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Some new criteria for judging /-tensors and its application
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Abstract. In this paper, some new criteria which only depend on elements of the given tensors are
proposed to judge H-tensors. Moreover, based on these new criteria, some sufficient conditions of the
positive definiteness for even-order real symmetric tensors are obtained. In addition, some numerical
examples are presented to illustrate those new results.

1. Introduction

Let n > 2 and m > 2 be integers, N = {1,2,...,n}, and C(R) be the set of all complex(real) numbers.
A tensor A = (ajj,.i,) is called a complex (real) order m dimension #n tensor, if a;;,..;, € C(R), where
ij=1,2,...,nforj=12,..,m Let C"" (RI"") be the set of all complex (real) order m dimension n
tensors. A tensor I = (5,;,.i,) € CI™" is called the unit tensor [1], if its elements satisfy

5 = 1, t=ia=-=in,
11191, - .
20, otherwise.

For a tensor A = (a;,.i,) € C"", if there exists a complex number A and a complex vector x =
(x1,%2, ..., %) #(0,0,...,0)T satisfy the following homogeneous polynomial equations:

ﬂxm_l — /\x[m—l]/

then A is called an eigenvalue of A and x is its corresponding eigenvector [2-4], where Ax"~! and Ax["~1]
are vectors, and whose ith components are

-
(A" = Z |aii,.i,, i, - -+ xi,,,

i, in€EN

and
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respectively, for all i € N. In particular, if A and x are real, then A is called an H-eigenvalue of A and x is its
corresponding H-eigenvector [2].
For an mth degree homogeneous polynomial of n variables f(x) can be usually denoted as

fx) = Z Aiyigeriny Xiy Xiy = Xiyy s

i riZ/--vim eN

where x = (x1,x2,...,%,)! € R". The homogeneous polynomial f(x) can be represented as the tensor product
of a symmetric tensor A = (a;,,-4,) € C'"" and x™ denoted by

fx) = A" = Z Biiyeiy Xig Xiy * ** Xiys

il rin-"rim eN

where the tensor A is called symmetric if its elements are invariant under all permutation of indices
{in,i2, ..., %u} and x = (x1,%2,...,%,)T € R" [2]. If m is even, and

f(x) >0, forallxeR", x #0,

then we call that f(x) is positive definite.

The positive definiteness of homogeneous polynomial play a key role in automatic control [11, 12],
magnetic resonance imaging [13] and so on. However, when n > 3, m > 4 and m is even, it is difficult to
judge the positive definiteness of the homogeneous polynomial f(x). In order to solve this problem, L.Q.
Qi proposed in [2] that f(x) is positive definite if and only if the real symmetric tensor A is positive definite,
and L.Q. Qi gave a method to verify the positive definiteness of A by eigenvalue, that is,

Theorem 1. [2] Let A = (a;,4,-i,) € R be a symmetric tensor and m be even, then A is positive definite if
and only if all of its H-eigenvalues are positive.

According to Theorem 1, one can verify the positive definiteness of an even-order symmetric tensor A
by calculating the H-eigenvalues of A. However, it is hard to compute all these H-eigenvalues of A if m
and n are large. In order to solve this problem, a practical sufficient condition was provided for judging the
positive definiteness of an even-order symmetric tensor as follow.

Theorem 2. [7] Let A = (a4,i,-i,,) € R with gy, > 0 for all k € N and m be even. If A is an H-tensor, then
A is positive definite.

Based on the fact that the identification of #{-tensor is useful in checking the positive definiteness of
homogeneous polynomials, some criteria for judging H-tensor have been widely proposed, see [14-25]. In
this paper, we still focus on judging of H-tensors, and some new criteria which only depend on elements of
the given tensors are proposed. As an application, for an even-order real symmetric tensor, some sufficient
conditions of the positive definiteness are obtained. Moreover, some numerical examples are presented to
illustrate those new results.

2. Some criteria for judging nonsingular /-tensors

In this section, some new criteria for judging H-tensors are proposed. Before that, some notations,
definitions, lemmas and theorems are listed firstly. The calligraphy letters A, B, H, - represent tensors;
the capital letters A, B, - - - denote matrices; the lowercase letters x, y, - - - refer to vectors.

For a tensor A = (a;,,.-i,,) € CI"", we denote

(A= Y |- l= X |0l = lai.l,

ip-iy €N ip-iy €N
(5,','2...‘,” =0

Ni={i e N:0 <|aj.i| £ri(A)}, N2 = {i € N : |aji..i| > ri(A)},

(A
s = Bl p = 7AW max{maxs;, maxti},
ri(A) |aii... ieN; ieN,




X. Chen, Y. Wang / Filomat 38:29 (2024), 10193-10206 10195

A= L il 17 (A) = ri(A) = 15 (A),
iZ"'imes
lip-+im =

N;n_l ={ipig - iy : Z] € Nl,j =2,3,...,m},
Nm—l\ern—l =iz iy : ipiz- iy € N1 gnd ipig iy & NT_l}

Rj(A) = Y lajj,.j, ) +u X lajjil j € No,
Jor jm€NTTANZT JarjmENG
Ojjgejm =0
) ) NZ 1\N ]‘ajfz'"fml
Jor jmEN"TI\NG™ .
lLl] = |ﬂj/.,.]‘\— Z |¢Z]‘]‘2..,]'m\ and lu = max{lllj}’] € NZ'
jor jm€Ng !
6jj--jm =0

Definition 1. [8] Let A = (a;,4,-i,) € Clmn_If there is a positive vector x = (x1,x2, ... ,x,)T € R" such that

m—1 e .
|a;...ilx" " > § iy iy, |Xi, -+ X,
12,0 i €N
(3,‘,'2,“,',” =0

where |a| for the modulus of a € C, then A is called an H-tensor.
Definition 2. [2] Let A = (a;,,.,,) € C"". If
|aii..il > ri(A), i €N,
then A is called an strictly diagonally dominant tensor.
Definition 3.[15] Let A = (a;,;,.;,) € C'"" and X = diag(x1,x, ..., x,). If
B = (biiy-i,) = AX",
where
biyiyi, = AigiyinXiy - - - Xy, 1 €N, j=2,3,...,m,
then B is called the product of the tensor A and the matrix X.

Definition 4.[6] Let A = (a;,;,..;,) € CI™". If there exists a @ # S C N such that a;,.;,, = 0, Vi; € S and
in,...,im & S, then A is called reducible. Otherwise, A is called irreducible.

Definition 5.[15] Let A = (a;;,..;,) € C'"", for i,j € N (i #j), if there exist indices ki, ks, . .., k; with
Z eii | 20, 5=0,1,...,1,
ko1 €lia,eenins)
where ko = i, ki1 = j, we call that there is a nonzero elements chain from i to j.
Lemma 1. [8] If A is an strictly diagonally dominant tensor, then A is an H-tensor.
Lemma 2.[7] Let A = (a;,,..;,) € C"". A is an H-tensor, if
(i) A is irreducible,

(ii) |asi..i| = ri(A), for eachi € N,
(iii) for inequality of (ii), strictly inequality holds for at least one i.
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Lemma 3. [15] Let A = (a;;,.;,) € C"". A is an H-tensor, if
@) lasi...l 2 ri(A), i €N,
(11) N, = {l eN: Ia,-z-...,-l > Vl(ﬂ)} * 9,
(iii) for any i € Ny, there exists a nonzero elements chain from i to j such that j € Nj.

Lemma 4.[15, 17] Let A = (a;,;,..;,) € C'""1. If there exists a positive diagonal matrix X such that AX"! is
an H-tensor, then A is an H-tensor.
In the following, some new criteria are proposed to judge H-tensors.

Theorem 3. Let A = (a;,;,..;,) € Cl™". If

|aji...ils; > hi, i € N,

where
1 1
hi = Z |tiiy-..i, | (i) T -+ (85, ) T + Z ,E{,m,aX} }{fj}|aii2~--im| +r Z |@iiy-wiy, |
l'z"'l'meN'lnfl iz_._l.meN,zn,lj 1,130/ lm iz_._l-meNm—l\(ern—luernfl) (1)
6,'1'2...1,”:0

then A is an H-tensor.

Proof Let
i ls: — hs ‘
M; = Izzzlz i ,ieN;.
x |iiy i, |
ip-eiyy €NMTT\N
If Y |aiiy-i,,] = 0, we define M; = + o. Obviously, M; > 0, i € N;. Hence, there exists ¢ > 0 such
iz._.l’mENm—l\ern—l
that

ieN; 1EN,

0<ée<min {minMi, 1 — max ti}.

Construct diagonal matrix X = diag{x1, x, ..., x,} and denote B = (bj,j,..,,) = AX"1, where

(s))7, jeN,

e+t)a, jeN,.

Obviously, X is a positive diagonal matrix.

Next, we will prove that 8 is an strictly diagonally dominant tensor, and divided it into two cases as
follows.

Case 1: For any i € Ny, we obtain

PB = Y i+ Y il Y iy,

= iy i Nyl iy NI\ (NETUN )
Biyin =0
1 1 1 1
= Z iy 1(53,) 7T - (s, ) 7T + Z iy, | (€ + £,) 7T - (€ + £, ) 7T
7'2"'im€N{”4 iz-"i,,,EN;”’l
Biy-in =0
+ Z ity 12, < - X, )

iz iy €N\ (NITUNgT)

a1 n
< Z iy (53) 7T -+ (53, ) 7T + Z |iiy--i, (e + max  {t;})
- -1 . 1 J€{i2,13ee i}
72--~1”,EN;” iy i ENY'

(3“'2...,'”‘ =0

+(r+e) Y, iy )

iy €N\ (N TUNDL)
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If Y |aiiy-i,,] = O, then from inequality (2) and condition that |a;;..;|s; > h; for each i € Nj, it is easy
ip-wiy ENMT\NIT

to obtain that

1 1

BB <Y i )T (5,)
g €N
[ =0

iy i
< |aji-ilsi
= |bjj..il.
If Y, |aiiy-..i,,] # 0, then from inequality (2) and condition that |a;i..;|s; > h; for each i € Ny, we obtain
ipwi N T\NDL

HB) < hte Y. il
i2"'1”I€an_1\N;’Z_1
< hi+M; Z |@iiy iy, |
ip-iy ENMT\NT1
|aii...ils;

= |bji..l
Case 2: For any i € N, we obtain |a;;..;| > 7;(A) > 0, and from 0 < xi;p <1 forije Nand j =2,3,...,m, thus
we get

|bii...il — ri(B) =lajiil(e +t;) — Z |aiiy.i,, X, -+ - X, — Z |aiiy.i,, i, - -+ X,

1'2~--im€Nf"1 i im€NG!

bf,‘z...,‘m =0
- E @iy iy Xy - - - X,

iz iy €N \(NPTUNg)

>elaji..i| + ri(A) - Z |@iiy i) — Z |aii-miy ] — Z |ty iy, |
by iy eNT1 iy eNg1 by iy €N\ (N-TUN)
6,‘,‘2,..,'”, =0

=¢laji...
>0.

From Cases 1 and 2, we obtain |b;..;| > r;(B) for all i € N, that is, 8 is an strictly diagonally dominant
tensor, thus from Lemmas 1 and 4, A is an HH-tensor.
From Theorem 3, we obtain the following corollary.

Corollary 1. Let A = (a;;,..;,) € C"". If
|aii...ilsi > pi, i € Ny,

where

pi = Z je{max {sj}lu,-,-z...iml + Z je{max {t]'}la,'iz...,‘ml +r Z |H,‘1‘2...1'm|,

. N i2/i3/~~/im} . N 1‘2,1‘3,.‘.,1‘",} . .
ipiy €N ip-iy €Ny gy NI\ (N-TUNZY) (©)

éiiz'"im =0

then A is an H-tensor.
Proof From equalities (1) and (3), it is obvious to get p; > h; for any i € Ny, then from the condition that

|aji...ilsi > pi, i € Ny,
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we obtain
|aji..ilsi > pi = hi, i € Ny,

thus from Theorem 3, A is an H-tensor.
The following example is presented to illustrate Theorem 3.

Example 1. Let us consider tensor A = (@) = [A(1,:,:), AQ2,:,3), A3, :,:)] € C*3], where

]_

16 0 O 1 0 O 1 2
AQ@,,)=( 0 25 0 [, A2,:)=10 9 0 [andA@S,;,:)=| 1 2
0 0 O 0 0 24 1 11

Obviously,
la111] = 16, r1(A) = 25, |axn| =9, r2(A) = 25, lasss| = 100 and r3(A) = 10,
hence N; = {1,2}, N; = {3}. By calculation, we obtain

E S —2 t —landr—E
25/ 2_25/ 3 = -

1= 10 25

Thus, we get

256 1 1
la111ls1 = o5 9=h = Z |a1jk|(5j);(5k); +0

jkeN?
01%=0
and
81 76 1

oml|s) = —= > —==hy = Z a5 4/(s)2 (s i+Z‘maxt a4 + 0

laz2zs2 75~ o5 = h2 la2jkl(s)2 (sk) le{j,k}{ Hazjxl +0,
jkeN2 jkeN3
O2x=0

hence, from Theorem 3, A is an H-tensor.

Theorem 4. Let A = (a;,,.;,,) € C"". If

(i) A is irreducible,

(ii) |aji..ils; = h;, for each i € N1, where h; is defined as equality (1),

(iii) for inequality of (ii), strictly inequality holds for at least one i € N,
then A is an H-tensor.

Proof Firstly, let the diagonal matrix X = diag{xy, xa, ..., x,} and B = (by,j,..i,) = AX""1, where

ey, e,
- 1 .
P2, jeN.

1
1
00

10198

Since A is irreducible, we get 0 < t; < 1 for all j € N,, and from the definition of s;, we obtain X is a positive

diagonal matrix.

From the condition that A has at least one i € N; such that |a;..i|s; > h;, therefore, without less of

generality, suppose |a;;..ils; > hj, j € N1.

Secondly, similar to the proof of Theorem 3, we conclude that |bj..;| > ri(B) for all i € N\{j} and

Finally, since A is irreducible and X is a positive diagonal matrix, 8 is also irreducible, thus 8 satisfies

the conditions of Lemma 2. Therefore, by Lemmas 2 and 4, A is an H-tensor.
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From Theorem 4, it is easy to get the following corollary.

Corollary 2. Let A = (a;,,..4,,) € C™ If
(i) A is irreducible,
(ii) laji..ils; = pi, for each i € N1, where p; is defined as equality (3),
(iii) for inequality of (ii), strictly inequality holds for at least one i € N,
then A is an H-tensor.
Proof Using the same technique as in the proof of Corollary 1, obviously, we obtain that A is an H-tensor.
The example 2 is presented to illustrate Theorem 4.

Example 2. Let us consider irreducible tensor A = (a;5) = [A(1,:,:), A2,:,:), AB,:, )] € CB3! where

16 0 0 02 0 20 5 1
A,.,)=( 0 16 0 |, A2,;;)=|2 9 0 |andAQB,:;:)=| 2 2 1
0 0 O 0 0 12 1 1 192

Obviously,
a1l = 16, r1(A) = 16, laxn| =9, r2(A) = 16, lasss| = 192 and r3(A) = 33,

hence N; = {1,2}, N; = {3}. By calculation, we obtain

9 11
51—1,52—E, tg_aandr_l.

Thus, we get
lati1lst =16 > 9 =hy = Z |a1jk|(sj)%(sk)% +0

jkeN?
01%=0
and
1 1, |1
laoxls2 = T hy = Z lazjkl(sj)2 (sk)? + Z gl{ﬁil?}({flﬂﬂzjkl +0,
é’kel\% jkenz
ij:

hence, A satisfies the conditions of Theorem 4, that is, A is an H-tensor by Theorem 4.

Theorem 5. Let A = (a;,,.;,,) € C'"". If

(i) A is irreducible,
(i) laji..ils; = hi, i € N1, where h; is defined as equality (1),

(iii) at least one a;j,..;,, # 0,1 € Np, j =1,2,...,mand iy # iy # -+ # iy,

then A is an H-tensor.
Proof Firstly, let the diagonal matrix X = diag{x1, xy, ..., x,} and B = (bj,i-i,,) = AX"1 where

x: = (S])mlj/ je Nlr
- 1 .

P2, jEN,.
oo £ im/

Similarly as in the proof of Theorem 4, we obtain X is a positive diagonal matrix.
R

From the condition that A has at least one 4, ;,..;, # 0, wherei; € Np, j=1,2,...,mand iy # iy #

therefore, without less of generality, suppose Biyiywiy, # 0, wherei; € Ny, j=p,2,3,...,mand i, # i #
Secondly, similarly as in the proof of Theorem 3, we conclude that |b;;..;| > 7;(8) for all i € N\{i,} and

1By, > 13,(B).

ipip iy
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Finally, since A is irreducible and X is a positive diagonal matrix, 8 is also irreducible, thus 8 satisfies
the conditions of Lemma 2. Therefore, by Lemmas 2 and 4, A is an H-tensor.
From Theorem 5, we get the following corollary.

Corollary 3. Let A = (a;,;,.4,,) € C"". 1f
(i) A is irreducible,
(ii) laji..ilsi = pi, i € N1, where p; is defined as equality (3),
(iii) at least one a;j,..;,, # 0,1 € Np, j = 1,2,...,mand iy # ip # -+ # i,
then A is an H-tensor.
Proof Using the same technique as in the proof of Corollary 1, it is easy to get that A is an H-tensor.
The example 3 is presented to illustrate Theorem 5.

Example 3. Let us consider irreducible tensor A = (a;) = [A(1,:,:), A2,:,:), AB,:, )] € Cl33l where

16 0 5 20 2 2 2 5 1
A, =| 4 16 0|, AQ2:)=| 0 100 0 |and AG,:,)=|2 2 1 |.
0 0 0 0 0 4 1 1 100

Obviously,
lai1] = 16, r1(A) = 25, |azxn| = 100, r2(A) = 28, |azss| = 100 and r3(A) = 15,

hence Ny = {1}, N> = {2, 3}. By calculation, we obtain

s —E t —1 t —itmdr—E
172527257 7T 20 T 25
Since A is irreducible, N1 = {1}, ay33 = 4 and
256
il = 55 == ) maxttllad 47 Yl +0,
jkeN? JkeN?\(N2UN3)

A satisfies the conditions of Theorem 5, thus from Theorem 5, A is an H-tensor.

Theorems 4 and 5 are given to judge whether an irreducible tensor is H-tensor. Obviously, Example 2
does not satisfy the conditions of Theorem 5 since N, = {3}, Example 3 does not satisfy the conditions of
Theorem 4 since Ny = {1} and |a111]s1 = 225—56 = h;. Therefore, Examples 2 and 3 show that Theorem 4 and

Theorem 5 are mutually included.

Theorem 6. Let A = (a;,;,..;,) € Cl™". If
(i) laji..ils; = h; for each i € Ny, where h; is defined as equality (1),
(i1) G1(A) U Go(A) # @, where G1(A) = {i : |aii..ils; > hi, i € N1} and Go(A) = {i : |aji..ilt; > hi, i € N3},
(iii) for any i € (N1\G1(A) U G2\G2(A)), there exists a nonzero elements chain from i to j such that
J € (Gi(A) U Go(A)),
then A is an H-tensor.
Proof Firstly, construct diagonal matrix X = diag{xy, x, ..., x,} and denote B = (b;,i,..,,) = AX"1 where

L Jepm, e,
T\, jeN,

From the condition that for any i € (N1\G1(A) U G2\ G2(A)), A exists a nonzero elements chain from i to j
such that j € (G1(A) U G2(A)) and set G,(A) and Definition 5, it is easy to get r;(A) # 0 for any i € N,. Thus,
from the definitions of s; and ¢;, we obtain X is a positive diagonal matrix.

Secondly, similar to the proof of Theorem 3, we conclude that |b;;.;| > 7i(8B) for all i € N. From the
condition G1(A) U Go(A) # @, we obtain that there exists at least an i, € N such that |b;,..;,| > 7;,(B).

Iplp
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On the other hand, if |bj..i| = 7i(B), then i € (N1\G1(A) U N2\G2(A)), and from the condition that for any
i € (N1\G1(A) U N2\Gy(A)), A exists a nonzero elements chain from i to j such that j € (G1(A) U Go(A)), we
obtain that 8 exists a nonzero elements chain from i to j with |bj;...;| > r;(B).

Finally, based on above analysis, we draw a conclusion that 8 satisfies the conditions of Lemma 3, hence
by Lemmas 3 and 4, A is an H-tensor.

From Theorem 6, we obtain the following corollary.

Corollary 4. Let A = (a;,,..4,,) € C™l. If
() laji..ils; > pi, for each i € N1, where p; is defined as equality (3),
(i1) K1(A) U Ky(A) # @, where K1 (A) = {l s aii.ilsi > pi,i € N1} and Ky(A) = {l s agi.ilti > pi,i € Nz},
(iii) for any i € (N1\Ki(A) U N2\K>(A)), there exists a nonzero elements chain from i to j such that
j € (Ki(A) U Ka(A)),
then A is an H-tensor.
Proof Using the same technique as in the proof of Corollary 1, obviously, we get that A is an H-tensor.
The following example is presented to illustrate Theorem 6.

Example 4. Let us consider tensor A = (@) = [A(1,:,:), AQ2,:,3), A3, )] € C*3], where

16 0 0 00 5 01 1
A(lL,,)=| 0 20 0], A2,)=|0 16 0 |andAGB,,)=|0 0 1 [.
0 0 0 0 0 27 10 27

Obviously,
lai11] = 16, r1(A) = 20, laxpn| = 16, r2(A) = 32, |azss| = 27 and r3(A) = 4,

hence Ny = {1,2}, N, = {3}. By calculation, we obtain

s —% S —1 t —iand;’—[é
1_5/ 2_2/ 3_27 _5
Since J1(A) = {1}, [,(A) = @, a3 = 5,430 = 1,

64 1 1
la111ls1 = 5 10="hy = 2 |’11jk|(5j);(5k); +0,
jkeN?
51]‘[(:0

and

laaalsy =8 =ho = ) maxitllad +7 Y laagd 40,
kenz kEN?\(N2UN2)

thus from Theorem 6, A is an H-tensor.

Theorem 7. Let A = (aj,.;,) € C"". If

1 1 .
|aji...ils; > Z |@iiy.i,, (S5,) T - -+ (54,) ™1 + 7 Z |aiiy..i, |, i € Ny, 4)
i N1 iy €N\ (NI TN
5,‘,‘2.,.,',” =0

and

Z |aiiy...i,,) = 0, i € No,

iz i €N \Np!
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then A is an H-tensor.
Proof From inequality (4), we obtain that for each i € Ny, there exists a positive number K > 1 such that for
any i € Ny,

1 1
|aii...ilsi > Z |@iiy iy, [(85,) T =+« (4,) T +7 Z |aiiy-.i,,|

ip- i €NY! ip-iy €NMT\(NTTUNDT)
6ii2 im:O
E max  {t}laii..i, |-
]E 12,13e00slm }
12 I €NGT

For any i € Ny, denote

|aji...ilsi — qi .
Ti = , 1€ Nl,
v @i, .., |
iZ"'in,ENm_l\Nq”_l
where
1
gi = E ity [(52,) 7T -+ - (s,) 7T + = E max {tiHaiiy...i,,| + 7 Z |aii,-..i,, |-
1 ,1 , ,1
iy NI 12 eyt 1S iy NP\ (NTTUN1)
(3,‘,‘2..,1',,1 =0
If Y, |aii-i,,] = 0, we define T; = + <. Obviously, T; > 0, i € N;. Hence, there exists ¢ > 0 such that

iz iy N \NT

t,
O<e< min{minT,-,l —maxil}.

i€EN; iEN,

Construct diagonal matrix X = diag{xy, x2, ..., x,}, and denote B = (byj,.i,,) = AX"1 where
)7, jeN,

Xj = A :
(e + [—<) -1, j€N,.

Obviously, X is a positive diagonal matrix.

Next, similarly as in the proof of Theorem 3, we obtain that 8 is an strictly diagonally tensor. Thus,
from Lemmas 1 and 4, A is an H-tensor.

From Theorem 7, a corollary is obtained as follows.

Corollary 5. Let A = (a;,;,..;,) € CI"". If

|ai...ils; > E ‘ {.max, }{5/}|uii2--~im| +r E |aiiy...i, |, i € Ny,
clis,i3,...,i
iyigennt I iy i €N\ (NP-TUNDIT)
biizmim =0

and

Z |aiiy...i,,| = 0, i € No,

iy i €N N

then A is an H-tensor.
Proof Using the same technique as in the proof of Corollary 1, obviously, it is easy to obtain that A is an
H-tensor.

The following example is presented to illustrate Theorem 7.
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Example 5. Let us consider tensor A = (a;x) = [A(L,:,3), A(2,+,3), A(3, :,:)] € C13*, where

0 0 O
and A3,:,:))=| 0 10 2 |.

0 2 100

16 0 0 0
AlL,;)=| 0 20 0 1
0 0 5

10
,A2,,)=1 0 9
0 1

N

2
Obviously,

111l = 16, r1(A) = 25, lazn| =9, r2(A) = 25, lasss| = 100 and r3(A) = 14,
hence N; = {1,2}, N; = {3}. By calculation, we obtain

16 5 _2 t—7andr—16
25’2 3 = =

~ 25’ 50 25°
Thus, we obtain

256 36 1, .1
lailst = —= > 5= Z |a1jk|(sj);(5k); +r Z la1 jl,

25
jkeN? jkeN?\(N?UN3)
61%6=0

S1 =

and

81 48 1, |1
lazzalsz = %~ 55 Z lazjl(sj)? (sk)? + 7 Z lazjil,
jkeN? jkeN?\(N2UN2)
02jx=0

hence A satisfies the conditions of Theorem 7, thus from Theorem 7, A is an H-tensor.

At the end of this section, we give a numerical example, which shows that some criteria of exist-
ing H-tensor can not be used to determine whether it is an H-tensor, but we can use new criterion which
is proposed by us to judge that it is an H-tensor. Before that, some criteria for judging H-tensor are recalled.

Theorem 8. [15] Let A = (a4,4,.i,) € clmnl 1f

\aii..ilsi > Z |aii,-..i,,| + E lelmaxA }{tj}laiiz...im|, Yie Ny
12,130/l
iz"-imEN”’*] \ernfl iz"'in,EN;"fl] 2,13 m
Sty iy =0

iy i

then A is an H-tensor.
Theorem 9. [16] Let A = (a;;,..;,) € CI"). T

|a...i| > E |aii,-..i, | + z _ max_ {tiHai,..,|, Vi€ Ny
. =\ et . _ JEli2d3ee i}
iy iy €EN™ \N’Z” 12~~1m€N§’
Sity iy =0

i im

then A is an H-tensor.

Theorem 10. [17] Let A = (a;,i,i,) € Clmnl 1f for alli e Ni,jeN,

Rj(A) - z _max  {tiajj,.;, ||| laii-il = Z iy, |
. €23} o -
]2~~],,,€N’2" iy iy €EN™ \N;”

(37'12...]‘”, =0 61i2"'im =0

>, el ), max, (i,
]

A L 12,3 v0eslm }
]2__.]”‘6Nm—1\N12n—1 12_._1m€N11n—1
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then A is an H-tensor.

Theorem 11. [19] Let A = (aj;,..;,) € CI™". If there exists a nonempty subset S of n such that
(1) |aii~--i| > I’i(ﬂ), Vie S,
(i) [;t.il(1ajj..il = 75 () > ri( A5 (A), Vi€ S, je S, where SUS =1,

then A is an H-tensor.

Example 6. We still consider the tensor A in Example 1. By calculation, we obtain

la11] = 16, r1(A) = 25, laz| =9, 12(A) = 25, |azzs| = 100, r3(A) = 10,
16 9 1 16

757 52 = 55 t3=—andr=—.

N = {1/2/3}/ Nl = {1/2}/ NZ = {3}/ 51 = - 10 25

Thus, we get

256
la111ls1 = E <l6=r Z |a1jk| +0and a1 =16 <25 = Z Ialjkl +0,
jkeN*\N3 jkeN*\N3
61%6=0 61%6=0

hence we can not judge whether the tensor A is an H-tensor or not by Theorems 8, 9 and 10. Since N, = {3},
we can only take S = {3} and S = {1,2} from Theorem 11, thus we obtain |a11| — rf* (A) = -9, it is obvious
that the A does not satisfy the conditions of Theorem 11, hence we can not use Theorem 11 to determine
whether it is an H-tensor. However, in fact, A is an H-tensor from Example 1.

3. An application

In this section, based on new criteria for judging #-tensors in section 2, some new criteria for identifying
the positive definiteness of an even-order real symmetric tensor are presented.

From Theorems 3, 4, 5, 6 and 7, we get the following result.
Theorem 12. Let A = (ajyj,..,) € R"™"(m,n > 2). If m is even, .., > 0 for all p € N, A is symmetric and
satisfies one of the following conditions, then A is positive definite:

(i) all the conditions of Theorem 3;

(ii) all the conditions of Theorem 4;

(iii) all the conditions of Theorem 5;

(iv) all the conditions of Theorem 6;

(v) all the conditions of Theorem 7.

From Theorem 8 and Corollaries 1, 2, 3, 4 and 5, it is easy to obtain the following corollary.

Corollary 6. Let A = (;,;,..;,) € R"™". If m is even, ay,., > 0 for all p € N, A is symmetric and satisfies one
of the following conditions, then A is positive definite:
(i) all the conditions of Corollary 1;
ii) all the conditions of Corollary 2;
iii) all the conditions of Corollary 3;
iv) all the conditions of Corollary 4,
v) all the conditions of Corollary 5.
The following example is given to show this result.

(
(
(
(

Example 7. Consider the following 4th-degree homogeneous polynomial

f(x) = 598000x] + 64x; + 27x5 + 320x7x + 452x3x3 + 4x1x5 + 36x1x; + 18x325 + 18x313,
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where x = (x1,x2,x3)T. Then we can obtain a symmetric tensor A = (a;jy) € R*3!, where

598000 80 113 80 3 0 113 0 0
A1) = 80 3 0 |,A(1,2:,)=| 3 9 01, AL3,;,;)=f 0 0 0|,
113 0 O 0 0 O 0 0 1
80 3 0 3 9 0 0 0O
AR,1,;,)=1 3 9 0 |, A®22:,)=]19 64 0 |, A23,,)=]10 0 3|,
0 0 O 0 0 3 0 3 0
113 0 0 0 0O 0 0 1
AB3,1,:,) = 0 0 01],AG32:;,)=10 0 31|, A@3B3,:,)=10 3 0 ].
0 0 1 0 3 0 1 0 27
Obviously,

|611111| = 598000, 7’1(.7[) = 598, Ia2222| = 64, 1’2(.?{) = 125, |ﬂ3333| =27 and 1’3(.?1) = 125,
so N1 = {2,3}, N, = {1}. By simple calculation, we obtain
1 64 27 64

= —— = —, = — d = —.
YT T000" 2T 125" BT 15 MM T 125
Thus, we get
4096 2638 1,01, .1
la222ls2 = 5 > 125 - hy = Z lazjual(sj)3 (k)3 (1) + Z m %}{t]‘}mzjkzl +r Z lazjuil,
jKIEN jriena = JKENS\(NPUN2)
02j1=0
and
729 1021 101, 1
lasssslss = 5~ 200 = hs = Z |azjial(s7)? (sk)3 (s1)® + Z Ie?%c)i}{tj}|ﬂ3jkl| +r Z |azjul,
jkleN? jkzeN;’ W JHIENP\(N3UN3)
0311=0

which means that A satisfies the conditions of Theorem 3, and m = 4, hence, f(x) is positive definite by
Theorem 8.

4. Conclusions

In this paper, some new criteria are proposed for judging H-tensors, which is easy to verify since they
only depend on elements of the given tensors. As an application, some sufficient conditions of the positive
definiteness for even-order real symmetric tensors are obtained. In addition, some numerical examples are
presented to illustrate those new results.
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