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Almost automorphic colombeau generalized ultradistributions and
linear ordinary differential systems

Fethia Ouikene?

*University of Science and Technology of Oran Mohamed-Boudiaf USTO MB EI Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria.

Abstract. The aim of this work is to introduce and to study the concept of almost automorphy in
the setting of generalized ultradistributions. Such generalized ultradistributions contain their analogue
of almost automorphic ultraditributions and generalized functions. A result on the existence of almost
automorphic ultradistributional solutions of a linear ordinary differential systems is given.

1. Introduction

Almost automorphic functions was defined explicitly in the papers [5], [6] and [22], where also some of
their basic properties are given. It is well known that the concept of almost automorphy is strictly more
general than the almost periodicity studied in a full generality by H. Bohr, see [7], [3], [28] and [23]. Almost
periodicity in the setting of distributions established in [33], extends Bohr almost periodicity and Stepanov
almost periodicity [36]. Ultradistributions in the sense of Komatsu [25] are strictly larger than distributions.
Almost periodic ultradistributions were considered in [19], see also [24].

The result of [34] on the impossibility of multiplication of distributions motivated the introduction
of algebras of generalized functions, see [20], [29]. Almost periodic generalized functions are the main
work of [9], such generalized functions contains their classical analogue of almost periodic functions and
distributions. An application to a linear ordinary diffierential equations in the framework of almost periodic
generalized functions was given in [10].

As the problem of multiplication of distributions, algebras of ultradistributions were constructed and
studied in [1] and [2], see also the paper [21]. Almost periodicity in [12] was tackled in the context of gener-
alized ultradistributions, they contain almost periodic ultradistributions and almost periodic generalized
functions. A study of the existence of almost periodic generalized ultradistributional solutions of a linear
ordinary differential systems in [13] is considered.

It is well known that the concept of almost automorphy is more general than the concept of almost
periodicity, see [37]. S. Bochner studied in [6] linear difference differential equations in the framework
of almost periodic and almost automorphic functions. S. Zaidman gave a condition on the existence of
almost automorphic solutions of a linear ordinary differential systems in [38]. Almost automorphy in the
setting of distributions due to [15] extends almost automorphic functions and Stepanov almost automorphic
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functions [18]. The paper [26] deals with almost automorphic ultradistributions. C. Bouzar and col. in [11]
have introduced and studied almost automorphic generalized functions containing their classical analogue
of almost automorphic functions and distributions.

This paper introduces and studies an algebra of almost automorphic Colombeau generalized ultradistri-
butions containing almost automorphic ultradistributions and almost automorphic generalized functions.
A generalization of the result of [39] on the primitive of an almost automorphic function to Colombeau gen-
eralized ultradistributions is given. Also we establish an existence result on almost automorphic Colombeau
generalized ultradistributional solutions of linear ordinary differential systems.

The paper is organized as follows : section two deals with preliminary results needed in the sequel.
In section three we introduce an algebra of almost automorphic Colombeau generalized ultradistributions
and also we study their main properties. Non-linear operations on the introduced algebra are performed
in section four. The last section is aimed to study systems of linear ordinary differential equations in the
framework of almost automorphic Colombeau generalized ultradistributions Conditions on the existence
of generalized ultradistributional solutions are given.

2. Preliminaries
This section recalls some preliminary results needed in the sequel. The space of continuous and bounded
complex valued functions defined on IR, is denoted by Cy. It is well known that (Cy, ||||;~) is a Banach algebra.

For the definition of almost automorphic functions and their properties, see [4], [5], [6] and [22].

Definition 2.1. A complex-valued function f defined and continuous on R is called almost automorphic, if for any
sequence (Su)uen C R, one can extract a subsequence (s, ), such that

g(x) = klirjlm f(x+ sy,) is well-defined for every x € R,
and
kl_i,rf‘m g(x —su,) = f (x) for every x € R.
Denote by C,, the set of almost automorphic functions on R.
Remark 2.2. The function g is not necessary continuous but g € L*. Furthermore, we have
1AM = Mgl
Let & be the algebra of space of smooth functions on IR, and define the space
Dy ={pe&:VjeZ, ¢V el’|, pell,+x],

that we endow with the topology defined by the family of semi-norms

ply =Tl ez
i<k

So, Dyy is a Fréchet subalgebra of &. Denote B := D;«.
The set of smooth almost automorphic functions on IR, denoted by B,,, is defined by

By = {(p €e&:VieZ, ¢V e CM}.

It is clear that B,, C 8 and we endow B,, with the topology induced by 8.
The following properties of the space 8,, were proved in [15].
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Proposition 2.3. 1. The space B,, is a Fréchet subalgebra of B stable under translation..
2. B+ L' C B,
3. Bu=CuN8.

In order to introduce some classes of functions, we need definitions and results from [25].
Let M = (My)iez, be a sequence of positive numbers, define the following properties
Logarithmic convexity
Vk € N, M{ < Mg 1M1 (M.1)
Stability under ultradifferential operators

JA >0, AH >0, Yk, | € Z., My, < AH*'MM,. (M.2)

Strong non quasi-analyticity

+00
JA >0, Yk e Z,, My _ g M (M.3)
S M Mia
Non quasi-analyticity
+00
M /
1l ¢ o (M.3)
= M

Definition 2.4. The associated function of the sequence M is defined by

k
M(t) =supln EMo

, t>0.
kez., M

Example 2.5. If the sequence My is the Gevrey sequence (k!?), o > 1, then it satisfies (M.1),(M.2),(M.3) and its
associated function M (t) is equivalent to t.

The next result shows that the conditions (M.1) and (M.2) can expressed in the term of the associated
function, see Propositions 3.1 and 3.6 of [25].

Proposition 2.6. 1. The sequence M satisfies (M.1) if and only if Vk € Z.,,

tkM()
e = sup 3

2. Let M satisfies (M.1) , then M satisfies (M.2) if and only if JA >0, AH > 0, YVt >0,
2M (t) £ M (Ht) + In (AMy) .
As a consequence of Proposition 2.6— (2), the following result was obtained in Lemma 4.2 of [12].

Lemma 2.7. If M satisfies (M.2) then 3JA >0, dH >0, Vt;,...,t, >0, Y¥n e N,

(n=1)(n+2)

M(t) +---+M(t,) SM(HT max(tl,...,tn))+ (n— 1) In (AMy).

Remark 2.8. Throughout the paper we assume that the sequence M satisfies (M.1), (M.2) and (M.3)" .
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We recall from [17] some needed spaces. Letp € [1, +o0], h > 0, the space

|+,

DM =lpes: ||(pthM —sZp hJM 05,

Lr

endowed with the norm |||, 1 is a Banach space.
The space of [¥—Beurling ultradifferentiable functions is

D(L],\f) = proj i hrnZ)M

The space of Beurling ultradifferentiable functions

DM = {(p € &: VYK compactof R, Yh >0, dc >0, Vj e Z,, sup |(p(]) x)| < ch/M; }

xeK
is dense in D", p € [1, +oo[ . The space BM is the closure of the space DM in M = D™,

Definition 2.9. Let p € ]1, +00], the space of L’ —Beurling ultradistributions denoted by O,

dual Of@(m a where + - 1 = 1. Denotes by D,

be bounded ultradzstrzbutzons

I ) is the topological

the topological dual of B™). The elements of D, are said to

L1,(M) L (M)

3. Almost automorphic Colombeau generalized ultradistributions

In this section we introduce an algebra of almost automophic Colombeau generalized ultradistributions
and also we study some of their main properties.
Let]:=1]0,1] and (u,), € (D), p€[l,+00], j€Z, and k > 0, we mean by the notation

ugj) O(eM(zk)), e—0,

Ly

that
Ac >0, Jeo > 0, Ve < &, uf,f) < ceM(¥).
Ly

Definition 3.1. 1. The space of almost automorphic moderate elements is denoted and defined by

MY = {(ug)g e @) VjeZ,, >0, [l =0(MY), ¢ o}.

Loo

2. The space of almost automorphic null elements is denoted and defined by

NM = {(ug) € Bu) VjeZ., k>0, [l =o(eM), & o}.

Loo
We give some properties of the spaces MM and N M.
Proposition 3.2. 1. We have the null characterization of N2, i.e.
NM = (), € MM VK> 0, [lucllpe = O(e™M(2), e — o).

2. The space M is an algebra stable under translation and derivation.
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3. The space N2 is an ideal of M2
Proof. 1. Let (u,), € MM, ie.

- vl
Vi€ Z,, W;>0,3c;>0, Ae; e, Ve <, ||ul) LS cjeM(t), (1)
and (u.), satisfies the null estimate of zero order, i.e.
Vk>0, 3¢ >0, Aej € I, Ve < &), fluell < e™E). )

In order to show that (i;), € N2, we use the Landau-Kolmogorov inequality which states that for any
feC", neZ,, wehaveforeveryl<p<mn,

|79 <2=llfllF

For every j € Z., by using the Landau-Kolmogorov inequality for p = jand n = 2j, and due to the estimates
(1),(2), we obtain

I

1
i ek
G < 2m a2 L

Le

1
k2j\\ 2

21 (c/e‘M(f))% (CzjeM(‘))

IA

1 K
2n (C'Czj)E e_%M(%)+%M(T])

IN

By Lemma 2.7, let k¥ > 0 and taking k > 0 such that ’Z‘ = Hmax (l%, k:) , then
kyj §
e_M(f)JrM(T]) < AMe™(%).
Consequently, Vj € Z,, Yk’ >0, ac; = (2n (c’czj)i AMO) > (0, Ve < min (e]-, e(’)),

ugj) < C]-e_M(k?,),

L

which means that (1), € NM.
2. The stability under translation and derivation of the space M is obvious. Let (i.), , (v:), € MM, ie.
they satisfy the estimate (1), for any j € Z,, we have

B '! Z
oo < 3 Tl 0,
i+l=j
Z %CiCzeM(%)w(%),
i+l=j

due to Lemma 2.7, taking k > 0 such that % = Hmax (’%, '%) , then

i+l=j

MEPME) < Apgem).

i+l=j i+l=]

Hence, Vje Z,, 3k >0, IC; = [AMO Y %cicl] >0, Ye <min (¢, &),

||(usve)(j)HLm < M),
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which gives (u.v,), € M.
3. Let (u:), € MM and (v,), € NM, i.e. (u.), satisfies the estimate (1) and (v.), satisfies
o)

Vj€Z,, Yk>0,Ac; >0, Ae; €1, Ve < ¢, < ¢jeM(¥). 3)

L

For every j € Z. and by (1) and (3), we have

, T,
@] < ¥ g I o0
i+l=j
Z %aqu(?)e_M(g)’

oyt il!

by Lemma 2.7, let K’ > 0 and taking k > 0 such that % = Hmax (%, k?) , then
ME)ME) < AnoeME),
Hence, Vj € Z,, VK’ >0, 3C; = (AMO i;:j i%c,-c;] >0, Ve < g\ll:r]l (&, €1),
”(ufvf)(j)HLw < Cje™M(%),
so, (u:v:), e NM. O
Now we give the definition of almost automorphic Colombeau generalized ultradistributions.

Definition 3.3. The set of almost automorphic Colombeau generalized ultradistributions, is denoted and defined by
the quotient

M

aa Né\f

The next result follows from Proposition 3.2.
Proposition 3.4. The set of almost automorphic Colombeau generalized ultradistributions is an algebra.

Example 3.5. We have G ¢ GM, where g{gg is the algebra of almost periodic generalized ultradistributions of [12].
It is easy to see that Gy is embedded canonically into Gy

Example 3.6. We have G G G, where G, is the algebra of almost automorphic generalized functions defined as
the quotient algebra

G = 5,
where

Mg = {(ue)g € (Bw) :Vjez,, >0, |[u? =0(), e o}
and

Noa 1= {(ue)g € (Bu) :VjeZs, k>0, |[u?) L= 0(c"), e— 0}.

For more details on G, see [11].
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Moreover, we have the following canonical embedding of G,, into M.

Proposition 3.7. The map

Lo : gua — aa
(us)s + Nu +— (uf)s + N%I

is a linear embedding.
Proof. It remains to prove My, € MM and My, N NM € Ny Let (1), € M, ie.

0

€

VieZ,, Jk; >0, dc; >0, Je; €1, Ve < ¢,

< cje_kf. (4)
L(x)

Due to Proposition 2.6— (1),

n

t" Mo
M, =sup ——,
" >0 eM(t)

YneZ,,
hence, Vne Z., Yk >0, Ye > 0,

M) s KMo (5)

n

By (4) and (5), taking k' = — [k;] = 1, then Vj € Z., 3k; >0, Ae; >0, Ae; €I, Ve < ¢,

0

K,
ki K]-1 My M(%)
<cje < cje‘[ il- <¢j e ,

K’

L kj I MO

so, (u;), € MM, Thus, My, ¢ MM. Let (u.), € NM, ie.

(7)

U,

k

Vj€Z,, Vk>0,3c;>0, Jej €1, Ve < ¢, < cje ™M), ©6)

Lo
We have,Vne Z,, Yk >0, Ye > 0,

n
e > —k Moe_M(%),

n

from (6), taking k" = [k], then Vj € Z,, Vk >0, dc; > 0, de; €I, Ve < ¢,

ugj) < cje’M(tk) < cje’M(kT,) < cjﬂsk'
L k'® My

7

s0 (), € Nug. Thus, NM c N,. Moreover, My, "N NMc NMc N, O
Now, we give another example of almost automorphic Colombeau generalized ultradistributions.

Definition 3.8. Let T € D, ,, such that there exist an ultradifferential operator P of class (M), f € Cyq and
g € Cog such that T = P(D) f + g. We denote by E; , » the space of such ultradistributions.

Letp € Z){LIY’ = ind lim DN and set p, () = %p(L), e>0.

h—+o0 Ly €
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Proposition 3.9. Let M and N be two sequences satisfying (M.1), (M.2) and (M.3)", then the map

Ja: Epouny — G
T — (Txpe), + NM

is a linear embedding.

Proof. LetT € EM (MN) then T = P (D) f + g, where P is an ultradifferential operator of class (MN), f € Cy
and g € Cy,. Due to Young inequality, we have Vj € Z,, Vx € R,

IA

g+p? (%)

FePD)p )|+
I, X 5 f D Wlay+ . 5 [ o0 @]

(T+po)? ()

On the other hand, as p € D{LI?” then 3k > 0 such that ” p” LN < o AsP(D) = Y, a;D,is an ultradifferential
o i€Z.,

operator of class (MN), so AL > 0 and dc > 0 such that Vi € Z,, |a;| < cLi (M,-Ni)f1 . It follows that

vl ||P<’>||

“f”Lm & M;N; et hiti ” “Lm

-

Since M and N satisfy (M.2), there exist A, A’ > 0 and H, H" > 0 such that
Mi,j < AHY'M;M; and Ny < AH""N,Nj,
which gives

1 _Ax (HH')™*
M;N; = My jNiyj

MN;.

Therefore,

.

i Z M; (HH) e N -

< cAA’
1+]N1+]

W ||P<’ .

+oll 5=
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hence,

i+] hiti ‘O(Hj)

f||L°°zeZz"M,+N+ HEYY o g

Mol S

cAA’

IA

Mij ”(T*pE l Lo

H ])

€1+] h1+]NH_]

IN

cAA’ |

f||Loo = (H /)1+]
i€Zy

L1

cAA’

IN

i W1
- T g s o ol 5|

i€Z,

”p”mN

Thus,

2L) ”(T*p&

CAA’ f||Lw L2 B ()T 1+
”p”l,h,N ’

W1
(L) & 3

i.e.

(ZLHH I )”f

cAA’

Al Z 2

The fact that M satisfies (M.1), so Proposition 2.6— (1), gives

< = lell + gl

)

( ALAh )i+j 1 2LHH'h (% )] 1 2Lh
Ml‘+]‘ < ]WOBM( € ) and Mj < ]WOEM( € )
Consequently,
2L)’ ; 1 , 2LHH' 2w
ROl = g el oA . 2 + o] C2)

IN

C ALHH'h b
ATO(EM( ) 4 MO,

where C = “p”Lh,N max (ZCAA’ (f“Lm , ngm) . Hence,

2L> ”(T 20 = em<2LHHh>+M(M>

Due to Lemma 2.7, let k > 0 such that £ = H max (ZLHH . ZM) and C’ = (ZACW) >0, we get

||(T . pf)(j)”m < M),
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which means that (T * p,) € MM. The linearity follows from the fact that the convolution is linear. Let
pEe Z)[LII” such that [ p(x)dx = 1.1f (T * p,) € NM, then
R

Vk>0, Ic>0, Jeg €1, Ve < e, |

T = pé‘HLw < ceM(), (7)

Lety € Z)(LIYIN), we have

(T.9) =tim [ (Tep) v
R

From (7),, we obtain

= “#’“Ll ”T* Pe”Lw <c HI’bHU e_M(é)’

f@wmmwmw
R

lete — 0, thus (T, ) =0,V € ZD(L]YIN). Hence, ], is injective. [

Remark 3.10. In addition, if the sequence M satisfies the condition (M.3) then due to Theorem 3.1 of [26], the space
E;, ) coincides with the space of almost automorphic Beurling ultradistributions studied in [26]. Therefore, in view
of Proposition 3.9 the space of almost automorphic Beurling ultradistributions is embedded into the algebra of almost

automorphic Colombeau generalized ultradistributions.

In order to establish some properties of the algebra G, we recall some needed algebras. The algebra of
Cu—generalized functions defined by

M

gM . Caa
Cu '~ /M’
NCﬂﬂ

where

M= {(f)eer € Can)' = T >0,

il =0(0), ¢ 1),
and

Né\{zla = {(ff)gej € (Cuu)I :Vk > 0,

£l = 0( ), e o).

The algebra of L’—Colombeau generalized ultradistributions, p € [1, +o0], is denoted and defined by
the quotient algebra

where

MM = {(ug)g e (@) :Vjez., >0, [ul) = o(eM"), ¢ - o}
and

NM = {(ué.)g e (D) :Vjez,, Yk >0, [ul) = O(e™M®)), ¢ - 0}.
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Remark 3.11. The elements of G}, are said to be bounded generalized ultradistributions. We denote Gy, := G\
The following result summarise some properties of G.

Proposition 3.12. 1. Gl is a subalgebra of Gl stable under translation and derivation.
2. Q%I * Qﬁ/f C g%.
3 G is embedded canonically into Gy and Ggﬁ

Proof. 1. It follows from Proposition 3.2— (2) that G is an algebra stable under translation and derivation.

2. Let (u.), € M} and (v.), € MM be a respective representatives of i € Ghi and v € GN. If (u.), € M0

M

so it satisfies the estimate (1) and (v,), € MLl, i.e. satisfies

- o M)
VieZ,, Hk} >0, Hc;. >0, Ele;. el, Ve < e;., U, < c;-e .

Ll

In view of Proposition 2.3-(2), Ve € I, (u, *v,) € B, and due to Young inequality, we obtain for every
j € Z+/

() v ”(k/) M<k’)
u) el < cjche \ele\ e

p: L €0
Loo

7

”(uE ) vg)(j)”Lm <

by Lemma 2.7, let k > 0 such that % = Hmax (]%, %), then

k-

MM < apteen),
Consequently, Vj € Z,, dk >0, IC; = (cjcéAMo) >0, Ve < min (ej, 56),
[t 000 < cie®,

this gives that (u, * v.), € M. Itis easy to prove that the convolution does not depend on the representatives
(ie) and (v); -

3. We clearly have G C Qg. Indeed let u = [(u.),.] € G, i.e. (u.), satisfies (1), as u, € By = BN Cyy C
B,Ve > 0, then (u,), € MJ. In the same way, if (). € Ny, then (u.), € N}. As obviously Ny N My c Niy,
then the embedding is clear. In the same way, considering (1) with i = 0 we obtain that GM c an. The
inclusion Né/:n N MM c NM, giving the embedding, is obtained from the null characterisation of N2, i.e.
Proposition 3.2. [

As a consequence we have a characterization of elements of GM similar to the result characterizing
almost automorphic ultradistributions.

Corollary 3.13. Let u € Gy, the following assertions are equivalent :

)ueGh
ii)uxpe Gy No e DM

Proof. If u € G}, then by the results 2 and 3 of Proposition 3.12 we obtain u+ ¢ € G , Y € DV. Conversely,

let (u.), € M{;I be a representative of u and Yo € DM, Ye € Lu, * ¢ € Cp. In view of Proposition 5
—(4) of [11] it follows that Ve € I,u; € By,. Since u, € M} then it holds that u. € M} If u. € N} and
uxp e Gl Vo € DM, we obtain the same result as we have N ¢ M}, O
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4. Non-linear operation

We show in this section that the composition of a tempered generalized ultradistribution with an almost
automorphic Colombeau generalized ultradistribution is an almost automorphic Colombeau generalized
ultradistribution. First, recall from [12], the algebra of tempered generalized ultradistributions on C,
denoted and defined as the quotient algebra

_ MO
gym%_N%@y
where
(F). € (8(R2)) : vje 22, k>0,
MA(Q) = sup (1 + [x]) ‘fg(j) (x)‘ _ O(eM(f)), £ 0
xelR?
and
(fo). € (6(R?) L. Vjez2, 3m >0, Yk >0,
N(©) =

sup (1 + )™ [ ()

xeR?

= 0(e M), £ 0

Proposition 4.1. Let 77 = [(u,),] € G¥ and F = [(fg)é] € GM(C) then

Fou:= [(ﬁY o uS)E]
is well-defined element of GM.

Proof. Let (i), € MM and (f.), € M (C) be a respective representatives of i and F, then due to Proposition
— (4) of [8] we obtain Ve € I, f, ou, € B,,. Moreover, we have

. il
VieZ, >0, 3¢50, Jejel Ve <e, ||| < cjeM( ) )

and

K,
B M ]
VieZ,, Elk} >0, EIC; >0, 36} el, Ve < s}, 5(]) (u)|| < c;e ( )||1 + u, ||L°° . 9)
LDO

By using the classical Faa di Bruno formula, we have Vj € Z,,

(f o u)?) () (”(u{ (X) ! ( (‘)(X)]
(feou) (@) _ (10)
]! h+2h+-+jli=] g
r=ly+e+l;
from (8) and (9) , we get
[ 0 ¥ 1 ol { [Ilu IILw]
L -
/! 11+212;+jl/-=j b1yt [1[ i
r=ly+-+l;

IA

v
My
y cje ||1+ue||L;,H 149}
IL!--- 1! i! !
Li+2l++jli=] ] i=1

r=ly++l;
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SO
, K
ky. k r
- M) (1 4 o) !
/ € . i
||(ﬂ o u{)(])” cle (1 +coe i M ﬁ
L cle
< ) 11
]. 11+212+...+jlj:j L I i=1
r=li++l;
hence there exists C, > 0,
; j
H(fé oo CV H ( )1 lM
! - le.. l‘!
J b42lytjl=j 1 i=1
r=l++l;
, j
C, M(’L ([e]+1)m(* H( )
< e
Y LRy
h+2lp++jli=] i=1
7211+'~-+l/'

Set m = [k]] + 1, due to Lemma 2.7, we have

(m=1)(m+2)
2m )

(LETDM(E) gyt

and
[k‘ (1,-43[(1,-&) ]
N VL

el‘M( ) < (AMp)" e
Therefore,

||(fé oU. / C Ky -, n=Dis2)

L m—1 M + —H m
— = = Z s (AM ) ( )e ( )

I1 +212+"'+jl/'=j
r=lj++l;

j 1 . ( 12)1(1 +2)
ci\1 Ii- M[TIH i ]
xH(F) (AMo) e

i=1

C ( Mo)"! M( )eM(kTOH

1

Ih!-
h+2l+-+jli=] 1
7211+'~-+l/'
j (L=1)(+2) :
)
x| (AMp) 7 ¢ H(—,’)
i-1
K. X (m=1)(m+2)
< S g A )
= [AE
L+l jl=j 1 j
r=ly+e+l;
=1 (;+2) .
ZM[‘%’H 2 J ] ci li
xe'=! H(—)
L 1\j!

(m=1)(m+2)
2m )

885
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By Lemma 2.7, we get

Lo (ke ) ki (02 ,
ZM “H @ < M{H 7 max(ZH # ||+ (j-1)n(AM)

; 1<i<j
1=

IA

M(m])+ (j—1)In(AMy),

(-1)(+2) 1=1)(+2)
where mj:=H %7 max kH % , SO

1<i<j
. ’ (m=1)(m+2)
o s ) A

! = L!--- 1!

420+t jli=] J
r=lj++l;
1 M 4 ! l
<(anmy &G (4 ) ,
i=1
by using again Lemma 2.7, let N; > 0, such that = H3 max (k;, J , kEOH 3 (M)) thus

e

M(kf) M(@Hi(qu)ff”z)) M(
e \“leg \°© e
It follows

(fi o u)V J j I
—” < T Ty AMO™ (AM) ™ (AMo)e - H( )
J: L2yt jl=j L i=1

r=ly+e+l;

) < (AMp)> M)

C

IA
0

<

S

%

hy
"z
NE
—_—
| O
—

11 +le+“'+]'l/'=j
r=ly+e+l;

Finally, we obtain

C M L ey
- m+r P i
(e <Y 1 (AM) & )H(i!)
L+2L+-+jli=] i=1
r=11+"'+l}'
< C;eM(T/),
. C m+r .
where C’, := ! (AM)) H( ) Then, we deduce that (f; ou,), € MM. It is easy to
/ L+20++jl= ]ll l' i1 \i!
r=l++l;

prove that the composition Foiis independent on the representatives (i), and (f:),. O

5. Linear systems of ordinary differential equations

Consider the system of linear ordinary differential equations

u+f, (11)
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where f~ = ([( fllg)E] s [( f,,,g)g]) € (ggg)" and A = (117' j)OSi,an is a square matrix of order n of elements of C.
The unknown generalized ultradistribution is u = ([(ul,s)g] S eeer [(un,s)g]) .

Remark 5.1. We say that u = ([(ulls)g],..., [(um)g]) is bounded (resp. almost automorphic) if each component
(i), ,0 <i<mn,is bounded (resp. almost automorphic).

Algebra of generalized numbers of type M was introduced in [12], which is defined by the quotient

oM . MUIK]
"~ NMIKT

where
MMC] = {(z), € €, Tk € Z,, Iz = O (eM(D)), e — 0}
and
NMIC] = {(z), € €', Vk e Z,, 1z = O (eME)), & — 0}
The following result is a generalized version of the Bohr-Neugebauer Theorem.

Proposition 5.2. Let a bounded gerneralized ultradistribution u € (Q%)" satisfy

(i), = A o), = (f), € (NM)', (12)

where (u.), and (f:), are respectively representatives of u and f Then u is an almost automorphic Colombeau
generalized ultradistribution.

Proof. from [38], there exist an invertible matrix P = (P,-]-) such that A = PTP!, where

0<i,j<n

A b oo b

0 Ay - by
T=|. . . .

0 - 0 A,

and Ay, Ay, -+, A, are the eigenvalues of the matrix A. Let v = ([(vl,g)g],..., [(vm)g]) = PWand g =
([(gl,é.)g] S [(gn,g)g]) = P‘lf: then 12 is equivalent to the system

01,6 (£) = AM01e () + b1ovoe () + -+ + b1yOne (8) + g1, (F) = I (B).
02,6 () = A2 () + bag0pe (£) + -+ + b2 (£) + g2,e (£) = hoe (F) . 13)
Une (H - Anvn,s (H+ In,e (t) = hn,s 6)
where ([(hl,g)&] S eer [(hnlg)g]) € (Nﬂ’\f)n . The result is then reduced to prove that if v = [(v,),] € Gy satisfies
(0e)e = A (Ve)e = (g6). € Niw, (14)

where g = [(gs)g] € GMand A € C, then v € G). The general solution of 14 is given by the representative

t
(e (D). = [6“ [Cg + f e (ge (s) + he (S))dS]] ,

0
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where (C,), € MM [C] and (k). € Nj. Since 0 € G, then we have three cases :

1) v, ( f M9 (g, (s) + he (s)) ds, if Re A > 0.
2) v, () = f M9 (g, (s) + he (5)) ds, if Re A < 0.

3) v, (t) = e”mt[Ce + fe‘”ms (g (8) + he (s))ds |, if Re A = 0.

0
In the case Re A > 0, since Ve > 0, g,, he € By, and due to ([16], Proposition 9) so, for every (sy),en C R,
there exist a subsequence (Smm)) of (5m)en and g, ki such that forany je Z,,t e R, e €,

70 ¢ = tim g (14 50,) and Tim 70 (t-su,,) = 0 )

W : = tim i (+5,,) and klj)rfmh(]) (E=sme,) =1 )
On the other hand,

o (t+5m,) = - f ) (g () + 1D 9)) s

=
. ﬁw—@ (g@ (54 5mgy) + H (s + smkm)) ds

N /

o) (t+smm))‘ < Ri - 9 (5) + 1) @) .

by the dominated convergence Theorem, we obtain

+00

v (t) = klirpmvgj) (t + Smk(z)) = f (t=s) ( () (s) + h(]) (s)) ds exists for every t € R
t

Also, according to Remark 2.2

1
" Rel

7 )+ i o) 3D () +nY) ®)

0, (t - smk(é,)| Ri/\

due to the dominated convergence Theorem, it follows

+oo
kl_l)rpm‘(]) ( smm)) kl_i)IPDo [_ fe/\(t—s) (ygf) (s - Smk“)) + E(f) (S - smkm)) dS]

t

+00

- f A9 (gﬁf) s) + 1Y) (s))ds

t

= vgj) (t) foreveryteR
It follows in view of Proposition 9 of [16], that Ve € I,v. € By. As (ve), € My then (v;), € Mi;. We have

¢
the same reasoning for the cases Re A < 0 and for Re A = 0,0 () = ¢'™!C, + [e7/™M=) (g, (5) + h, (5)) ds.
0
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Since v, is bounded primitive of the almost automorphic function e~ Im(t-s) (ge (s) + he (s)) then by ([39],
Theorem1), we obtain that v, is an almost automorphic function. Furthermore, By Proposition 2.3—(3) we
get Ve € 1,0, € Cy N B =By,. The fact that (v,), € M} gives that (). € M. O

Remark 5.3. Ifwe say that a bounded generalized ultradistribution u € (Qg’)n is a solution of system 12 if it satisfies
(), = A (ue), = (fo), € (M),

and as U € (Q%)n = ucE (Qg)n is obvious since G, C gég due to Proposition 3.12-(3), then we have proved that

the solution u of the system 11 is an almost automorphic Colombeau generalized ultradistribution if and only if it is a
bounded generalized ultradistribution.

A primitive of u = [(u.),] € GM is defined by the representative (L), as a Colombeau generalized
function, where

X

U, (x) = fug(y)dy , X0 € R.

X0 e

The following result is an extension to almost automorphic Colombeau generalized ultradistributions of
the classical result of Bohl-Bohr on primitives.

Corollary 5.4. A primitive of an almost automorphic Colombeau generalized ultradistribution is almost automorphic
if and only if it is a bounded generalized ultradistribution.

The existence of a bounded generalized solution of the system 11 is given by the following result.

Proposition 5.5. Ifthe matrix A has eigenvalues whose real parts are not zero, then there exists an almost automorphic
Colombeau generalized ultradistribution solution u of the system 11.

Proof. If Re A # 0, the nth equation of the system 13 has a solution v, . defined by
+00
Loy (t) == [ 40 (g,0 () + h,, (5))ds, if Re A, > 0.
t

t
2.0 () = [ &9 (gye (5) + 1, (5))ds, if Re A,y < 0.

By replacing v, in the (n — 1) th equation of the system 13, we obtain v,_i, defined in the same way
as 1 and 2. The same reasoning for the remaining components which gives that ((Ul,e)g, s (vn,g)g) is a

solution of the system 13, actually this solution is a bounded generalized ultradistribution. Indeed, since
ReA; #0,1 <i<n, from 1 and 2, we have

1
Reil [[9,e + hel|.

o]l <
The (n — 1) th equation
Z.Jn—l,e (t) = /\n—lvn—l,s (t) + (bn—l,nvn,s (t) + Gn-1,e (t) + hn—l,s (t))

so the following estimate Ve € I, holds

b1l
IRe A,,:| &{e Al Re A,,_ﬂ)max (e + e

||vn*1,é'||Loo < In-1¢ + hnfl,e”Lm) ’
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consequently, we obtain for i = n, ..., 1, that there exists C > 0, Ve €1,

losell.. < Cmaxlgie + el

1<i<n

since the second ((gl,g +he), e (Gne + hm)é,) defines a bounded generalized ultradistribution, then the

solution ((01,5)8 Sy (v,,,g)é,) of the system 13 is a bounded generalized ultradistribution. From the equality
v =P 'u, wehave i € G} & U € G according to Propositions 5.2 and 5.3. [

Acknowledgment. My sincere gratitude to Professor Chikh Bouzar for all the suggestions and comments
on this work.
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