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Abstract. In this paper, some new criteria which only depend on elements of the given tensors are
proposed to judge H-tensors. Moreover, based on these new criteria, some sufficient conditions of the
positive definiteness for even-order real symmetric tensors are obtained. In addition, some numerical
examples are presented to illustrate those new results.

1. Introduction

Let n ≥ 2 and m ≥ 2 be integers, N = {1, 2, . . . ,n}, and C(R) be the set of all complex(real) numbers.
A tensor A = (ai1i2···im ) is called a complex (real) order m dimension n tensor, if ai1i2···im ∈ C(R), where
i j = 1, 2, . . . ,n for j = 1, 2, . . . ,m. Let C[m,n] (R[m,n]) be the set of all complex (real) order m dimension n
tensors. A tensor I = (δi1i2···im ) ∈ C[m,n] is called the unit tensor [1], if its elements satisfy

δi1i2···im =

1, i1 = i2 = · · · = im,
0, otherwise.

For a tensor A = (ai1i2···im ) ∈ C[m,n], if there exists a complex number λ and a complex vector x =
(x1, x2, . . . , xn)T , (0, 0, . . . , 0)T satisfy the following homogeneous polynomial equations:

Axm−1 = λx[m−1],

then λ is called an eigenvalue of A and x is its corresponding eigenvector [2–4], where Axm−1 and λx[m−1]

are vectors, and whose ith components are

(Axm−1)i =
∑

i2,...,im∈N

|aii2···im |xi2 · · · xim ,

and

x[m−1]
i = xm−1

i ,
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respectively, for all i ∈ N. In particular, if λ and x are real, then λ is called an H-eigenvalue ofA and x is its
corresponding H-eigenvector [2].

For an mth degree homogeneous polynomial of n variables f (x) can be usually denoted as

f (x) =
∑

i1,i2,...,im∈N

ai1i2···im xi1 xi2 · · · xim ,

where x = (x1, x2, . . . , xn)T
∈ Rn. The homogeneous polynomial f (x) can be represented as the tensor product

of a symmetric tensorA = (ai1i2···im ) ∈ C[m,n] and xm denoted by

f (x) ≡ Axm =
∑

i1,i2,...,im∈N

ai1i2···im xi1 xi2 · · · xim ,

where the tensor A is called symmetric if its elements are invariant under all permutation of indices
{i1, i2, . . . , xm} and x = (x1, x2, . . . , xn)T

∈ Rn [2]. If m is even, and

f (x) > 0, f or all x ∈ Rn, x , 0,

then we call that f (x) is positive definite.
The positive definiteness of homogeneous polynomial play a key role in automatic control [11, 12],

magnetic resonance imaging [13] and so on. However, when n > 3, m > 4 and m is even, it is difficult to
judge the positive definiteness of the homogeneous polynomial f (x). In order to solve this problem, L.Q.
Qi proposed in [2] that f (x) is positive definite if and only if the real symmetric tensorA is positive definite,
and L.Q. Qi gave a method to verify the positive definiteness ofA by eigenvalue, that is,

Theorem 1. [2] LetA = (ai1i2···im ) ∈ R[m,n] be a symmetric tensor and m be even, thenA is positive definite if
and only if all of its H-eigenvalues are positive.

According to Theorem 1, one can verify the positive definiteness of an even-order symmetric tensorA
by calculating the H-eigenvalues of A. However, it is hard to compute all these H-eigenvalues of A if m
and n are large. In order to solve this problem, a practical sufficient condition was provided for judging the
positive definiteness of an even-order symmetric tensor as follow.

Theorem 2. [7] LetA = (ai1i2···im ) ∈ R[m,n] with akk···k > 0 for all k ∈ N and m be even. IfA is anH-tensor, then
A is positive definite.

Based on the fact that the identification of H-tensor is useful in checking the positive definiteness of
homogeneous polynomials, some criteria for judgingH-tensor have been widely proposed, see [14–25]. In
this paper, we still focus on judging ofH-tensors, and some new criteria which only depend on elements of
the given tensors are proposed. As an application, for an even-order real symmetric tensor, some sufficient
conditions of the positive definiteness are obtained. Moreover, some numerical examples are presented to
illustrate those new results.

2. Some criteria for judging nonsingularH -tensors

In this section, some new criteria for judging H-tensors are proposed. Before that, some notations,
definitions, lemmas and theorems are listed firstly. The calligraphy letters A, B, H , · · · represent tensors;
the capital letters A, B, · · · denote matrices; the lowercase letters x, y, · · · refer to vectors.

For a tensorA = (ai1i2···im ) ∈ C[m,n], we denote
ri(A) =

∑
i2···im∈N
δii2 ···im=0

|aii2···im | =
∑

i2···im∈N
|aii2···im | − |aii···i|,

N1 = {i ∈ N : 0 < |aii···i| ≤ ri(A)}, N2 = {i ∈ N : |aii···i| > ri(A)},
si =

|aii···i |

ri(A) , ti =
ri(A)
|aii···i |

, r = max{max
i∈N1

si,max
i∈N2

ti},
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rS
i (A) =

∑
i2···im∈S
δii2 ···im=0

|aii2···im |, rS∗
i (A) = ri(A) − rS

i (A),

Nm−1
1 = {i2i3 · · · im : i j ∈ N1, j = 2, 3, . . . ,m},

Nm−1
\Nm−1

1 = {i2i3 · · · im : i2i3 · · · im ∈ Nm−1 and i2i3 · · · im < Nm−1
1 }

R j(A) =
∑

j2··· jm∈Nm−1
\Nm−1

2

|a j j2··· jm | + µ
∑

j2··· jm∈Nm−1
2

δ j j2 ··· jm=0

|a j j2··· jm |, j ∈ N2,

µ j =

∑
j2··· jm∈Nm−1

\Nm−1
2

|a j j2 ··· jm |

|a j j··· j |−
∑

j2··· jm∈Nm−1
2

δ j j2 ··· jm=0

|a j j2 ··· jm |
and µ = max{µj}, j ∈ N2.

Definition 1. [8] LetA = (ai1i2···im ) ∈ C[m,n]. If there is a positive vector x = (x1, x2, . . . , xn)T
∈ Rn such that

|aii···i|xm−1
i >

∑
i2,...,im∈N
δii2 ···im=0

|aii2···im |xi2 · · · xim ,

where |a| for the modulus of a ∈ C, thenA is called anH-tensor.

Definition 2. [2] LetA = (ai1i2···im ) ∈ C[m,n]. If

|aii···i| > ri(A), i ∈ N,

thenA is called an strictly diagonally dominant tensor.

Definition 3.[15] LetA = (ai1i2···im ) ∈ C[m,n] and X = dia1(x1, x2, . . . , xn). If

B = (bi1i2···im ) = AXm−1,

where

bi1i2···im = ai1i2···im xi2 . . . xim , i j ∈ N, j = 2, 3, . . . ,m,

then B is called the product of the tensorA and the matrix X.

Definition 4.[6] Let A = (ai1i2···im ) ∈ C[m,n]. If there exists a ∅ , S ⊂ N such that ai1i2···im = 0, ∀i1 ∈ S and
i2, . . . , im < S, thenA is called reducible. Otherwise,A is called irreducible.

Definition 5.[15] LetA = (ai1i2···im ) ∈ C[m,n], for i, j ∈ N (i , j), if there exist indices k1, k2, . . . , kl with∑
i2,...,im∈N
δksi2 ···im=0

ks+1∈{i2,...,im}

|aksi2···im | , 0, s = 0, 1, . . . , l,

where k0 = i, kl+1 = j, we call that there is a nonzero elements chain from i to j.

Lemma 1. [8] IfA is an strictly diagonally dominant tensor, thenA is anH-tensor.

Lemma 2.[7] LetA = (ai1i2···im ) ∈ C[m,n]. A is anH-tensor, if
(i)A is irreducible,
(ii) |aii···i| ≥ ri(A), for each i ∈ N,
(iii) for inequality of (ii), strictly inequality holds for at least one i.



X. Chen, Y. Wang / Filomat 38:29 (2024), 10193–10206 10196

Lemma 3. [15] LetA = (ai1i2···im ) ∈ C[m,n]. A is anH-tensor, if
(i) |aii···i| ≥ ri(A), i ∈ N,
(ii) N2 = {i ∈ N : |aii···i| > ri(A)} , ∅,
(iii) for any i ∈ N2, there exists a nonzero elements chain from i to j such that j ∈ N1.

Lemma 4.[15, 17] LetA = (ai1i2···im ) ∈ C[m,n]. If there exists a positive diagonal matrix X such that AXm−1 is
anH-tensor, thenA is anH-tensor.

In the following, some new criteria are proposed to judgeH-tensors.

Theorem 3. LetA = (ai1i2···im ) ∈ C[m,n]. If

|aii···i|si > hi, i ∈ N1,

where

hi =
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im |(si2 )
1

m−1 · · · (sim )
1

m−1 +
∑

i2···im∈Nm−1
2

max
j∈{i2,i3,...,im}

{t j}|aii2···im | + r
∑

i2···im∈Nm−1
\(Nm−1

1 ∪Nm−1
2 )

|aii2···im |,
(1)

thenA is anH-tensor.
Proof Let

Mi =
|aii···i|si − hi∑

i2···im∈Nm−1
\Nm−1

1

|aii2···im |
, i ∈ N1.

If
∑

i2···im∈Nm−1
\Nm−1

1

|aii2···im | = 0, we define Mi = + ∝. Obviously, Mi > 0, i ∈ N1. Hence, there exists ε > 0 such

that

0 < ε < min
{

min
i∈N1

Mi, 1 −max
i∈N2

ti

}
.

Construct diagonal matrix X = dia1{x1, x2, . . . , xn} and denote B = (bi1i2···im ) = AXm−1, where

x j =

(s j)
1

m−1 , j ∈ N1,

(ε + t j)
1

m−1 , j ∈ N2.

Obviously, X is a positive diagonal matrix.
Next, we will prove that B is an strictly diagonally dominant tensor, and divided it into two cases as

follows.
Case 1: For any i ∈ N1, we obtain

ri(B) =
∑

i2···im∈Nm−1
1

δii2 ···im=0

|bii2···im | +
∑

i2···im∈Nm−1
2

|bii2···im | +
∑

i2···im∈Nm−1
\(Nm−1

1 ∪Nm−1
2 )

|bii2···im |

=
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im |(si2 )
1

m−1 · · · (sim )
1

m−1 +
∑

i2···im∈Nm−1
2

|aii2···im |(ε + ti2 )
1

m−1 · · · (ε + tim )
1

m−1

+
∑

i2···im∈Nm−1
\(Nm−1

1 ∪Nm−1
2 )

|aii2···im |xi2 · · · xim

≤

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im |(si2 )
1

m−1 · · · (sim )
1

m−1 +
∑

i2···im∈Nm−1
2

|aii2···im |(ε + max
j∈{i2,i3,...,im}

{t j})

+ (r + ε)
∑

i2···im∈Nm−1
\(Nm−1

1 ∪Nm−1
2 )

|aii2···im |.

(2)
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If
∑

i2···im∈Nm−1
\Nm−1

1

|aii2···im | = 0, then from inequality (2) and condition that |aii···i|si > hi for each i ∈ N1, it is easy

to obtain that

ri(B) ≤

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im |(si2 )
1

m−1 · · · (sim )
1

m−1

< |aii···i|si

= |bii···i|.

If
∑

i2···im∈Nm−1
\Nm−1

1

|aii2···im | , 0, then from inequality (2) and condition that |aii···i|si > hi for each i ∈ N1, we obtain

ri(B) ≤ hi + ε
∑

i2···im∈Nm−1
\Nm−1

1

|aii2···im |

< hi +Mi

∑
i2···im∈Nm−1

\Nm−1
1

|aii2···im |

= |aii···i|si

= |bii···i|

Case 2: For any i ∈ N2, we obtain |aii···i| > ri(A) ≥ 0, and from 0 < xi j ≤ 1 for i j ∈ N and j = 2, 3, . . . ,m, thus
we get

|bii···i| − ri(B) =|aii···i|(ε + ti) −
∑

i2···im∈Nm−1
1

|aii2···im |xi2 · · · xim −
∑

i2···im∈Nm−1
2

δii2 ···im=0

|aii2···im |xi2 · · · xim

−

∑
i2···im∈Nm−1

\(Nm−1
1 ∪Nm−1

2 )

|aii2···im |xi2 · · · xim

≥ε|aii···i| + ri(A) −
∑

i2···im∈Nm−1
1

|aii2···im | −
∑

i2···im∈Nm−1
2

δii2 ···im=0

|aii2···im | −
∑

i2···im∈Nm−1
\(Nm−1

1 ∪Nm−1
2 )

|aii2···im |

=ε|aii···i|

>0.

From Cases 1 and 2, we obtain |bii···i| > ri(B) for all i ∈ N, that is, B is an strictly diagonally dominant
tensor, thus from Lemmas 1 and 4,A is anH-tensor.

From Theorem 3, we obtain the following corollary.

Corollary 1. LetA = (ai1i2···im ) ∈ C[m,n]. If

|aii···i|si > pi, i ∈ N1,

where

pi =
∑

i2···im∈Nm−1
1

δii2 ···im=0

max
j∈{i2,i3,...,im}

{s j}|aii2···im | +
∑

i2···im∈Nm−1
2

max
j∈{i2,i3,...,im}

{t j}|aii2···im | + r
∑

i2···im∈Nm−1
\(Nm−1

1 ∪Nm−1
2 )

|aii2···im |,
(3)

thenA is anH-tensor.
Proof From equalities (1) and (3), it is obvious to get pi ≥ hi for any i ∈ N1, then from the condition that

|aii···i|si > pi, i ∈ N1,
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we obtain

|aii···i|si > pi ≥ hi, i ∈ N1,

thus from Theorem 3,A is anH-tensor.
The following example is presented to illustrate Theorem 3.

Example 1. Let us consider tensorA = (ai jk) = [A(1, :, :),A(2, :, :),A(3, :, :)] ∈ C[3,3], where

A(1, :, :) =

 16 0 0
0 25 0
0 0 0

 , A(2, :, :) =

 1 0 0
0 9 0
0 0 24

 and A(3, :, :) =

 1 2 1
1 2 1
1 1 100

 .
Obviously,

|a111| = 16, r1(A) = 25, |a222| = 9, r2(A) = 25, |a333| = 100 and r3(A) = 10,

hence N1 = {1, 2}, N2 = {3}. By calculation, we obtain

s1 =
16
25
, s2 =

9
25
, t3 =

1
10

and r =
16
25
.

Thus, we get

|a111|s1 =
256
25
> 9 = h1 =

∑
jk∈N2

1
δ1 jk=0

|a1 jk|(s j)
1
2 (sk)

1
2 + 0

and

|a222|s2 =
81
25
>

76
25
= h2 =

∑
jk∈N2

1
δ2 jk=0

|a2 jk|(s j)
1
2 (sk)

1
2 +
∑
jk∈N2

2

max
l∈{ j,k}
{tl}|a2 jk| + 0,

hence, from Theorem 3,A is an H-tensor.

Theorem 4. LetA = (ai1i2···im ) ∈ C[m,n]. If
(i)A is irreducible,
(ii) |aii···i|si ≥ hi, for each i ∈ N1, where hi is defined as equality (1),
(iii) for inequality of (ii), strictly inequality holds for at least one i ∈ N1,

thenA is anH-tensor.
Proof Firstly, let the diagonal matrix X = dia1{x1, x2, . . . , xn} and B = (bi1i2···im ) = AXm−1, where

x j =

(s j)
1

m−1 , j ∈ N1,

(t j)
1

m−1 , j ∈ N2.

SinceA is irreducible, we get 0 < t j < 1 for all j ∈ N2, and from the definition of s j, we obtain X is a positive
diagonal matrix.

From the condition that A has at least one i ∈ N1 such that |aii···i|si > hi, therefore, without less of
generality, suppose |a j j··· j|s j > h j, j ∈ N1.

Secondly, similar to the proof of Theorem 3, we conclude that |bii···i| ≥ ri(B) for all i ∈ N\{ j} and
|b j j··· j| > r j(B).

Finally, sinceA is irreducible and X is a positive diagonal matrix, B is also irreducible, thus B satisfies
the conditions of Lemma 2. Therefore, by Lemmas 2 and 4,A is anH-tensor.
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From Theorem 4, it is easy to get the following corollary.

Corollary 2. LetA = (ai1i2···im ) ∈ C[m,n]. If
(i)A is irreducible,
(ii) |aii···i|si ≥ pi, for each i ∈ N1, where pi is defined as equality (3),
(iii) for inequality of (ii), strictly inequality holds for at least one i ∈ N1,

thenA is anH-tensor.
Proof Using the same technique as in the proof of Corollary 1, obviously, we obtain thatA is anH-tensor.

The example 2 is presented to illustrate Theorem 4.

Example 2. Let us consider irreducible tensorA = (ai jk) = [A(1, :, :),A(2, :, :),A(3, :, :)] ∈ C[3,3], where

A(1, :, :) =

 16 0 0
0 16 0
0 0 0

 , A(2, :, :) =

 0 2 0
2 9 0
0 0 12

 and A(3, :, :) =

 20 5 1
2 2 1
1 1 192

 .
Obviously,

|a111| = 16, r1(A) = 16, |a222| = 9, r2(A) = 16, |a333| = 192 and r3(A) = 33,

hence N1 = {1, 2}, N2 = {3}. By calculation, we obtain

s1 = 1, s2 =
9

16
, t3 =

11
64

and r = 1.

Thus, we get

|a111|s1 = 16 > 9 = h1 =
∑
jk∈N2

1
δ1 jk=0

|a1 jk|(s j)
1
2 (sk)

1
2 + 0

and

|a222|s2 =
81
16
= h2 =

∑
jk∈N2

1
δ2 jk=0

|a2 jk|(s j)
1
2 (sk)

1
2 +
∑
jk∈N2

2

max
l∈{ j,k}
{tl}|a2 jk| + 0,

hence,A satisfies the conditions of Theorem 4, that is,A is anH-tensor by Theorem 4.

Theorem 5. LetA = (ai1i2···im ) ∈ C[m,n]. If
(i)A is irreducible,
(ii) |aii···i|si ≥ hi, i ∈ N1, where hi is defined as equality (1),
(iii) at least one ai1i2···im , 0, i j ∈ N2, j = 1, 2, . . . ,m and i1 , i2 , · · · , im,

thenA is anH-tensor.
Proof Firstly, let the diagonal matrix X = dia1{x1, x2, . . . , xn} and B = (bi1i2···im ) = AXm−1, where

x j =

(s j)
1

m−1 , j ∈ N1,

(t j)
1

m−1 , j ∈ N2.

Similarly as in the proof of Theorem 4, we obtain X is a positive diagonal matrix.
From the condition thatA has at least one ai1i2···im , 0, where i j ∈ N2, j = 1, 2, . . . ,m and i1 , i2 , · · · , im,

therefore, without less of generality, suppose aipi2···im , 0, where i j ∈ N2, j = p, 2, 3, . . . ,m and ip , i2 , · · · , im.
Secondly, similarly as in the proof of Theorem 3, we conclude that |bii···i| ≥ ri(B) for all i ∈ N\{ip} and

|bipip···ip | > rip (B).
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Finally, sinceA is irreducible and X is a positive diagonal matrix, B is also irreducible, thus B satisfies
the conditions of Lemma 2. Therefore, by Lemmas 2 and 4,A is anH-tensor.

From Theorem 5, we get the following corollary.

Corollary 3. LetA = (ai1i2···im ) ∈ C[m,n]. If
(i)A is irreducible,
(ii) |aii···i|si ≥ pi, i ∈ N1, where pi is defined as equality (3),
(iii) at least one ai1i2···im , 0, i j ∈ N2, j = 1, 2, . . . ,m and i1 , i2 , · · · , im,

thenA is anH-tensor.
Proof Using the same technique as in the proof of Corollary 1, it is easy to get thatA is anH-tensor.

The example 3 is presented to illustrate Theorem 5.

Example 3. Let us consider irreducible tensorA = (ai jk) = [A(1, :, :),A(2, :, :),A(3, :, :)] ∈ C[3,3], where

A(1, :, :) =

 16 0 5
4 16 0
0 0 0

 , A(2, :, :) =

 20 2 2
0 100 0
0 0 4

 and A(3, :, :) =

 2 5 1
2 2 1
1 1 100

 .
Obviously,

|a111| = 16, r1(A) = 25, |a222| = 100, r2(A) = 28, |a333| = 100 and r3(A) = 15,

hence N1 = {1}, N2 = {2, 3}. By calculation, we obtain

s1 =
16
25
, t2 =

7
25
, t3 =

3
20

and r =
16
25
.

SinceA is irreducible, N1 = {1}, a233 = 4 and

|a111|s1 =
256
25
= h1 =

∑
jk∈N2

2

max
l∈{ j,k}
{tl}|a1 jk| + r

∑
jk∈N2

\(N2
1∪N2

2)

|a1 jk| + 0,

A satisfies the conditions of Theorem 5, thus from Theorem 5,A is anH-tensor.
Theorems 4 and 5 are given to judge whether an irreducible tensor isH-tensor. Obviously, Example 2

does not satisfy the conditions of Theorem 5 since N2 = {3}, Example 3 does not satisfy the conditions of
Theorem 4 since N1 = {1} and |a111|s1 =

256
25 = h1. Therefore, Examples 2 and 3 show that Theorem 4 and

Theorem 5 are mutually included.

Theorem 6. LetA = (ai1i2···im ) ∈ C[m,n]. If
(i) |aii···i|si ≥ hi for each i ∈ N1, where hi is defined as equality (1),
(ii) G1(A) ∪ G2(A) , ∅, where G1(A) = {i : |aii···i|si > hi, i ∈ N1} and G2(A) = {i : |aii···i|ti > hi, i ∈ N2},
(iii) for any i ∈ (N1\G1(A) ∪ G2\G2(A)), there exists a nonzero elements chain from i to j such that

j ∈ (G1(A) ∪ G2(A)),
thenA is anH-tensor.
Proof Firstly, construct diagonal matrix X = dia1{x1, x2, . . . , xn} and denote B = (bi1i2···im ) = AXm−1, where

x j =

(s j)
1

m−1 , j ∈ N1,

(t j)
1

m−1 , j ∈ N2.

From the condition that for any i ∈ (N1\G1(A) ∪ G2\G2(A)), A exists a nonzero elements chain from i to j
such that j ∈ (G1(A)∪G2(A)) and set G2(A) and Definition 5, it is easy to get ri(A) , 0 for any i ∈ N2. Thus,
from the definitions of s j and t j, we obtain X is a positive diagonal matrix.

Secondly, similar to the proof of Theorem 3, we conclude that |bii···i| ≥ ri(B) for all i ∈ N. From the
condition G1(A) ∪ G2(A) , ∅, we obtain that there exists at least an ip ∈ N such that |bipip···ip | > rip (B).
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On the other hand, if |bii···i| = ri(B), then i ∈ (N1\G1(A) ∪ N2\G2(A)), and from the condition that for any
i ∈ (N1\G1(A)∪N2\G2(A)),A exists a nonzero elements chain from i to j such that j ∈ (G1(A)∪G2(A)), we
obtain that B exists a nonzero elements chain from i to j with |b j j··· j| > r j(B).

Finally, based on above analysis, we draw a conclusion thatB satisfies the conditions of Lemma 3, hence
by Lemmas 3 and 4,A is anH-tensor.

From Theorem 6, we obtain the following corollary.

Corollary 4. LetA = (ai1i2···im ) ∈ C[m,n]. If
(i) |aii···i|si ≥ pi, for each i ∈ N1, where pi is defined as equality (3),
(ii) K1(A) ∪ K2(A) , ∅, where K1(A) =

{
i : |aii···i|si > pi, i ∈ N1

}
and K2(A) =

{
i : |aii···i|ti > pi, i ∈ N2

}
,

(iii) for any i ∈ (N1\K1(A) ∪ N2\K2(A)), there exists a nonzero elements chain from i to j such that
j ∈ (K1(A) ∪ K2(A)),
thenA is anH-tensor.
Proof Using the same technique as in the proof of Corollary 1, obviously, we get thatA is anH-tensor.

The following example is presented to illustrate Theorem 6.

Example 4. Let us consider tensorA = (ai jk) = [A(1, :, :),A(2, :, :),A(3, :, :)] ∈ C[3,3], where

A(1, :, :) =

 16 0 0
0 20 0
0 0 0

 , A(2, :, :) =

 0 0 5
0 16 0
0 0 27

 and A(3, :, :) =

 0 1 1
0 0 1
1 0 27

 .
Obviously,

|a111| = 16, r1(A) = 20, |a222| = 16, r2(A) = 32, |a333| = 27 and r3(A) = 4,

hence N1 = {1, 2}, N2 = {3}. By calculation, we obtain

s1 =
4
5
, s2 =

1
2
, t3 =

4
27

and r =
4
5
.

Since J1(A) = {1}, J2(A) = ∅, a213 = 5, a312 = 1,

|a111|s1 =
64
5
> 10 = h1 =

∑
jk∈N2

1
δ1 jk=0

|a1 jk|(s j)
1
2 (sk)

1
2 + 0,

and

|a222|s2 = 8 = h2 =
∑
jk∈N2

2

max
l∈{ j,k}
{tl}|a2 jk| + r

∑
jk∈N2

\(N2
1∪N2

2)

|a2 jk| + 0,

thus from Theorem 6,A is anH-tensor.

Theorem 7. LetA = (ai1i2···im ) ∈ C[m,n]. If

|aii···i|si >
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im |(si2 )
1

m−1 · · · (sim )
1

m−1 + r
∑

i2···im∈Nm−1
\(Nm−1

1 ∪Nm−1
2 )

|aii2···im |, i ∈ N1, (4)

and ∑
i2···im∈Nm−1

\Nm−1
2

|aii2···im | = 0, i ∈ N2,
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thenA is anH-tensor.
Proof From inequality (4), we obtain that for each i ∈ N1, there exists a positive number K > 1 such that for
any i ∈ N1,

|aii···i|si >
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im |(si2 )
1

m−1 · · · (sim )
1

m−1 + r
∑

i2···im∈Nm−1
\(Nm−1

1 ∪Nm−1
2 )

|aii2···im |

+
1
K

∑
i2···im∈Nm−1

2

max
j∈{i2,i3,...,im}

{t j}|aii2···im |.

For any i ∈ N1, denote

Ti =
|aii···i|si − qi∑

i2···im∈Nm−1
\Nm−1

1

|aii2···im |
, i ∈ N1,

where

qi =
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im |(si2 )
1

m−1 · · · (sim )
1

m−1 +
1
K

∑
i2···im∈Nm−1

2

max
j∈{i2,i3,...,im}

{t j}|aii2···im | + r
∑

i2···im∈Nm−1
\(Nm−1

1 ∪Nm−1
2 )

|aii2···im |.

If
∑

i2···im∈Nm−1
\Nm−1

1

|aii2···im | = 0,we define Ti = + ∝. Obviously, Ti > 0, i ∈ N1. Hence, there exists ε > 0 such that

0 < ε < min
{

min
i∈N1

Ti, 1 −max
i∈N2

ti

K

}
.

Construct diagonal matrix X = dia1{x1, x2, . . . , xn}, and denote B = (bi1i2···im ) = AXm−1, where

x j =

(s j)
1

m−1 , j ∈ N1,

(ε + t j

K )
1

m−1 , j ∈ N2.

Obviously, X is a positive diagonal matrix.
Next, similarly as in the proof of Theorem 3, we obtain that B is an strictly diagonally tensor. Thus,

from Lemmas 1 and 4,A is anH-tensor.
From Theorem 7, a corollary is obtained as follows.

Corollary 5. LetA = (ai1i2···im ) ∈ C[m,n]. If

|aii···i|si >
∑

i2···im∈Nm−1
1

δii2 ···im=0

max
j∈{i2,i3,...,im}

{s j}|aii2···im | + r
∑

i2···im∈Nm−1
\(Nm−1

1 ∪Nm−1
2 )

|aii2···im |, i ∈ N1,

and ∑
i2···im∈Nm−1

\Nm−1
2

|aii2···im | = 0, i ∈ N2,

thenA is anH-tensor.
Proof Using the same technique as in the proof of Corollary 1, obviously, it is easy to obtain that A is an
H-tensor.

The following example is presented to illustrate Theorem 7.
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Example 5. Let us consider tensorA = (ai jk) = [A(1, :, :),A(2, :, :),A(3, :, :)] ∈ C[3,3], where

A(1, :, :) =

 16 0 0
0 20 0
0 0 5

 , A(2, :, :) =

 1 0 0
0 9 1
0 1 22

 and A(3, :, :) =

 0 0 0
0 10 2
0 2 100

 .
Obviously,

|a111| = 16, r1(A) = 25, |a222| = 9, r2(A) = 25, |a333| = 100 and r3(A) = 14,

hence N1 = {1, 2}, N2 = {3}. By calculation, we obtain

s1 =
16
25
, s2 =

9
25
, t3 =

7
50

and r =
16
25
.

Thus, we obtain

|a111|s1 =
256
25
>

36
5
=
∑
jk∈N2

1
δ1 jk=0

|a1 jk|(s j)
1
2 (sk)

1
2 + r

∑
jk∈N2

\(N2
1∪N2

2)

|a1 jk|,

and

|a222|s2 =
81
25
>

48
25
=
∑
jk∈N2

1
δ2 jk=0

|a2 jk|(s j)
1
2 (sk)

1
2 + r

∑
jk∈N2

\(N2
1∪N2

2)

|a2 jk|,

henceA satisfies the conditions of Theorem 7, thus from Theorem 7,A is anH-tensor.
At the end of this section, we give a numerical example, which shows that some criteria of exist-

ingH-tensor can not be used to determine whether it is anH-tensor, but we can use new criterion which
is proposed by us to judge that it is anH-tensor. Before that, some criteria for judgingH-tensor are recalled.

Theorem 8. [15] LetA = (ai1i2···im ) ∈ C[m,n]. If

|aii···i|si > r
∑

i2···im∈Nm−1
\Nm−1

2
δii2 ···im=0

|aii2···im | +
∑

i2···im∈Nm−1
2

max
j∈{i2,i3,...,im}

{t j}|aii2···im |, ∀i ∈ N1

thenA is anH-tensor.

Theorem 9. [16] LetA = (ai1i2···im ) ∈ C[m,n]. If

|aii···i| >
∑

i2···im∈Nm−1
\Nm−1

2
δii2 ···im=0

|aii2···im | +
∑

i2···im∈Nm−1
2

max
j∈{i2,i3,...,im}

{t j}|aii2···im |, ∀i ∈ N1

thenA is anH-tensor.

Theorem 10. [17] LetA = (ai1i2···im ) ∈ C[m,n]. If for all i ∈ N1, j ∈ N2R j(A) −
∑

j2··· jm∈Nm−1
2

δ j j2 ··· jm=0

max
j∈{ j2, j3,..., jm}

{t j}|a j j2··· jm |


|aii···i| −

∑
i2···im∈Nm−1

\Nm−1
2

δii2 ···im=0

|aii2···im |


>

∑
j2··· jm∈Nm−1

\Nm−1
2

|a j j2··· jm |
∑

i2···im∈Nm−1
1

max
j∈{i2,i3,...,im}

{t j}|aii2···im |,
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thenA is anH-tensor.

Theorem 11. [19] LetA = (ai1i2···im ) ∈ C[m,n]. If there exists a nonempty subset S of n such that
(i) |aii···i| > ri(A), ∀i ∈ S,
(ii) |aii···i|(|a j j··· j| − rS∗

j (A)) > ri(A)rS
j (A), ∀i ∈ S, j ∈ S, where S ∪ S = n,

thenA is anH-tensor.

Example 6. We still consider the tensorA in Example 1. By calculation, we obtain

|a111| = 16, r1(A) = 25, |a222| = 9, r2(A) = 25, |a333| = 100, r3(A) = 10,

N = {1, 2, 3}, N1 = {1, 2}, N2 = {3}, s1 =
16
25
, s2 =

9
25
, t3 =

1
10

and r =
16
25
.

Thus, we get

|a111|s1 =
256
25
< 16 = r

∑
jk∈N2

\N2
2

δ1 jk=0

|a1 jk| + 0 and |a111| = 16 < 25 =
∑

jk∈N2
\N2

2
δ1 jk=0

|a1 jk| + 0,

hence we can not judge whether the tensorA is anH-tensor or not by Theorems 8, 9 and 10. Since N2 = {3},
we can only take S = {3} and S = {1, 2} from Theorem 11, thus we obtain |a111| − rS∗

1 (A) = −9, it is obvious
that the A does not satisfy the conditions of Theorem 11, hence we can not use Theorem 11 to determine
whether it is anH-tensor. However, in fact,A is anH-tensor from Example 1.

3. An application

In this section, based on new criteria for judgingH-tensors in section 2, some new criteria for identifying
the positive definiteness of an even-order real symmetric tensor are presented.

From Theorems 3, 4, 5, 6 and 7, we get the following result.
Theorem 12. Let A = (ai1i2···im ) ∈ R[m,n](m,n ≥ 2). If m is even, app···p > 0 for all p ∈ N, A is symmetric and
satisfies one of the following conditions, thenA is positive definite:

(i) all the conditions of Theorem 3;
(ii) all the conditions of Theorem 4;
(iii) all the conditions of Theorem 5;
(iv) all the conditions of Theorem 6;
(v) all the conditions of Theorem 7.
From Theorem 8 and Corollaries 1, 2, 3, 4 and 5, it is easy to obtain the following corollary.

Corollary 6. LetA = (ai1i2···im ) ∈ R[m,n]. If m is even, app···p > 0 for all p ∈ N,A is symmetric and satisfies one
of the following conditions, thenA is positive definite:

(i) all the conditions of Corollary 1;
(ii) all the conditions of Corollary 2;
(iii) all the conditions of Corollary 3;
(iv) all the conditions of Corollary 4,
(v) all the conditions of Corollary 5.
The following example is given to show this result.

Example 7. Consider the following 4th-degree homogeneous polynomial

f (x) = 598000x4
1 + 64x4

2 + 27x4
3 + 320x3

1x2 + 452x3
1x3 + 4x1x3

3 + 36x1x3
2 + 18x2

1x2
2 + 18x2

2x2
3,
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where x = (x1, x2, x3)T. Then we can obtain a symmetric tensorA = (ai jkl) ∈ R[4,3], where

A(1, 1, :, :) =

 598000 80 113
80 3 0

113 0 0

 , A(1, 2, :, :) =

 80 3 0
3 9 0
0 0 0

 , A(1, 3, :, :) =

 113 0 0
0 0 0
0 0 1

 ,
A(2, 1, :, :) =

 80 3 0
3 9 0
0 0 0

 , A(2, 2, :, :) =

 3 9 0
9 64 0
0 0 3

 , A(2, 3, :, :) =

 0 0 0
0 0 3
0 3 0

 ,
A(3, 1, :, :) =

 113 0 0
0 0 0
0 0 1

 , A(3, 2, :, :) =

 0 0 0
0 0 3
0 3 0

 , A(3, 3, :, :) =

 0 0 1
0 3 0
1 0 27

 .
Obviously,

|a1111| = 598000, r1(A) = 598, |a2222| = 64, r2(A) = 125, |a3333| = 27 and r3(A) = 125,

so N1 = {2, 3}, N2 = {1}. By simple calculation, we obtain

t1 =
1

1000
, s2 =

64
125
, s3 =

27
125

and r =
64

125
.

Thus, we get

|a2222|s2 =
4096
125

>
2638
125

= h2 =
∑

jkl∈N3
1

δ2 jkl=0

|a2 jkl|(s j)
1
3 (sk)

1
3 (sl)

1
3 +
∑

jkl∈N3
2

max
j∈{ j,k,l}

{t j}|a2 jkl| + r
∑

jkl∈N3
\(N3

1∪N3
2)

|a2 jkl|,

and

|a3333|s3 =
729
125
>

1021
200

= h3 =
∑

jkl∈N3
1

δ3 jkl=0

|a3 jkl|(s j)
1
3 (sk)

1
3 (sl)

1
3 +
∑

jkl∈N3
2

max
j∈{ j,k,l}

{t j}|a3 jkl| + r
∑

jkl∈N3
\(N3

1∪N3
2)

|a3 jkl|,

which means that A satisfies the conditions of Theorem 3, and m = 4, hence, f (x) is positive definite by
Theorem 8.

4. Conclusions

In this paper, some new criteria are proposed for judgingH-tensors, which is easy to verify since they
only depend on elements of the given tensors. As an application, some sufficient conditions of the positive
definiteness for even-order real symmetric tensors are obtained. In addition, some numerical examples are
presented to illustrate those new results.
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