0 has symmetry with
respect to A and B. In that case, corresponding pencils are B + λA and B − λA. Also, note that when both
A,B are singular, the necessary condition for the existence of a non-trivial solution is trivially satisfied as
0 ∈ σ(A,B) ∩ σ(A,−B).

Lemma 3.5. Let X be a solution to (1). Then for any α ∈ K, X + αC is a solution to (1) for some C ∈ Mn(K), if
AC = CA = 0 and BC = CB = 0.

Proof. We have,

A(X + αC)A = (X + αC)B(X + αC)

and

B(X + αC)B = (X + αC)A(X + αC),

is true, if AC = CA = 0 and BC = CB = 0.

Proposition 3.6. Let X1,X2 be solution to (1). Then X1+X2 is a solution to (1), if and only if X1AX2+X2AX1 = 0
and X1BX2 + X2BX1 = 0.

Proof. (
A(X1 + X2)A = (X1 + X2)B(X1 + X2)

and

B(X1 + X2)B = (X1 + X2)A(X1 + X2)
)
,

⇐⇒

(
AX1A + AX2A = X1BX1 + X1BX2 + X2BX1 + X2BX2

and

BX1B + BX2B = X1AX1 + X1AX2 + X2AX1 + X2AX2

)
,

⇐⇒ (X1AX2 + X2AX1 = 0 and X1BX1 + X1BX2 = 0).

Definition 3.7. A solution X is commutative if [A,X] = [B,X] = 0. Otherwise, the solution X is non-commutative.

The following result is an extension from the theorem given in [12], which states for an arbitrary square
matrix A, there are no isolated nontrivial solutions to the YBE AXA = XAX, which do not commute with
A. Note that the space of solutions to the system of Yang-Baxter equations gets a subspace topology from
the usual topology of Mn(K) ( where K is R or C). Considering this topology, the authors of the papers
[12, 13, 23] prove a very interesting result about the manifold structure of the space of the solutions, and as
a consequence, they get results on the “isolated” solutions (i.e., the singleton path components of the space
of solutions). In the same spirit, we prove the following.

Theorem 3.8. Let A and B commute with each other. Then, any non-commutative solution to (1) is not isolated in
the solution set.

Proof. Let X0 be a non-trivial solution to (1), which does not commute with both A and B. Then we have,
for any t ∈ K, e−BAtX0eBAt is also a solution to (1). We have, as A and B commute, A commute with eBAt. This
implies,

A(e−BAtX0eBAt)A = e−BAtAX0AeBAt

= e−BAtX0BX0eBAt

= (e−BAtX0eBAt)B(e−BAtX0eBAt).
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Similarly, we can see that,

B(e−BAtX0eBAt)B = (e−BAtX0eBAt)A(e−BAtX0eBAt)

This gives, e−BAtX0eBAt is a solution to (1). As a consequence, we can see X0 lies in a path of solutions inside
the solution space.

3.1. Invertibility of the coefficient matrices
Spectral properties of the coefficient matrices A and B impose certain spectral restrictions on the solution
matrices X. Below, we demonstrate how the regularity of the input matrices dictates the behaviour of the
solutions.

Theorem 3.9 (Necessary conditions for regular solutions). Let A and B be non-singular matrices. Then:

(a) Equations in (1) have a non-singular solution, only if det(A3) = det(B3). In particular, if A and B have only
real eigenvalues, then there exists a non-singular solution to (1) only if det(A) = det(B).

(b) If the equations in (1) do indeed have a non-singular solution X, then X2 must be similar to BA.

Proof. (a) We have,

det(AXA) = det(XBX) and det(BXB) = det(XAX)

⇒ det(A2)det(X) = det(X2)det(B)

and det(B2)det(X) = det(X2)det(A).

Now, if X is a non-singular solution, then the above equations give,

det(X) =
det(A2)
det(B)

=
det(B2)
det(A)

.

Which gives, det(A3) = det(B3). Further, if A and B have only real eigenvalues, then det(A) = det(B).

(b) Let X be an invertible solution for (1).

BXB = XAX

⇒ B = X−1B−1XAX

⇒ BA = X−1B−1XAA

⇒ BA = X−1B−1X2BX

This gives X2 is similar to BA. In other words, σ(X2) = σ(BA).

Non-regular solutions also exhibit a certain invariance under the regular coefficient matrices A and B:

Lemma 3.10. Let A and B be invertible and let X be a singular solution to (1). Then Ker(X) is invariant under A
and B, i.e., XBv = 0 and XAv = 0 for every v ∈ Ker(X).

Proof. We have XAXv = 0, therefore BXBv = 0. Since B is invertible, this gives XBv = 0. Similarly, we can show
that XAv = 0.

The following result gives an important insight into the solutions when only one input matrix is regular.

Theorem 3.11. Let one of the coefficient matrices be singular and the other be non-singular, say A is singular, and B
is a non-singular matrix. The following statements are true:
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(a) Equations in (1) do not have a non-singular solution.

(b) If u ∈ Ker(A), then either u ∈ Ker(X) or BXu ∈ Ker(X), for any solution X to (1).

(c) Let X be a solution to (1) and assume there exists a λ ∈ σ(BA) such that λ < σ(X2). Then X annihilates
Eλ(BA), the eigen space of BA corresponding to the eigenvalue λ. Furthermore, the solution X annihilates the
generalized eigenspace of BA corresponding to the eigenvalue λ, Pλ(BA).

Proof. Without loss of generality, assume that A is singular and B is non-singular.

(a) Let v(, 0) ∈ Ker(A). Then, AXAv = 0, gives XBXv = 0. Now, if Xv = 0, then v ∈ Ker(X) and X is
singular. If Xv , 0, then as B is non-singular BXv , 0. That means, BXv ∈ Ker(X), and X is singular.

(b) If u ∈ Ker(A), then we have AXAu = 0, which gives BXBu = 0. If u < Ker(X), then BXu(, 0) ∈ Ker(X),
as B is invertible, for any solution X.

(c) Let X be a solution to (1) and let λ be such that λ ∈ σ(BA) \ σ(X2). Respectively, let v(, 0) ∈ Eλ(BA).
Then we have

BAv = λv
BXBAv = λBXv
XAXAv = λBXv

X2BXv = λBXv

Now, since λ < σ(X2), BXv must be zero. As B is invertible, this gives Xv = 0.
i.e., XEλ(BA) = 0.

Furthermore, let {v1, v2, ..., vr} be the canonical basis for the generalized eigenspace Pλ. Then we have

BAv1 = λv1

BAvi = vi−1 + λvi, for i = 2, 3, .., r.

But from the previous part of the claim, we have BAv1 = 0. Now,

XBAv2 = Xv1 + λXv2

⇒ XBAv2 = λXv2, (as v1 ∈ Eλ(BA), and Xv1 = 0)
⇒ BXBAv2 = λBXv2

⇒ XAXAv2 = λBXv2

⇒ X2BXv2 = λBXv2.

We have λ < σ(X2) and B invertible, which gives Xv2 = 0. Continuing this process through induction,
we have XPλ(BA) = 0.

The previous results point out that for any nonzero solution X to (1), the matrices X2 and BA must have
common eigenvalues. This can be further exploited, as the following analysis shows:

Theorem 3.12. Let X be a solution to (1). The following are true.

(a) For any polynomial f ∈ K[X], f (X2)BX = BX f (BA). In particular, ΦBA(X2)BX = 0, where ΦBA is the
characteristic polynomial of BA.
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(b) For every solution X it holds that eX2 BX = BXeBA.

Proof. (a) We have XAXA = BXBA, which implies X2BX = BX(BA). Now,

X4BX = X2BX(BA)
= XAXABA

= BX(BA)2

Then by continuing this process, we have X2nBX = BX(BA)n. This implies that, for any polynomial f ,
f (X2)BX = BX f (BA). In particular, for the characteristic polynomial ΦBA of BA, the later equation can
be written as ΦBA(X2)BX = 0.
(b) This part follows immediately from the above proof.

For the above Sylvester equation, eX2 BX = BXeBA, if BX , 0, then the matrix BX is a non-zero solution. This
implies, that the spectra of eX2

and eBA intersect, or, equivalently,

σ(X2) ∩ (σ(BA) + 2iZπ) , ∅.

Conversely, if the above sets do not intersect, then BX = 0, which forces X to be 0.

3.2. Intertwining Solutions

A particularly interesting class of solutions is the class of intertwining solutions:

Definition 3.13. A nonzero solution X to (1) is said to be an intertwining solution if AX = XB and BX = XA.

These solutions coincide with the class of commuting solutions when A = B and the single YBE AXA = XAX
is considered. However, when A , B and X , 0, the equality AX = XB and XA = BX is not automatically
achieved.
The existence of intertwining solutions implies that A and B have common eigenvalues. All intertwining
solutions can be obtained by intersecting the set of solutions to (1) with the set of solutions to the homo-
geneous Sylvester equation AX = XB. Below, we provide a much simpler way for intertwining solutions
characterization in the case when A and B are regular matrices. Recall the block form (3) from Lemma 3.1.

Lemma 3.14. The nonzero matrix X is an intertwining solution to (1) if and only if the corresponding anti-diagonal

matrix X̂ =
(

0 X
X 0

)
is a nonzero commuting solution to (3).

It is not hard to see that the block-matrix Â =
(

0 A
B 0

)
is invertible if and only if A and B are invertible. In

that case, the inverse of Â is given as

Â−1 =

(
0 B−1

A−1 0

)
.

Thus we proceed to find all commuting solutions to (3) when Â is an invertible matrix. Then by Lemma 3.14,

all those solutions which have the constant anti-diagonal form
(

0 X
X 0

)
will indeed be all intertwining

solutions for (1).

For the given invertible Â, its square root
√

Â denotes the set of all matrices L such that L2 = Â. Obviously,

the set
√

Â is non-empty. In [13], Dinčić proved the following theorem which characterizes all commuting
solutions to (3) for the regular coefficient matrix:
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Theorem 3.15. [13, Theorem 4.2] (Dinčić) If Â is invertible, then all commuting solutions of (3) are given by the
closed-form formula

X̂ =
1
2

Â +

√(
Â
)2
 . (6)

Theorem 3.16. Let A and B be regular matrices and let Â be given as above. There exists an intertwining solution
to (1) if and only if there exists a matrix E with the following properties:

(a) The matrix A + E is regular.

(b) The equality A−1EB = BEA−1 holds.

(c) The matrix E solves the equation

(2A + E − 2B) + (2A + E − B)EA−1 = 0. (7)

In that case, corresponding to each E, a unique intertwining solution XE to (1) is defined by the following equivalent
system of formulas:

2XE := 2A + E

= B + (A + E)−1AB

= B + BA(A + E)−1,

(8)

where E is an arbitrary matrix with properties (a) − (c).

Proof. By Lemma 3.14 there exists an intertwining solution X to (1) if and only if the corresponding block

matrix
(

0 X
X 0

)
is a nonzero commuting solution to (3). On the other hand, Theorem 3.15 yields that all

commuting solutions to (3) are given by the expression (6) above. Therefore, the nonzero matrix X is an

intertwining solution to (1) if and only if
(

0 X
X 0

)
belongs to the set

1
2

Â +

√(
Â
)2
 .

First note that (
Â
)2
=

(
AB 0
0 BA

)
.

Let L =
(

L1 L2
L3 L4

)
be an arbitrary member from the set

√(
Â
)2

. Then L2 =
(
Â
)2

, that is,

(
L2

1 + L2L3 L1L2 + L2L4
L3L1 + L4L3 L3L2 + L2

4

)
=

(
AB 0
0 BA

)
.

In other words, all such matrices L solve the following system of equations
L2

1 + L2L3 = AB,
L1L2 + L2L4 = 0,
L3L1 + L4L3 = 0,
L3L2 + L2

4 = BA.

(9)
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Combining the above observations, we conclude that(
0 X
X 0

)
∈

{
1
2

(
L1 A + L2

B + L3 L4

)∣∣∣∣∣∣ such that (9) holds
}
.

It immediately follows that L1 = L4 = 0. Respectively, the system (9) reduces to L2L3 = AB, L3L2 = BA and(
0 X
X 0

)
∈

{
1
2

(
0 A + L2

B + L3 0

)∣∣∣∣∣∣ L2L3 = AB, L3L2 = BA
}
.

Since A and B are invertible, we have L2 and L3 are invertible as well. Notice that L2 = A⇔ L3 = B and, in
that case, A = B = X, which is the trivial case. Similarly, L2 = B ⇔ L3 = A, and in that case the solution to
(1) would be precisely 1

2 (A + B), which intertwines A and B if and only if A and B commute, and the proof
is complete (in that case the matrix E is precisely E = B−A). Otherwise, assume there exists a nonzero mat
ix E such that L2 = A + E. Notice that E must be such that A + E is invertible. In that case, from L2L3 = AB
we have

L3 = (A + E)−1AB = (A(I + A−1E))−1AB = (I + A−1E)−1A−1AB = (I + A−1E)−1B

while from L3L2 = BA we have

L3 = BA(A + E)−1 = BA((I + EA−1)A)−1 = B(I + EA−1)−1.

Therefore, the system L2L3 = AB,
L3L2 = BA

is solved for L2 = A + E and L3 = B(I + EA−1)−1 if and only if

BEA−1 = A−1EB,

and in that case of course
L3 = B(I + EA−1)−1 = (I + A−1E)−1B.

Returning to our problem, it follows that the matrix X is an intertwining solution to (1) if and only if(
0 X
X 0

)
∈{

1
2

(
0 A + A + E

B + (I + A−1E)−1B 0

)∣∣∣∣∣∣ (A + E) − regular matrix, BEA−1 = A−1EB
}
.

(10)

Equating the positions (1,2) and (2,1) in the latter gives

2A + E = (I + (I + A−1E)−1)B⇔

2A + E = (I + A−1E)(I + A−1E)−1B + (I + A−1E)−1B⇔

2A + E = (2I + A−1E)(I + A−1E)−1B⇔

2A + E = (2I + A−1E)B(I + EA−1)−1
⇔

(2A + E)(I + EA−1) = (2I + A−1E)B⇔

A(I + EA−1) + (I + EA−1)A(I + EA−1) = (2I + A−1E)B⇔

2A + E + 2AEA−1 + E2A−1 = 2B + A−1EB = 2B + BEA−1
⇔

(2A + E − 2B) + (2A + E − B)EA−1 = 0.
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Any such matrix E, for which A+ E is invertible and BEA−1 = A−1EB, and which solves the equation above

(2A + E − 2B) + (2A + E − B)EA−1 = 0

defines one particular intertwining solution to (1):

2XE := 2A + E = B + (I + A−1E)−1B = B + (A + E)−1AB = B + BA(A + E)−1.

Similarly, every intertwining solution X to (1) implies that
(

0 X
X 0

)
is a commuting solution to (3), thus it

is contained in the general formula (6), which written down reduces to the anti-diagonal family (10) above.
Equating the positions (2,1) and (1,2) gives the sought properties for the matrix E.

4. Doubly-stochastic solutions

Permutation and doubly-stochastic matrices play a crucial role in braid group representations, and are
closely connected to the original YBE. In this section we analyze the initial system (1) and search for
doubly-stochastic solutions. As it turns out, this is scenario where a system of YBEs behaves quite differ-
ently than a single YBE.

We start by revisiting some results regarding the single YBE AXA = XAX, where A is an invertible matrix.
Recall Brouwer fixed point theorem (see e.g. [7]):

Theorem 4.1 (Brouwer). Let Ω be a convex and compact set in the Euclidean space Rn and let f : Ω → Ω be a
continuous mapping in the respective topology. Then, f has a fixed point in Ω.

Recall that the polytope of square doubly stochastic matrices (d. s. matrices for short) is a convex and com-
pact setRn×n, and the permutation matrices are precisely its vertexes (its extreme points). Respectively, any
doubly-stochastic matrix can be expressed as a convex combination of permutation matrices. Conversely,
if A and A−1 are doubly-stochastic, then A is a permutation matrix.
The above discussion requires distinguishing two cases for the invertible coefficient matrix A: The case
where both A and A−1 are doubly-stochastic matrices, and the case where one of them is a d. s. matrix
while the other one (out of A and A−1) is not a d. s. matrix. These two separate cases have been studied in
[15] and [14], respectively.

Theorem 4.2 (Djordjević). [15] Let A be a permutation matrix. There exists a nontrivial doubly-stochastic solution
to AXA = XAX if and only if A has at least one fixed point (i.e., its main diagonal contains at least one 1).

Mathematically speaking, the equation AXA = XAX is equivalent to AX = A−1(AX)2A−1, which is suitable
for the Brouwer’s fixed point theorem. This observation was exploited by Ding and Rhee in [14], where
they obtained the following:

Theorem 4.3 (Ding-Rhee). [14] Let A be an invertible matrix, such that A−1 is a doubly-stochastic matrix. Then
the YBE AXA = XAX has a doubly-stochastic solution. If A is in addition not a doubly-stochastic matrix itself, then
the aforementioned solution is non-trivial.

Returning to our initial system (1), assume A and B are distinct invertible matrices and recall the block-form
(3) from Lemma 3.1:

Â =
(

0 A
B 0

)
.

Notice that Â is a permutation matrix if and only if A and B are permutation matrices as well. In addition,

(3) has a doubly-stochastic anti-diagonal solution
(

0 X
X 0

)
if and only if the matrix X is a doubly-stochastic

solution to (1). We proceed to examine the existence of d. s. solutions to (1) under these conditions.
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Definition 4.4. A matrix A = (Ai j) ∈Mn×m(R) is called point-wise non-negative, if for each i, j, Ai j ≥ 0.

Lemma 4.5. Let A be a doubly stochastic matrix, and for some point-wise non-negative matrix D, DA and AD are
doubly stochastic. Then, D is a doubly stochastic matrix.

Proof. Let M := AD. Then,

Mi j =

n∑
k=1

AikDkj.

Now, the jth column sum of the doubly stochastic matrix M is given by,

n∑
i=1

Mi j = 1

=⇒

n∑
i=1

(
n∑

k=1

AikDkj) = 1

=⇒ D1 j(
n∑

i=1

Ai1) +D2 j(
n∑

i=1

Ai2) + · · · +Dnj(
n∑

i=1

Ain) = 1

=⇒

n∑
i=1

Di j = 1

As Di j ≥ 0, this gives D is column stochastic. Similarly, from DA being doubly stochastic, we get D is row
stochastic. Together, this implies D is doubly stochastic.

Theorem 4.6. Let A and B be two different non-negative invertible matrices, such that A−1 and B−1 are doubly-
stochastic matrices. If at least one of them is a permutation matrix, then there are no doubly-stochastic solutions to
the initial system (1).

Proof. First, assume that both A and B are permutation matrices. This makes the matrix Â to be a permutation

matrix. By the discussion above, (1) has a d. s. solution X if and only if
(

0 X
X 0

)
is a d. s. solution to the

YBE (3). However, due to Theorem 4.2, this is impossible since Â has no 1s on its main diagonal.

Now assume that B is a permutation matrix, while A is not. Then, for Y =
(
Y1 0
0 Y2

)
, where Yi ∈ Ωn, the set

of n × n doubly-stochastic matrices, consider the following equation:

Y = Â−1Y2Â−1.

By the Brouwer’s fixed point theorem, the above equation has a fixed point, say, Y′ =
(
Y′1 0
0 Y′2

)
. This

gives rise to a solution X0 to the initial system of equations, if and only if X0 = A−1Y′1 = B−1Y′2, and
X0 = Y′1A−1 = Y′2B−1. By construction, X0 is a d. s. solution and Y′1 = AB−1Y′2 and Y′1 = Y′2B−1A. Lemma
4.5 implies that A is a d. s. matrix as well. Since A and A−1 are d.s, A must be a permutation matrix. This
contradicts the initial assumption that A is not a permutation matrix.

Since the above theorem disproves the existence of d. s. solutions if at least one of the matrices is a
permutation, we provide an alternative way to explore the solutions.
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Theorem 4.7 (Fixed point approach). Let A and B be invertible matrices. The following statements are true:

(a) If X0 solves (1) then AX0 solves the fixed point problem

Y = A(AB)−1Y2(AB)−1A. (11)

while BX0 solves the fixed point problem

Z = B(BA)−1Z2(BA)−1B. (12)

(b) Let Y0 and Z0 be two solutions to the fixed point problems (11) and (12) respectively. If A−1Y0 = B−1Z0 =: X0,
then X0 solves the initial system (1).

Proof. (a) We have XB = B−1XAX and XA = A−1XBX, therefore

XB = B−1(XA)X = B−1A−1XBX2 =

(AB)−1XBX2 = (AB)−1AXAX = (AB)−1(AX)2
⇔

X = (AB)−1(AX)2B−1A−1A = (AB)−1(AX)2(AB)−1A⇔

AX = A
(
(AB)−1(AX)2(AB)−1

)
A.

Substituting Y = AX gives

Y = A(AB)−1Y2(AB)−1A. (13)

Analogously, from XA = A−1XBX = A−1B−1XAX2 we get

BX = B((BA)−1(BX)2(BA)−1)B,

and substituting Z = BX we get

Z = B(BA)−1Z2(BA)−1B. (14)

(b) Conversely, let Y and Z be solutions to (11) and (12), respectively such that A−1Y = B−1Z = X. Then

A−1Y = B−1A−1YYB−1A−1A = B−1(A−1Y)YB−1
⇔ BXB = XY = XAX.

Analogously
B−1Z = A−1B−1ZZA−1B−1B = A−1XZA−1

⇔ AXA = XBX.

Corollary 4.8. Let A and B be different permutation matrices. Let Y be the set of all doubly-stochastic solutions to
the equation (11) and letZ be the set of all doubly-stochastic solutions to (12) (both of these sets are non-empty due
to the Brouwer’s fixed point theorem). Then

(∀Y ∈ Y)(∀Z ∈ Z) A−1Y , B−1Z.

Corollary 4.9. Let A and B be invertible matrices, such that A−1 and B−1 are doubly-stochastic matrices while A and
B are not doubly-stochastic matrices. If the system of equations

A−1YA−1 = (AB)−1Y2(AB)−1, B−1ZB−1 = (BA)−1Z2(BA)−1 (15)

has a doubly-stochastic solution (Y0,Z0) such that A−1Y0 = B−1Z0 =: X0, then the doubly-stochastic matrix X0 is a
solution to (1).
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5. Idempotent Orthogonal Complements

Let us recall that two square matrices A and B are called idempotent orthogonal complements when
A2 = A,B2 = B, and AB = BA = 0. This section investigates solutions to (1) when A and B are idempotent
orthogonal complements. As A and B are idempotent, their spectra are subsets of {0, 1}, also both are
diagonalizable.
Let EA(λi) denote the eigenspace of A with respect to the eigenvalue λi. Similarly, for B, EB(λ j) denotes the
eigenspace of B with respect to the eigenvalue λ j. Now, for a non-zero vector v ∈ EB(1), we have Bv = v.
This gives, ABv = 0, implies Av = 0. Similarly, any eigenvector for A corresponding to eigenvalue one must
belong to Ker(B). Hence, we have the following inclusions.

EB(1) ⊂ EA(0)

EA(1) ⊂ EB(0)

Analogously, we can see that any column vector of B belongs to Ker(A), and vice versa. As we discussed
above, both A and B are diagonalizable and commute. Hence, they are simultaneously diagonalizable. i.e-
There exist an invertible matrix S ∈ GLn(K), such that JA = SAS−1 and JB = SBS−1. We say two matrices
A,B ∈ Mn(K) are similar, denoted by A ≃ B, if there exists a P ∈ GLn(K), such that A = PBP−1. Then, as a
consequence of Theorem 3.2, without loss of generality, we can assume both A and B are in their Jordan-

canonical forms. Also, since their spectra are subsets of {0, 1}, we have, for an appropriate r, A ≃
(
Ir 0
0 0

)
,

where Ir is identity matrix of order r, and 0′s are zero blocks in appropriate dimensions. To avoid the trivial
cases of equations in (1), let’s take 0 < r < n. Now, by the above inclusions for eigenspaces of A and B, we

have nullity(B) ≥ rank(A). This leads to, B ≃
(
0 0
0 Im

)
, such that n −m ≥ r.

Throughout the discussion, J represents the following matrix with appropriate dimensions.

Let J2 =

(
0 1
0 0

)
and J = dia1(J2, J2, . . . , J2, 0, 0, . . . , 0).

Lemma 5.1. Let A, B be two idempotent orthogonal complement matrices, and X be a solution to (1) for this given
pair. Then AX and BX are nilpotent matrices with index at most 2.

Proof. We have,

AXA = XBX
BAXA = BXBX

=⇒ (BX)2 = 0.

Similarly, we get (AX)2 = 0.

Theorem 5.2. Let A and B be two idempotent matrices, which are orthogonal complements and are in their Jordan-
canonical forms as considered above, such that rank(A) = nullity(B) = r. Then, any solution to (1) has one of the
following forms.

(a) X =
(

0 C
D 0

)
, such that CD = 0 and DC = 0.

(b) X =
(

0 C
D Y2

)
, where Y2 = UJU−1, for any U ∈ GLn−r(K), and for Z = U−1C, W = DU, ZJ = 0, JW =

0, ZW = 0, WZ = J.
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(c) X =
(
Y1 C
D 0

)
, where Y1 = VJV−1, for any V ∈ GLr(K), and for Z = V−1C, W = DV, JZ = 0, WJ =

0, ZW = J, WZ = 0.

(d) X =
(
Y1 C
D Y2

)
, where Y1 = U1 JU−1

1 ,Y2 = U2 JU−1
2 for any (U1,U2) ∈ GLr(K) × GLn−r(K), and for Z1 =

U−1
1 C, Z2 = CU2, W1 = DU1, W2 = U−1

2 D, JZ1 = 0, Z2 J = 0, W1 J = 0, JW2 = 0, Z1W1 =
J, Z2W2 = J.

Proof. When rank(A) = nullity(B); i.e r = n −m, we have,

A =
(
Ir 0
0 0

)
and B =

(
0 0
0 In−r

)
.

Also, let us partition X corresponding to the block forms of A and B. Take, X =
(
Y1 C
D Y2

)
, where Y1 is r× r,

Y2 is (n − r) × (n − r), C is r × n − r, and D is r × n − r matrices. Then, (1) implies,(
Ir 0
0 0

) (
Y1 C
D Y2

) (
Ir 0
0 0

)
=

(
Y1 C
D Y2

) (
0 0
0 In−r

) (
Y1 C
D Y2

)
and (

0 0
0 In−r

) (
Y1 C
D Y2

) (
0 0
0 In−r

)
=

(
Y1 C
D Y2

) (
Ir 0
0 0

) (
Y1 C
D Y2

)
.

We obtain the following system of equations,

Y2
1 = 0,Y2

2 = 0,Y1C = 0,CY2 = 0,DY1 = 0,Y2D = 0,CD = Y1,DC = Y2. (16)

This gives us, Y1 and Y2 are nilpotent matrices with nipotency ≤ 2. With the choice of Y1 and Y2, we can
determine the remaining blocks C,D.
Case 1: Let both Y1 and Y2 be zero matrices, then equations in (16) reduces to finding C and D such that
CD = 0,DC = 0. Now, if Y1 = 0 and Y2 is non-zero, then Y2 must be similar to J. Say, Y2 = UJU−1, for some
U ∈ GLn−r(K). Then by taking Z = CU,W = U−1D, we can rewrite equations in (16) as the following.

ZJ = 0, JW = 0, ZW = 0, WZ = J. (17)

Note that, here, the first column of Z and second row of W are zero vectors, and rows of Z are orthogonal
to column vectors of W.
Case 2: Similarly, if Y2 = 0 and Y1 is non-zero, then Y1 must be similar to J. Then for some V ∈ GLr(K),
Y1 = VJV−1. Then by taking Z = V−1C, W = DV, we can rewrite (16) as follows.

JZ = 0, WJ = 0, ZW = J, WZ = 0.

Case 3: Now, let both Y1 and Y2 be non-zero. Then, Y1 = U1 JU−1
1 and Y2 = U2 JU−1

2 , for some (U1,U2) ∈
GLr(K) × GLn−r(K). Then, by taking Z1 = U−1

1 C,Z2 = CU2,W1 = DU1,W2 = U−1
2 D, we can rewrite (16) as

the following.

JZ1 = 0, Z2 J = 0, W1 J = 0, JW2 = 0, Z1W1 = J, W2Z2 = J. (18)

Here, the first columns of Z2 and W1 are zero, also the second rows of Z1 and W2 are zero.
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Example 5.2.1. Let A = 1
31

−39 −20 −50
14 35 10
49 14 66

, and B = 1
31

 70 20 50
−14 −4 −10
−49 −14 −35

 . Then clearly, both A and B are

idempotent and orthogonal complements, and are simultaneously diagonalizable as follows. For U =

3 1 4
2 3 2
7 2 5

,

UAU−1 =

3 1 4
2 3 2
7 2 5

 1
31

−39 −20 −50
14 35 10
49 14 66

 1
31

−11 −3 10
−4 13 −2
17 −1 −7


=

1 0 0
0 1 0
0 0 0

 = JA

Similarly, for the same U, we can see, JB = UBU−1 =

0 0 0
0 0 0
0 0 1

.

Then, a solution X for (1), can be found using the equations, YJAY = JBYJB and YJBY = JAYJA, where Y = UXU−1.

Now, take Y =

a b c
d e f
1 h i

. Then, JAYJA = YJBY, and JBYJB = YJAY implies the following equations. The

solution Y is constituted by the zeros of the following system.

f1 = −c1 + a f2 = −ch + b f3 = ci
f4 = − f1 + d f5 = − f h + e f6 = f i

f7 = 1i f8 = hi f9 = i2

f10 = a2 + bd f11 = ab + be f12 = ac + b f
f13 = ad + de f14 = bd + e2 f15 = cd + e f
f16 = a1 + dh f17 = b1 + eh f18 = −c1 − f h + i

(19)

Now, if we calculate the Gröbner basis for ideal ⟨ f1, f2, ..., f18⟩ in C[a, b, c, ..., i] with respect to the lexicographic order
for a > b > c > d > ... > i, we get, {a + e − i, i2, hi, 1i, f i, ei, di, ci, bi, f h − e, ch − b, f1 − d, e1 − dh, c1 + e −
i, b1 + eh, ce − b f , cd + e f , bd + e2

}.
From the Gröbner basis, we have i = 0, gives the block Y2 = 0. From remaining equations, we can see that

Y2
1 =

(
a b
d e

)2

= 0. Also,

CD =
(
c
f

) (
1 h

)
=

(
c1 ch
f1 f h

)
=

(
a b
d e

)
= Y1.

Similarly, we can see that DC = 0, Y1C = 0, DY1 = 0. So, the solution set is precisely, X = U−1

(
Y1 C
D 0

)
U, with

Y2
1 = 0, CD = Y1, DC = 0, Y1C = 0, DY1 = 0.

Theorem 5.3. Let A,B be two idempotent matrices, which are orthogonal complements and are in their Jordan-
canonical forms as follows, with rank(A) < nullity(B).

A =
(
Ir 0
0 0

)
and B =

(
0 0
0 B′

)
,

where B′ =
(
Is 0
0 0

)
, (n − r) × (n − r) matrix, and s = rank(B), such that 1 ≤ s < n − r. Then any solution to (1) has

one of the following forms.
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(a) X =
(

0 C
D Y2

)
, such that DC = B′Y2B′, CB′D = Y1, CB′Y2 = 0, Y2B′D = 0, Y2B′Y2 = 0.

(b) X =
(
Y1 C
D Y2

)
, where Y1 = UJU−1, for any U ∈ GLr(K), and for Z = U−1C, W = DU, JZ = 0, WJ =

0, DC = B′Y2B′, ZB′W = J, CB′Y2 = 0, Y2B′D = 0, Y2B′Y2 = 0.

Proof. Let us take X as previously, i.e., X =
(
Y1 C
D Y2

)
. Then (1) implies,

(
Ir 0
0 0

) (
Y1 C
D Y2

) (
Ir 0
0 0

)
=

(
Y1 C
D Y2

) (
0 0
0 B′

) (
Y1 C
D Y2

)
and (

0 0
0 B′

) (
Y1 C
D Y2

) (
0 0
0 B′

)
=

(
Y1 C
D Y2

) (
Ir 0
0 0

) (
Y1 C
D Y2

)
.

This gives rise to the following equations.

Y2
1 = 0, Y1C = 0, DY1 = 0, DC = B′Y2B′,

CB′D = Y1, CB′Y2 = 0, Y2B′D = 0, Y2B′Y2 = 0.
(20)

Further, by partitioning C,D, and Y2 into blocks with dimensions corresponding to B′, we have

C =
(
C1 C2
C3 C4

)
,D =

(
D1 D2
D3 D4

)
,Y2 =

(
X1 X2
X3 X4

)
.

Then, we have the following implications.

Y2B′Y2 = 0⇒ X2
1 = 0, X1X2 = 0, X3X1 = 0, X3X2 = 0

CB′Y2 = 0⇒ C1X1 = 0, C1X2 = 0, C3X1 = 0, C3X2 = 0
Y2B′D = 0⇒ X1D1 = 0, X1D2 = 0, X3D1 = 0, X3D2 = 0

DC = B′Y2B′ ⇒ D1C1 +D2C3 = X1, D1C2 +D2C4 = 0,
D3C1 +D4C3 = 0, D3C2 +D4C4 = 0

(21)

Now, from (20), it is clear that Y1 is a nilpotent matrix with nilpotency ≤ 2. Then, Y1 is either 0 or similar to
J.
Case 1: When Y1 = 0,

CB′D = Y1 = 0⇒ C1D1 = 0,C1D2 = 0,C3D1 = 0,C3D2 = 0.

Case 2: If Y1 , 0, then for some U ∈ GLr(K), Y1 = UJU−1. Then by taking U−1C = Z and DU = W, we can
rewrite (20) as following,

JZ = 0,WJ = 0,DC = B′Y2B′,ZB′W = J,CB′Y2 = 0,Y2B′D = 0,Y2B′Y2 = 0. (22)

Further, from the first equation of (21), it is clear that X1 is nilpotent with nilpotency ≤ 2. Then X1 is 0 or

similar to J. Now, if X1 = 0, then we can rewrite CB′Y2 = 0 as,
(
0 C1X2
0 C3X3

)
= Y1. Also, Y2B′D = 0 can be

rewritten,
(

0 0
X3D1 X3D2

)
=

(
0 0
0 0

)
.

Also, when s ≥ 2, and if Y1 , 0, then by taking Z =
(
Z1 Z2
Z3 Z4

)
and W =

(
W1 W2
W3 W4

)
, ZB′W = J implies,

Z1W2 = 0,Z3W1 = 0,Z3W2 = 0, and Z1W1 = Js, where Js is the left-top corner s × s block of J.
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Example 5.3.1. Let A =


29/2 24 12 33/2
−1/2 −2 −1 −7/2
−43/2 −34 −17 −41/2

9/2 8 4 13/2

, and B =


−12 −15 −9 −6

0 0 0 0
20 25 15 10
−4 −5 3 −2

. Then, both A and B

are idempotent and are orthogonal complements. We can simultaneously diagonalize them using U =


1 2 1 2
3 4 2 1
4 5 3 2
1 6 2 7

,

as follows.

UAU−1 =


1 2 1 2
3 4 2 1
4 5 3 2
1 6 2 7




29/2 24 12 33/2
−1/2 −2 −1 −7/2
−43/2 −34 −17 −41/2

9/2 8 4 13/2




7 5/2 −3 −3/2
−2 1/2 0 1/2
−8 −9/2 5 3/2
3 1/2 −1 −1/2


=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 = JA.

Similarly, for the same U, we have JB = UBU−1 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .
Then, a solution X for (1), can be found using the equations, YJAY = JBYJB and YJBY = JAYJA, where Y = UXU−1.

Take Y =
(
Y1 C
D Y2

)
=


a b c d
e f 1 h
i j k l
m n p q

.

Then the Gröbner basis generated corresponding to the equations from the system JAYJA = YJBY and JBYJB = YJAY
is:
{a + f − k, lp, kp, jp, ip, f p, ep, bp, f m − km − en, dm + hn, cm + 1n, bm + f n, kl, 1l, f l, el, cl, bl, k2, jk,
ik, 1k, f k, ek, ck, bk, 1 j− f , cj− b, 1i− e, f i− ej, di+ hj, ci+ f − k, bi+ f j, d f − bh− dk, c f − b1, de+ f h, ce+
f1, be + f 2, hkn, dkn, d1n − chn, hkm, hjm − hin, ejm − ein, bd1 − bch}

From the above Gröbner basis, we get k = 0, which gives a = − f . Then, we have,

Y2 =

(
X1 X2
X3 X4

)
=

(
k l
p q

)
=

(
0 l
p q

)
, with lp = 0.

Also, Y2
1 =

(
a b
e f

)2

= 0. Similarly, by considering C =
(
C1 C2
C3 C4

)
=

(
c d
1 h

)
and D =

(
D1 D2
D3 D4

)
=

(
i j

m n

)
, we

can see,

CB′Y2 =

(
0 C1X2
0 C3X2

)
=

(
0 cl
0 1l

)
.

In same passion we have, Y2B′D = 0, Y2B′Y2 = 0, CB′D = Y1, DC = B′Y2B′, Y1 = 0, Y1C = 0. Now, if C is
chosen in a way that it is non-singular, then b = n = 0. Also, if D is non-singular, then e = h = 0. These equations
together give the complete solutions for the system of Yang-Baxter-like matrix equations for the given A and B.

6. Solutions when coefficient matrices are of size 2

In this section, we discuss explicit solutions of the system of equations in (1) when A and B are 2×2 matrices
given in the Jordan-canonical form. We find solutions using the Gröbner basis techniques.
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6.1. When A and B are diagonalizable

Let both A and B be diagonalizable and are in Jordan form. Say,

A =
(
a 0
0 b

)
, B =

(
c 0
0 d

)
, and X =

(
x1 x2
x3 x4

)
.

Then, solutions to the equations AXA = XBX and BXB = XAX, equivalently can be read as zeros of a system
of 8 polynomials, f1, f2, ..., f8.

Proposition 6.1. When A,B assume the above mentioned form, and a, b, c, d , 0, then any non-trivial solution of
(1) have the following form:

i) If x1 = 0, then X =
(
0 α
0 b2

d

)
or

(
0 0
α b2

d

)
, where α ∈ K, a = b and b3 = d3.

ii) If x2 = 0, then X =
(

a2

c 0
α b2

d

)
or

(
a2

c 0
0 b2

d

)
, where a3 = c3, b3 = d3, ab = a2 + b2, and cd = c2 + d2.

iii) If x3 = 0, then X =
(

a2

c α
0 b2

d

)
or

(
a2

c 0
0 b2

d

)
, where a3 = c3, b3 = d3, ab = a2 + b2, and cd = c2 + d2.

iv) If x4 = 0, then X =
(

a2

c α
0 0

)
or

(
a2

c 0
α 0

)
, where α ∈ K, a2b = c2d.

v) Any other non-singular solution X of (1), has the form X2 = U
(
ac 0
0 bd

)
U−1, for some U ∈ GL2(K).

Proof. Equations in (1) give the following polynomials, and a solution to it is a solution for this system of
polynomials.

f1 = a2x1 − cx2
1 − dx2x3 f2 = abx2 − cx1x2 − dx2x4

f3 = abx3 − cx1x3 − dx3x4 f4 = b2x4 − cx2x3 − dx2
4

f5 = c2x1 − ax2
1 − bx2x3 f6 = cdx2 − ax1x2 − bx2x4

f7 = cdx3 − ax1x3 − bx3x4 f8 = d2x4 − ax2x3 − bx2
4

(23)

Now we can find a Gröbner basis for the ideal ⟨ f1, f2, ..., f8⟩ in C[a, b, c, d, x1, ..., x4] with respect to the
lexicographic order for a > b > c > d > x1 > ... > x4. But Gröbner basis for this in general is more
complicated and does not help to solve the equations. So, we have taken some additional assumptions
such as x1 = 0, or x2 = 0, or x3 = 0, o x4 = 0, and solved the system in each of the cases using Gröbner basis.
This gives solutions given in (i) to (iv). As the Gröbner basis is very large, we have not included that here.

Now, any other non-singular solution have the form X2 = U
(
ac 0
0 bd

)
U−1, for some U ∈ GL2(K), as X2 is

similar to AB in that case .

Proposition 6.2. i) When a = 0, and b, c, d , 0, then the only non-trivial solution to (1) is X =
(
0 0
0 d2

b

)
, where

b3 = d3.

ii) Similarly, when b = 0, and a, c, d , 0, then the only non-trivial solution is X =
(

c2

a 0
0 0

)
.
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Proof. when a = 0, we can rewrite the equations in (23), and calculate the Gröbner basis, which is simpler
than the previous case. The corresponding generators of the ideals are the following.

f1 = cx2
1 + dx2x3, f2 = cx1x2 + dx2x4

f3 = cx1x3 + dx3x4, f4 = b2x4 − cx2x3 − dx2
4

f5 = c2x1 − bx2x3, f6 = cdx2 − bx2x4

f7 = cdx3 − bx3x4, f8 = d2x4 − bx2
4.

(24)

Similar way, we can rewrite the equations in (23) when b = 0, and a, c, d , 0, and calculate the Gröbner
basis, which leads to our solution.

Proposition 6.3. When a, c = 0 and b, d , 0, the solution has the following form. X =
(
α 0
β 0

)
or

(
α β
0 0

)
, or

(
α 0
0 b2

d

)
where α, β ∈ K and b3 = d3.

Proof. When a, c = 0 and b, d , 0, the system of equations has a much simpler form, and easy to find
solutions. The corresponding equations are the following.

f1 = dx2x3, f2 = dx2x4

f3 = dx3x4, f4 = b2x4 − dx2
4

f5 = bx2x3, f6 = bx2x4

f7 = bx3x4, f8 = d2x4 − bx2
4.

(25)

Then the corresponding Gröbner basis for the ideal generated by the above polynomials is,

{x3x4d, x2x4d, x2x3d, x4b2
− x2

4d, x2
4b − x4d2, x3x4b, x2x4b, x2x3b, x3

4d − x4bd2
}

On finding zeros of these, we get the solution forms as above.

6.2. When A is non-diagonalizable and B is diagonalizable

Let A =
(
a 1
0 a

)
and B =

(
b 0
0 c

)
, and X as previously

(
x1 x2
x3 x4

)
.

Proposition 6.4. a) When a = 0, for a solution to (1), we have the following forms.

i When b, c , 0, (1) has only trivial solution.

ii If b = 0, c , 0, then the solutions to (1) are X =
(
α β
0 0

)
, where α, β,∈ K.

iii If b , 0, c = 0, then the solutions to (1) are X =
(
0 α
0 β

)
, where α, β,∈ K.

b) When a , 0, and b, c ∈ K, (1) has only trivial solution.

Proof. When A =

(
0 1
0 0

)
, B =

(
b 0
0 c

)
, and X =

(
x1 x1
x3 x4

)
, the initial computation of Gröbner basis

corresponds to the ideal generated by the component polynomial equations from AXA = XBX and

BXB = XAX, from which one infers x3 = 0. After modifying X as
(
x1 x2
0 x4

)
, we have the Gröbner basis as,

{x4c2, x2bc − x1x4, x2
4c, x1b2, x1x2b + x2x4c, x2

1b, x1x2
4, x2

1x4, x1x2x4c}.

Then, solving from Gröbner basis gives us the solutions in (a).

Now, when A =

(
a 1
0 a

)
, and B =

(
b 0
0 c

)
, such that a , 0, the initial Gröbner basis of the corresponding

ideal shows that x3 = 0, irrespective the value of b, c. Then on next iteration, after giving x3 = 0, we get
x1, x2, x4 = 0.
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6.3. When A and B are non-diagonalizable

Let A =
(
a 1
0 a

)
, B =

(
b 1
0 b

)
, and X as previously

(
1 x2
x3 x4

)
.

Proposition 6.5. Let A and B be as above. Then for any non-trivial solution X of (1), we have,

i- When a, b , 0, X has one of the following form.(
a 1
0 a

)
,

(
a + a

√
α α

−a2 a − a
√
α

)
or

(
a − a

√
α α

−a2 a + a
√
α

)
where α ∈ K, and a = b, in that case.

ii- When a, b , 0, and a , b, then any non-trivial solution X has the form
(
α b2+α2

−α(a+b)
ab

−ab (a + b) − α

)
.

iii- When one of a, b is zero, then (1) has only trivial solution.

Proof. For the given A,B, and X as
(
x1 x2
x3 x4

)
, the initial computation of Gröbner basis for the ideal generated

by the polynomials appeared in (1) shows that x3(a2
− b2) = 0. Then either x3 = 0 or a2 = b2. If a2 = b2,

and a = b, then the system of equations becomes single YBE, and authors have found its solution in [25],
which are given in (i) above. Now, if a , b, but a2 = b2, we have b3 + x3a = 0 in Gröbner basis. This gives
x3 = −ab. After substituting the said value for x3, on the next iteration, we have x1ab2 + x4ab2

− ab3
− b4 = 0

in the Gröbner basis. This gives x1 + x4 = a + b. Now, adding x1 + x4 − (a + b) to the basis, the Gröbner basis
becomes:

{x1 + x4 − a − b, a2
− b2, x2ab − x2

4 + x4a + x4b − b2, x2b3
− x2

4a + x4ab + x4b2
− ab2

}.

Solving this gives the solution in (ii).
When a , 0 and b = 0, the Gröbner basis correspond to the system of equations i (1) which gives, x2

3 = 0, x3
4a =

0. Then we have x3, x4 = 0. Adding this to the basis, Gröbner basis reduce to {x2a2 + x1a, x1a2, x1x2a, x2
1a}.

This gives us (1) has only a trivial solution in this case.

Acknowledgment: The authors are thankful to the anonymous referee for many helpful suggestions.
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