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Abstract. For a non-empty set X, an ideal I represents a family of subsets of X that is closed under
taking finite unions and subsets of its elements. Considering X = N, in the present study, we set forth
with the new notion of I−deferred statistical limit point, I−deferred statistical cluster point and study
various properties of the newly introduced notion. For a real valued sequence x = (xn), we prove that every
I−deferred statistical limit point is an I−deferred statistical cluster point. Moreover, the collection of all
I−deferred statistical cluster points of x is a closed subset ofR. We also introduce the notion of I−deferred
statistical limit superior and inferior for real valued sequences and prove several interesting properties. In
the end, we establish a necessary and sufficient condition under which a I−deferred statistically bounded
real valued sequence is I−deferred statistically convergent.

1. Introduction

The notion of statistical convergence was first introduced by Fast [11] and Steinhaus [28] independently
in the year 1951. Later on, it was further investigated and studied from the sequence space point of view
by Fridy [12, 13], Šalát [22], and many others. For more details on statistical convergence, one may refer
[14, 20] where one can find many more references.

In 2016, Küçükaslan and Yilmaztürk [17] introduced the notion of deferred statistical convergence as a
generalization of statistical convergence. They used the notion of deferred Cesàro mean [1] to define such
concept. Several investigations in this direction have been occurred due to Şengül et al. [27], and many
others [7–10].

On the other hand, in 2001, the idea of I−convergence was developed by Kostyrko et al. [16] mainly
as an extension of statistical convergence. They showed that many other known notions of convergence
were a particular type of I−convergence by considering particular ideals. Consequently, this direction
gradually gets more attention of the researchers and became one of the most active areas of research.
Several investigations and extensions of I−convergence can be found from the works of Demirci [6],
Kostyrko et al. [15], Lahiri and Das [18], Mohiuddine and Hazarika [19], Šalát et al. [23], Tripathy and
Hazarika [29–31], and many others.
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Combining the notion of statistical convergence andI−convergence, in 2011, Das et al. [2] introduced the
notion of I−statistical convergence. Later on, several investigations in this direction has been occurred due
to Debnath and Rakshit [5], Mursaleen et al. [21], and many others. For an extensive view of I−statistical
convergence, one may refer [3, 4, 24, 25].

Recently, Şengül et al. [26] extended the notion of I−statistical convergence to I− deferred statistical
convergence using deferred density. Motivated by their work, in this paper, we introduce the notion of
I−deferred statistical limit point, cluster point, limit superior, limit inferior and analyzed various properties
of these concepts.

2. Definitions and Preliminaries

Definition 2.1. [12] If K is a subset of the positive integersN, then Kn denotes the set {k ∈ K : k ≤ n}. The natural
density of K is given by

d(K) = lim
n→∞

|Kn|

n
,

provided that the limit exists.

Definition 2.2. [12] A sequence x = (xn) is said to be statistically convergent to l if for every ε > 0, the set

A (ε) = {n ∈N : |xn − l| ≥ ε}

has natural density zero. l is called the statistical limit of the sequence (xn) and symbolically, st − lim x = l.

Definition 2.3. [17] Let p = {p(n) : n ∈N} and q = {q(n) : n ∈N} denote the sequences of whole numbers satisfying

q(n) − p(n) ≥ 1 and lim
n→∞

q(n) = ∞.

A sequence x = (xn) is said to be deferred statistically convergent to l if for any ε > 0,

lim
n→∞

1
(q(n) − p(n))

∣∣∣{p(n) < k < q(n) : |xk − l| ≥ ε
}∣∣∣ = 0.

Symbolically, DSp,q lim x = l or lim
n→∞

xn = l(DSp,q).

Definition 2.4. [16] A family I ⊂ 2X of subsets of a nonempty set X is said to be an ideal in X if and only if (i) ∅ ∈ I
(ii) A,B ∈ I implies A ∪ B ∈ I (Additive) and (iii) A ∈ I,B ⊂ A implies B ∈ I (Hereditary).

If ∀x ∈ X, {x} ∈ I then I is said to be admissible. Also I is said to be non-trivial if X < I and I , {∅}.

Definition 2.5. [16] A family F ⊂ 2X of subsets of a nonempty set X is said to be a filter in X if and only if (i) ∅ < F
(ii) M,N ∈ F implies M ∩N ∈ F and (iii) M ∈ F ,N ⊃M implies N ∈ F .

If I is a proper non-trivial ideal in X, then

F (I) = {M ⊂ X : ∃ A ∈ I such that M = X \ A}

is a filter in X. It is called the filter associated with the ideal I.

Definition 2.6. [16] A sequence x = (xn) is said to be I−convergent to l if and only if for every ε > 0, the set

{k ∈N : |xn − l| ≥ ε}

belongs to I. The real number l is called the I−limit of the sequence x = (xn). Symbolically, I − lim x = l.
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Definition 2.7. [2] A sequence x = (xn) is said to beI−statistically convergent to l if and only if for every ε > 0, δ > 0,{
n ∈N :

1
n
|{k ≤ n : |xk − l| ≥ ε}| ≥ δ

}
∈ I.

If a sequence x = (xn) is I−statistically convergent to l, then it is denoted by I − st − lim x = l.

Definition 2.8. [5] An element x0 is said to be an I−statistical limit point of a sequence x = (xn) if there exists
M = {m1 < m2 < · · · < mk < · · · } ⊂N such that M < I and st − lim xmk = x0.

For a sequence x = (xn), the set of all I−statistical limit points is denoted by I − S(Λx).

Definition 2.9. [21] An element x0 is said to be an I−statistical cluster point of a sequence x = (xn) if for every
ε > 0 and δ > 0, {

n ∈N :
1
n
|{k ≤ n : |xk − x0| ≥ ε}| < δ

}
< I.

For a sequence x = (xn), the set of all I−statistical cluster points is denoted by I − S(Γx).

Definition 2.10. [21] A sequence x = (xn) is said to be I−statistically bounded (I−st bounded), if there exists a
number B such that {

n ∈N :
1
n
|{k ≤ n : |xk| > B}| > δ

}
∈ I.

Definition 2.11. [21] Let x = (xn) be a real valued sequence. Then I−statistical limit superior of x is defined as

I − st lim sup x =

sup Bx, if Bx , ∅

−∞, if Bx = ∅
;

where Bx stands for the set {
b ∈ R :

{
n ∈N :

1
n
|{k ≤ n : xk > b}| > δ

}
< I
}
.

Definition 2.12. [21] Let x = (xn) be a real valued sequence. Then I−statistical limit inferior of x is defined as

I − st lim inf x =

inf Ax, if Ax , ∅

+∞, if Ax = ∅
;

where Ax stands for the set {
a ∈ R :

{
n ∈N :

1
n
|{k ≤ n : xk < a}| > δ

}
< I
}
.

Definition 2.13. [26] A sequence x = (xn) is said to be I−deferred statistically convergent (or I−DSp,q convergent)
to l if for any ε > 0 and δ > 0,{

n ∈N :
1

p(n) − q(n)

∣∣∣{p(n) < k ≤ q(n) : |xk − l| ≥ ε
}∣∣∣ ≥ δ} ∈ I.

Symbolically, I −DSp,q lim x = l.

3. Main Results

The entire study is divided into two subsections. Throughout the subsections p = {p(n) : n ∈ N} and
q = {q(n) : n ∈ N} will be used to denote the sequences of whole numbers satisfying q(n) − p(n) ≥ 1 and
lim
n→∞

q(n) = ∞. Also I stands for non-trivial admissible ideal ofN.
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3.1. I−deferred statistical limit points, cluster points
Definition 3.1. A real number x0 is said to be an I−deferred statistical limit point of a sequence x = (xn) if there
exists a set M = {m1 < m2 < · · · < mk < · · · } ⊂N such that M < I and lim

k→∞
xmk = x0(DSp,q).

If we take p(n) = 0 and q(n) = n, then the above definition is turned to the definition of I− statistical limit
point [20].

Definition 3.2. A real number x0 is said to be an I−deferred statistical cluster point of a sequence x = (xn) if for
every ε > 0 and δ > 0, {

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xk − x0| ≥ ε
}∣∣∣ < δ} < I.

If we take p(n) = 0 and q(n) = n, then the above definition is turned to the definition of I− statistical cluster
point [21].

Throughout the paper we will use I − DSp,q(Λx) and I − DSp,q(Γx) to denote the set of all I−deferred
statistical limit points and I−deferred statistical cluster points of a sequence x = (xn).

Theorem 3.3. If x = (xn) is any sequence such that I −DSp,q lim x = x0, then I −DSp,q(Λx) = {x0}.

Proof. Since I −DSp,q lim x = x0, so for any ε, δ > 0, the set

A =
{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xk − x0| ≥ ε
}∣∣∣ ≥ δ} ∈ I. (1)

If possible suppose there exists y0 ∈ I − DSp,q(Λx) with x0 , y0. Then there exists M = {m1 < m2 < · · · <
mk < · · · } ⊂N such that M < I and for every ε > 0, δ > 0, the set

B =
{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xmk − y0| ≥ ε
}∣∣∣ ≥ δ}

is finite. Since I is admissible, so we haveN \ C ∈ F (I) where

C =
{

n ∈M :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xk − y0| ≥ ε
}∣∣∣ ≥ δ} ⊆ B.

Again from (1) we have,N \D ∈ F (I) where

D =
{

n ∈M :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xk − x0| ≥ ε
}∣∣∣ ≥ δ} ⊆ A.

Clearly, (N \ C)∩ (N \D) , ∅ since (N \ C)∩ (N \D) ∈ F (I). Choose s ∈ (N \ C)∩ (N \D) and a particular
ε > 0 satisfying ε < |x0 − y0|. Then the following inequations are true

1
(q(s) − p(s))

∣∣∣∣∣{p(s) < k ≤ q(s) : |xk − y0| ≥
ε
2

}∣∣∣∣∣ < δ
and

1
(q(s) − p(s))

∣∣∣∣∣{p(s) < k ≤ q(s) : |xk − x0| ≥
ε
2

}∣∣∣∣∣ < δ.
Now choosing δ sufficiently small, we can ensure the existence of an element ξ ∈N for which the following
properties holds good

p(s) < ξ < q(s), |xξ − y0| <
ε
2

and |xξ − x0| <
ε
2
.

But then
ε < |x0 − y0| ≤ |xξ − x0| + |xξ − y0| <

ε
2
+
ε
2
= ε, a contradiction.

Hence I −DSp,q(Λx) = {x0}.



C. Choudhury et al. / Filomat 38:3 (2024), 769–777 773

Theorem 3.4. For any sequence x = (xn), the set I −DSp,q(Γx) is a closed subset of R.

Proof. Suppose y0 ∈ I −DSp,q(Γx). Then for any ε > 0,

I −DSp,q(Γx) ∩ (y0 − ε, y0 + ε) , ∅.

Let z0 ∈ I −DSp,q(Γx) ∩ (y0 − ε, y0 + ε) and put ε1 > 0 in such a manner that

(z0 − ε1, z0 + ε1) ⊆ (y0 − ε, y0 + ε).

Then, the following inequation holds:∣∣∣{p(n) < k ≤ q(n) : |xk − z0| ≥ ε1
}∣∣∣ ≥ ∣∣∣{p(n) < k ≤ q(n) : |xk − y0| ≥ ε1

}∣∣∣ .
As a consequence, for any δ > 0, the set{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xk − y0| ≥ ε
}∣∣∣ < δ}

is a superset of the set {
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xk − z0| ≥ ε1
}∣∣∣ < δ} .

Now since z0 ∈ I −DSp,q(Γx), we must have

A =
{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xk − y0| ≥ ε
}∣∣∣ < δ} < I.

This completes the proof.

Theorem 3.5. For any sequence x = (xn), I −DSp,q(Λx) ⊆ I −DSp,q(Γx).

Proof. Let x0 ∈ I − DSp,q(Λx). Then there exists a set M = {m1 < m2 < · · · < mk < · · · } ⊂ N such that M < I
and

lim
n→∞

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xmk − x0| ≥ ε
}∣∣∣ = 0.

Therefore for any δ > 0, there exists n0 ∈N such that

∀n > n0,
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xmk − x0| ≥ ε
}∣∣∣ < δ.

Let A =
{
n ∈N : 1

(q(n)−p(n))

∣∣∣{p(n) < k ≤ q(n) : |xk − x0| ≥ ε
}∣∣∣ < δ}. Then A ⊃M\{m1,m2, · · · ,mk0 } and eventually

A < I since I is admissible. Hence x0 ∈ I −DSp,q(Γx).

Theorem 3.6. Let x = (xn) and y = (yn) be two sequences such that {n ∈N : xn , yn} ∈ I. Then,
(i) I −DSp,q(Λx) = I −DSp,q(Λy) and (ii) I −DSp,q(Γx) = I −DSp,q(Γy).

Proof. (i) Let x0 ∈ I−DSp,q(Λx). Then there exists a set M = {m1 < m2 < · · · < mk < · · · } ⊂N such that M < I
and lim

k→∞
xmk = x0(DSp,q). Put N =M∩ {n ∈N : xn = yn}. Then since M < I, so we must have N < I. Suppose

N = {n1 < n2 < · · · < nk < · · · }. Then we must have lim
k→∞

ynk = x0(DSp,q) and therefore x0 ∈ I−DSp,q(Λy). Thus

the inclusion I − DSp,q(Λx) ⊆ I − DSp,q(Λy) holds. By symmetry, we have I − DSp,q(Λy) ⊆ I − DSp,q(Λx).
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Hence I −DSp,q(Λx) = I −DSp,q(Λy).
(ii) Let x0 ∈ I −DSp,q(Γx). So by definition for any ε > 0 and δ > 0,

A =
{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xk − x0| ≥ ε
}∣∣∣ < δ} < I.

To complete the proof, it is enough to show that the set B < Iwhere

B =
{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |yk − x0| ≥ ε
}∣∣∣ < δ} .

If possible let B ∈ I. Put C = {n ∈ N : xn = yn}. Then by additivity of I, we have (N \ C) ∪ B ∈ I. But this
leads us to the contradiction A ∈ I because of the inclusion A ⊂ B ∪ (N \ C). Hence we must have B < I
and the proof is complete.

3.2. I−deferred statistical limit superior, limit inferior
In this subsection we introduce the notion of I−deferred statistical limit superior, limit inferior which

are natural generalizations of I−statistical limit superior, limit inferior introduced by Mursaleen et al. [21].
Throughout this section, for a real sequence x = (xn), Ax and Bx will denote the sets{

a ∈ R :
{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk < a
}∣∣∣ > δ} < I}

and {
b ∈ R :

{
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk > b
}∣∣∣ > δ} < I}

respectively.

Definition 3.7. Let x = (xn) be any real number sequence. Then I−deferred statistical limit superior of x is defined
as

I −DSp,q lim sup x =

sup Bx, if Bx , ∅

−∞, if Bx = ∅
.

Also I−deferred statistical limit inferior of x is defined as

I −DSp,q lim inf x =

inf Ax, if Ax , ∅

+∞, if Ax = ∅
.

Remark 3.8. If we consider p(n) = 0 and q(n) = n, then the above definition coincides with the definition of I−
statistical limit superior and limit inferior respectively introduced in [21].

Theorem 3.9. For any real number sequence x = (xn), if α = I −DSp,q lim inf x is finite then for any ε > 0,{
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk < α + ε
}∣∣∣ > δ} < I

and {
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk < α − ε
}∣∣∣ > δ} ∈ I.

Similarly, if β = I −DSp,q lim sup x is finite then for any ε > 0,{
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk > β − ε
}∣∣∣ > δ} < I

and {
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk > β + ε
}∣∣∣ > δ} ∈ I.
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Proof. Proof is trivial and therefore is omitted.

Theorem 3.10. For any real number sequence x = (xn), I −DSp,q lim inf x ≤ I −DSp,q lim sup x.

Proof. Case-I: If I −DSp,q lim sup x = ∞, then there is nothing to prove.
Case-II: If I −DSp,q lim sup x = −∞, then we have Bx = ∅. So for every b ∈ R,{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk > b
}∣∣∣ > δ} ∈ I

which immediately implies,{
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk > b
}∣∣∣ < δ} ∈ F (I).

i.e.,
{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk < b
}∣∣∣ > δ} ∈ F (I).

In other words,

∀a ∈ R,
{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk < a
}∣∣∣ > δ} < I.

Therefore we have Ax = R and hence I −DSp,q lim inf x = −∞.
Case-III: If−∞ < I−DSp,q lim sup x < ∞, then suppose β = I−DSp,q lim sup x and α = I−DSp,q lim inf x.

Then by Theorem 3.9, for any ε > 0 and δ > 0,{
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk > β + ε
}∣∣∣ > δ} ∈ I.

Which implies, {
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk < β + ε
}∣∣∣ > δ} ∈ F (I).

i.e.,
{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk < β + ε
}∣∣∣ > δ} < I.

So we have β + ε ∈ Ax. Now since ε was arbitrary and α = inf Ax, so we must have α < β + ε. Hence α ≤ β
and the proof is complete.

Definition 3.11. A sequence x = (xn) is said to be I −DSp,q bounded if there exists a number B such that for every
δ > 0, {

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xk| > B
}∣∣∣ > δ} ∈ I.

Note that, for p(n) = 0 and q(n) = n, the above definition turns to the definition of I−st boundedness [21].

Remark 3.12. If a sequence is I −DSp,q bounded then I −DSp,q lim inf x and I −DSp,q lim sup x are finite.

Theorem 3.13. AnI−DSp,q bounded sequence isI−DSp,q convergent iffI−DSp,q lim inf x = I−DSp,q lim sup x.

Proof. Suppose α = I −DSp,q lim inf x and β = I −DSp,q lim sup x. Let I −DSp,q lim x = l. Then for all ε > 0
and δ > 0, {

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : |xk − l| ≥ ε
}∣∣∣ ≥ δ} ∈ I.

i.e.,
{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk > l + ε
}∣∣∣ ≥ δ} ∈ I.
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Which implies β ≤ l. Also we have,{
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk < l − ε
}∣∣∣ ≥ δ} ∈ I,

which yields l ≤ α and hence we have β ≤ α. But by Theorem 3.10, we have β ≥ α, so we must have α = β
i.e, I −DSp,q lim inf x = I −DSp,q lim sup x.

For the converse part, suppose α = β and define l = α. Now for any ε > 0, δ > 0, from Theorem 3.9, we
obtain {

n ∈N :
1

(q(n) − p(n))

∣∣∣∣∣{p(n) < k ≤ q(n) : xk > l +
ε
2

}∣∣∣∣∣ > δ} ∈ I
and {

n ∈N :
1

(q(n) − p(n))

∣∣∣∣∣{p(n) < k ≤ q(n) : xk < l −
ε
2

}∣∣∣∣∣ > δ} ∈ I.
This immediately implies that, I −DSp,q lim x = l.

Theorem 3.14. Suppose x = (xn) and y = (yn) be two I −DSp,q bounded sequences. Then,
(i) I −DSp,q lim sup(x + y) ≤ I −DSp,q lim sup x + I −DSp,q lim sup y.
(ii) I −DSp,q lim inf(x + y) ≥ I −DSp,q lim inf x + I −DSp,q lim inf y.

Proof. Let β1 = I −DSp,q lim sup x and β2 = I −DSp,q lim sup y. Then for every ε > 0, δ > 0, we have

P =
{

n ∈N :
1

(q(n) − p(n))

∣∣∣∣∣{p(n) < k ≤ q(n) : xk > β1 +
ε
2

}∣∣∣∣∣ > δ} ∈ I
and

Q =
{

n ∈N :
1

(q(n) − p(n))

∣∣∣∣∣{p(n) < k ≤ q(n) : yk > β2 +
ε
2

}∣∣∣∣∣ > δ} ∈ I.
Now as the inclusion{

n ∈N :
1

(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk + yk > β1 + β2 + ε
}∣∣∣ > δ} ⊂ P ∪Q

is true, we must have,{
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk + yk > β1 + β2 + ε
}∣∣∣ > δ} ∈ I.

If c ∈ Bx+y, then {
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk + yk > c
}∣∣∣ > δ} < I.

We claim that c < β1 + β2 + ε. For if c ≥ β1 + β2 + ε, then the inclusion

{
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk + yk > β1 + β2 + ε
}∣∣∣ > δ}

⊇

{
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk + yk > c
}∣∣∣ > δ}

leads us to the contradiction that{
n ∈N :

1
(q(n) − p(n))

∣∣∣{p(n) < k ≤ q(n) : xk + yk > c
}∣∣∣ > δ} ∈ I.

Hence, we must have c < β1+β2+ε. As this is true for every c ∈ Bx+y, soI−DSp,q lim sup(x+ y) = sup Bx+y <
β1 +β2 + ε. Now as ε > 0 was arbitrary, so I−DSp,q lim sup(x+ y) ≤ I−DSp,q lim sup x+I−DSp,q lim sup y.

(ii) The proof is analogous to that of (i) and so is omitted.
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