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I,-deferred statistical convergence for sequences of sets
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Abstract. The main purpose of this study is presented the concepts of 7»-deferred Cesaro summability and
T ,-deferred statistical convergence in the Wijsman sense for double sequences of sets. Also, to investigate
the relations between these concepts and then to prove some theorems associated with the concept of
T,-deferred statistical convergence in the Wijsman sense for double sequences of sets is purposed.

1. Introduction and Backgrounds

Long after the concept of deferred Cesaro mean for real (or complex) sequences was introduced by
Agnew [1], Kiictikaslan and Yilmaztiirk [10] presented the concept of deferred statistical convergence for
single sequences. After this, the concept of deferred 7-convergence was given by Sengiil et al. [18]. For

double sequences, the concepts of deferred Cesaro summability and deferred statistical convergence were
studied by Dagadur and Sezgek [4, 5, 17].

Over the years, on the various convergence concepts for sequences of sets have been studied by many
authors. One of them, discussed in this study, is the concept of convergence in the Wijsman sense [3, 12, 21].
The concepts of convergence and Cesaro summability in the Wijsman sense for double sequences of sets
were introduced by Nuray et al. [14] and after that, for double sequences of sets, the concepts of statistical
convergence and 7-convergence in the Wijsman sense were given by Nuray et al. [13, 15].

For sequences of sets, the concepts of strongly deferred Cesaro summability and deferred statistical
convergence in the Wijsman sense were introduced by Altinok et al. [2]. Recently, for double sequences

of sets, the concepts of deferred Cesaro summability and deferred statistical convergence were studied by
Ulusu and Giille [20]. See [7, 8] for more details.

Now, before introducing new concepts, we remind some fundamental definitions and notations (see,
[4,6,9,11,13, 14, 16, 19, 20]).
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The natural density of K; is defined by
6(K2): lim L‘{(l j)EKz:i<m j<n})
mu—oo mn I =)=

where K; is a subset of IN x IN and | {G,))eKy:i<m, j<n} ) denotes the number of elements of K, that
does not exceed m and .

A double sequence (x;;) is statistically convergent to L if the set {(i, J):lxij— Ll = 6} has natural density
zero, that is, for every 0 > 0

. 1. o .
m}glw%{(z,]).sz,]Sn,Ixij—L|26}|—0.

A family of sets 7 C 2N (the power set of IN) is called an ideal if and only if
(H1)0e 1, bh)EUFe I foreachE,Fe 1, (i5)Fe 1 foreachE€Zand FCE.

Anideal T C 2N is called non-trivial if N ¢ 7 and a non-trivial ideal 7 € 2N is called admissible if {i} € T
for eachi € IN.

A non-trivial ideal 7, € 2NN is called strongly admissible if {i} x IN and IN x {i} belong to I for each
i € IN. Obviously, a strongly admissible ideal is admissible.

All through this study, except where otherwise stated, 7, € 2NN js conceived strongly admissible ideal.

In a metric space (Y, p), the distance function d(y, U) = d,(U) is defined by d,(U) = ;215 p(y, u) for any
non-empty U C Yandany y € Y.

On a non-empty set Y, for a function f : N — 2Y, the sequence {U;} = {Uj, Uy, .. .} is called sequences of
sets.

All through this study, (Y, p) is conceived a metric space and U, U;; are conceived any non-empty closed
subsets of Y.

A double sequence {U;;} is (in the Wijsman sense);

i. convergent to set U provided that

lllll}go dy(Uij) = d,,(U),
ii. J,-convergent to set U provided that for every 6 > 0
(G, ) e N2 :|d, (i) - dy ()| 2 6} € I,
iii. strongly J,-Cesaro summable to set U provided that for every 6 > 0

{(m, ) e N2 - % Z |, (Uj) - dy ()| = 5} e,

ij=1,1

iv. I,-statistically convergent to set U provided that for every 6 > 0,y > 0

{(m,n) eIN?: %H(z‘, pism, j<nla, ) - )| = o)| = y} eI,

y . . W, WS(Z. .
for each y € Y. For (ii) and (iv) concepts, the notations Uj; " U and U;; U U are used, respectively.
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For a double sequence x = (x;j), the deferred Cesaro mean Dy, y, is defined by

Im Sp Gm,Sn

1
(qu,l,ux)mn = Z Z Xij = Z Xij,
(Pmlpn i=py+1 j=r,+1 qulpnz =pm+1
j=ra+l

where (p), (Gm), (), (sn) are non-negative integer sequences satisfying following conditions:
Pm < Gm, lim g, = o0; 1, <s,, lims, = o (@)
—Pm = @mz Sp—Tn = Ebn' (2)
Note here that the method Dy, 4 is openly regular for any selection of the sequences (py), (qm), (1), (s1)-
All through this study, except where otherwise stated, (pi), (§m), (r4), (Sn) are conceived non-negative

integer sequences satisfying (1) and (2).
A double sequence {U;;} is (in the Wijsman sense);

i. deferred Cesaro summable to set U provided that

‘%stn

tim g 3 g =aw,
m nz =pm+1
j=ra+l

ii. strongly deferred Cesaro summable to set U provided that

Jm,Sn

,,}Lw y(Uyj) = d,(W)] = 0,
’ = =pm+1
j=ra+l

iii. deferred statistical convergent to set U provided that for every 6 > 0

dy(Us) - dy ()| 2 0| =0

lim

m,n— o0 ¢ {(i/j):Pm<i§qm,rn<szn,

foreachy e Y.
By double lacunary sequence, we mean that a double sequence 0, = {(k,, [4)} of two increasing integer
sequences (k) and (I,,) such that

ko=0, hyy =ky —ky1 — o0 and Iy =0, h,=1,—1,.1 = 00 as m,n — oo.

2. New Concepts

In this section, we present the concepts of 7,-deferred Cesaro summability and 7,-deferred statistical
convergence in the Wijsman sense for double sequences of sets.

Unless otherwise specified, from this point on, summability and convergence concepts will be considered
in the Wijsman sense for double sequences of sets.

Definition 2.1. The double sequence {U;;} is said to be I,-deferred Cesaro summable to the set U if for every 6 > 0
GmSn

¢m1l)n _;1‘1 Uij) = y(u)' > 6} el,

j=ra+l

{(m, n) e N?:

. . , WD(I.
for each y € Y and this case is denoted in U;; 2y format.
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Definition 2.2. The double sequence {U;;} is said to be strongly I>-deferred Cesaro summable to the set U if for every
0>0

GmsSn
{(Tf’l, 1’1) (S ]N2 : ¢ 1¢ Z |dy(uz]) - dy(ll)) > 6} el,
m ”i:pm+1

j=ra+l

. . . D[I.
for each y € Y and this case is denoted in U;; WP format.

The set of all double sequences of sets that strongly /,-deferred Cesaro summable is denoted by
{WD[Z>]}.

Remark 2.3. WD(Z,) and WDI1,]-summability concepts;

(i) For pm =0, g = mand r, = 0, s, = n, match with Wijsman I,-Cesaro and Wijsman strongly I,-Cesaro
summability concepts in [19], respectively.

(ii) For pm = k-1, Gm = km and v, = I,_1, 5y = 1, ({(kn, 1n)} states double lacunary sequence), match with
Wijsman I ,-lacunary and Wijsman strongly I,-lacunary convergence concepts in [6], respectively.

(iii) For theideal T £ (the ideal of density zero sets of IN), match with Wijsman deferred Cesiro and Wijsman strongly
deferred Cesaro summability concepts in [20], respectively.

Definition 2.4. The double sequence {U;;} is said to be I,-deferred statistical convergent to the set U if for every
6,y>0

1
¢m Ebn

%mJDENZ: (G ) pw<i<qu ru<j<su,

dﬂu@—dﬂuﬂz&HZy}eIZ

. . . WDS(I,
for each y € Y and this case is denoted in U;; 25D format.

The set of all double sequences of sets that 7,-deferred statistical convergent is denoted by {WDS(Z15)}.

Remark 2.5. WDS(Z,)-convergence concept;
(i) Forpy =0, gm =mand r, =0, s, = n, matches with Wijsman I ,-statistical convergence concept in [6].

(ii) For pm = km-1, Gm = ky and v, = l,_1, sy = L, ({(km, 1)} states double lacunary sequence), matches with
Wijsman I ,-lacunary statistical convergence concept in [6].

(iii) For the ideal T £ (the ideal of density zero sets of IN), matches with Wijsman deferred statistical convergence
concept in [20].

3. Main Results

In this section, we first investigate the relations between WD[1;]-summability and WDS(J»)-convergence
concepts.

Theorem 3.1. If a double sequence {U;;} is strongly I>-deferred Cesaro summable to a set U, then this sequence is
I>-deferred statistical convergent to same set.
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WDIL:]

Proof. Assume that U;; U. For every 6 > 0, we can write

s S
Z ‘dy(uif) - dy(u)| 2 Z |dy(u,«j) - dy(U)|
i=pnt1 i=pmt
j=ra+1 j=ra+1
I, (L)~ (L]
> 6’{(1‘,]') P <1< G, T < j < S, |y (U) — dy(UD)] > 5}|
and so, we have
Qm/Sn
%— Z )dy(Uq) /(U)| > 3 11# |{(i, D P <i< Gt <j< s, |dy(Us) — dy(U)( > 5}|
i= =Pm +1 mYn
j=ra+l

for each y € Y. Hence, for every y > 0 we have

1 .. . .
{(m/ n) € INGE Omt) {(l/ 1) iPm <i<Gm, tn <]< Sy, dy(uij) - dy(u)| = 5}| > )/}
Gm,Sn
C {(m, n) e N2 : Z |, (i) - d, ()] > 7/6} e Io.
gbml’bn i=py+1
j=ra+l

WDS(1>)
—>

Thus, by the assumption and the condition (i3), we get U;; u. g

WDS(T2)

Corollary 3.2. If LIZ] U then U;; u.

The converse of Theorem 3.1 is not true in general. We can consider the following example by taking
I,=T1 J; (the ideal of density zero sets of IN) to explain this situation.

Example 3.3. Let X = R? and a double sequence {U;;} be defined as following:

5oy [|\/¢_m|<i
Ui = W |\/@|]<]<S ¢ G SN,

{0} ; otherwise.

This sequence is not bounded. Also, this sequence is 1 ,-deferred statistical convergent in the Wijsman sense to the
set U = {0}, but is not strongly I ,-deferred Cesaro summable in the Wijsman sense.

A double sequence {Uj;} is said to be bounded if supi/j{dy(uij)} < oo, that is for an M > 0,

|d,(U;j) — dy(U)l < M for each y € Y and all (i, j) € IN%. Also, L3, denotes the set of all bounded dou-
ble sequences of sets.

Theorem 3.4. If a double sequence {Ujj} € L2 is To-deferred statistical convergent to a set U, then this sequence is
strongly I »-deferred Cesiaro summable to same set.
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Proof. Assume that {U;j} € L% and Uj; W 1. For every 0 > 0, we can write
¥l -
dy(Uij) — d,,(U)
qul’b i=py+1
j=ra+l
1 qm/Sn qm/Sn
= dy(Uij) — dy(U)| + dy(Uij) — dy(U)
¢m¢n i:pzmil | y\ =g y | (P 11[) i=§i1 ‘ Y\ Y |
j=ra+1 j=ra+l
|dy (Uij)—d, ()26 Idy (Uip)—d, (U)I<6
< |(l] CPm <1 G, Tn < J <5, |dy(Usj) = y(U)|>f5}|+f5
= Gn ll’
for each y € Y. Hence, for every y > 0 we have
Jm,Sn
{(Wl, 11) [S N2 Z |d zj) y(u)) 2 V}
(Pml’bn i=py+1
j=ra+l
1 .. . )
C {(m, n) e N?: =" {(1,]) P <1 G, T < j < S, |dy(Uij) — dy(U)] > 5}| > %} e Io.
. . , WDIZ]
Thus, by the assumption and the condition (i3), we get U;; u. g

By Theorem (3.1) and Theorem (3.4), we get the following corollary.
Corollary 3.5. L2, {WDI[I2]} = L2, N {WDS(Z,)}.

Now, we secondly prove some theorems associated with the concept of 7,-deferred statistical conver-
gence in the Wijsman sense for double sequences of sets.

Theorem 3.6. Let {T};}, {U;j} and {V;} be double sequences such that T;; C U;; C Vi for all (i, j) € IN2. Then,

WDS(T WDS(I2)

WDS(Z.
T "5 U and vy, Do)

U= U u

WDS(I2) WDS(I2)

Proof. Suppose that T;; u, vi U and Tj; c Ujj C Vjj forall (7, j) € N?. Foreach y € Y,
Tij C uij C Vij = dy(Vi]‘) < dy(ui]‘) < dy(T,']')
is hold. Hence, for every 6 > 0 we can write

dy(Uyj) - dy ()| = 6}

[ ) :pw<i<qnrm<j<si,
={ 1) P <0< quy 10 < < 50, dy(U) = dy(U) + 0

U{G, 1) P <0 < G, 7w < S 5, dy(Ui) < dy(U) = 6}
i )t pm < i< G, 7 < j < 5, dy(Tij) 2 dy(U) + 6

V[, 1) < P <8 < Gy 10 < ] < 50, dy(Vig) < dy(UD) = 6
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and so,
0 <1 < o ) = 0] 2]
< (pml%“(i, J)tPm << Gt < j < Su, |dy(Ty) — dy(UD)| > 5}'
+q>m1¢n (G ) P <0< s < < 500 ey (Vi) = dy LD > 5

Hence, for every y > 0 we have

{(m, n) e IN? : L'{(i, D iPm <= G, 1o < J < sy, |dy(Ui) = dy(ll)| > 6}| > )/}

(Pml,bn

c {(m, n) e IN? o 1111 {(i/ J) i Pm <P S G, ta < j < s, |dy(Tig) —dy(UD)] 2 6}’ z )/}
U{(m,n) eIN?: 3 1#} {(i, 1) Pm <1< G, a < j <8y, |dy(Vig) = dy(ll)) > 6}| > y}.

WDS(I5)

Thus, by the assumption and the conditions (i) and (i3), we get U;; u. O

Theorem 3.7. Let (%) and (%) be bounded, then

WS(Z, WDS(I
Ui]‘ —(>2)U:>Ui‘ —(>2)U.

Proof. First of all, since (%) is bounded, there exists an a > 0 such that % < a for all m € IN. So, we write
Pm <a = (P—m > L )
O Gm 1+«

Similarly, for all n € IN, following inequalities can be obtained

WS(I. .
Suppose that U;; U U For every 0 > 0, we can write

(G pm < < Qs 1n < j < 0, |dy(Uig) = dy (WD) 2 8} S {G, ) 11 < Gy < 5, [dy(Uij) — dy(UD)] 2 )

foreach y € Y, and so

() P < 8. Gy 1o < ] < 50, [y (Usy) = dy(UD)] 2

1
PPy
< qmsn 1
GOm¥n Gusn

{(i/ ]) i < er ] < Sns dy(uij) - dy(U)) > 6}|
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Hence, for every y > 0 we have

1 .. . .
{(m, n)e N?: " {(1, 1) Pm <E=Z G, Ta < J <8y, |dy(Uij) = dy(U)| > 6}| > y}
c (mn)eNZ:i'{(ij):Kq j<s d(u--)—d(U)|>5}'>+.
= 7 qun 7 —= Ymys — “Yns y 1 y = = (1 +a)(1 +ﬁ)
. .. . WDS(Z>)
Thus, by the assumption and the condition (i3), we get u, — U 0O

The following theorems will be considered under the restrictions:
P S Py <Gy < qm and 1, <7, <s), <sy

for all m,n € IN, where all of these are sequences of non-negative integers.
Theorem 3.8. If (i’"—i“) is bounded, then

(WDs(rp)}  c{wDs@)} .

(D] [¢"9']

Proof. First of all, since Putbn) jg bounded, there exists an 11 > 0 such that On by
Pt g Pl

< nforallm,n € N. Assume
that {U;;} € {WDS(Z2)}j¢,y) and U;j — U (WDS(Z2)(4,y1)- For every 6 > 0 since

{(i, D) <i< g 1y < j < |d, (Ui —dy(U)] 2 5} c {(z’, D) P <1< oy 10 < j < 50, |y (Ui)—dy(UD)] 2 5}

for each y € Y, we can write

(i)’llpl {(l/ ]) p;,n <i < q;w 7"; < ] < 5;1/ dy(uz]) - dy(U)| > 6}’
< 27 :’l;,”(qb 1¢ (G )2 P << s 7 < < 5, [y (Us) = dy(UD)] 6}‘).

Hence, for every y > 0 we have

{(m,n) eIN*: (G f):pu<i<qur<j<s,

T dy(Uy) — dy ()| > 5}| > 7/}

1

(Pm 1/}11

Thus, by the assumption and the condition (i3), we get U;; — U(WDS(Z2)(¢r,y1) and {U;;} € {IWDS(Z2)}gr,y1-
Consequently, {WDS(12)}¢,y1 S {WDS(ZI )} g ,y11- T

C {(m, n) e IN? : '{(i, 1 iPm <i=Z G, Ta < J <8y, |dy(Ui) = dy(ll)| > 6}| > %}

Theorem 3.9. If thesets {i : pyy < i < pp ), (i qp, <i<qm), {j:rn <j <y} s, <] < syl are finite for all
m,n € IN, then

{(WDS(I2)}gr,p1 € {WDS(Z2)} 1,41
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Proof. Let {U;;} € {(WDS(Z2)}gr 11 and U;; — U ({(WDS(Z2)}¢r,411)- Then, for every 6,7 > 0 and each y € Y

we have

{(’” NN

N oL . ’ ’ . ’
(1) :pp<i<gyrm<j<s,

Also, for every 6 > 0 and each y € Y, since

(G 1) P <0< qu 10 < < 50, 1y (Up) — dy(UD)] 2 6}

=G, ) s P <0 S Pl 1u < j S 7 My (Uy) = dy(UD)] 2 6}

VLG /)

U
U
U
U
U
U

U

we have

ool

o1
— Py
R
Pt
L1
P
L1
P
L1
Prn
L1
ot
L1
omUs

{

)
()
(G
{
{
{
{

)

@)
@)):
@)):

()
(G
(G
(G

{Gj)

CPm < LS P, Sy < < sy, ldy(Uip) -

P <ES G, ta < <1, ldy(Usp) — dy(U))]

:p:n <is< q:n/ S:: < ] < Sy, |dy(uij)

G

P <0 Pl 1y < <55, 1y (U) — dy(UD)] 2 6}

d,(U)] = 6

\%

o}

P <ES Gy, 1y < J < sy, ldy(Ui) = dy(U)] 26

P <IL g, Sy < j < Sy, |d( 11) dy(u)|>(S

Qop <1 Gy 10 < j <10, 1dy(Usj) —

q:n <i< Gm.s 1’,” < ] < sr,w |dy(uij) y(u)| 206

}
|
dy(U)] 2 6}
}
J

Qo <1< Gy Sy < J < 8, 1y (Uij) = dy(U)] 2 6

(i)t P <1< @y 1 < < 5, Iy (Usy) = dy(UD)] 2

(G, 1) = P <0< Pl 7 < ] < 7, 1, (U) — dy (WD) 2 5}|
L < 1S Pl 1 < j S 5}, 1dy(Uij) — dy(UD)] 2 6
P < 1S Pl S < < s, ldy(Uj) — dy(UD)] 2 6
P < S Qs T < ] <75, 1y (Uy) — dy(UD)] 2 6)

Pl < 1S, 1y < j <), ldy(U) — dy(U)] 2 6

—dy(U)] = 8}

G <1< G, 10 < S 77, dy(Usj) — dy(UD)] 2 6}

d,/(Uyj) — dy ()] > 6}| > y} €I,




E. Giille et al. / Filomat 38:3 (2024), 891-901 900

b () gy <0< 7 < <5 1y (Up) — dy(UD] 2 0|
Pt
1o, ,
)£ <0 S G < < 50, 1y (Ui) = dy(UD] 2 0
Pt

and so, for every y > 0and each y € Y

{(m, n) e N2 : (Pml% () = P <1< Gy 10 < < 50, 1y (Us) = dy (D] 2 0] 2 y}

C {(m,n) eN?: <¢>’ml¢; {(z’, D ipm <P P, ta < j <1y, Mdy(Ui) —dy(U)] > 6}| 2 V}
U{(m, n) e N2 : (P;:% (G ) s P < i < Pl 7 < j < 55, 1y (Usp) = dy(UD] > 0} > y}
U{(m,n) e IN?: CP'ml% {(i, N ipm <i<pr, sy <j< sy, ldy (Ui —d,(U) > 6} > 7/}
U{(m,n) eN?: %1% (G ) Pl <0< s 10 < < 1, My (Uiy) = dy(UD)] > 0] > y}
U{(m, n) e N2 : cPinl% (G, ) Pl <0 < 7 < < 5y My (Uiy) = dy(UD)] > 6] > )/}
U{(m, ) e N2 - (P;:% (G ) = Pl < i < s 5l < < 5, My (Us) = dy(LD)] 2 6| > 7/}
U{(m,n) eIN?: CP'ml% {(i, DG <i<qm ra<j<r, |d,(Uj) —d,(U)| > 6} > 7/}
U{(m,n) eN?: %1% (G ) Gy <0 < Qa7 < i < 5 Uy (Us) = dy(UD] > 6| > y}
U{(m, n) e N2 : ﬁ (G ) Gy <0< Qo 5y < 1 < 50, 1y (U) = dy(UD)] > 6] > y}.

Ifthesets{i:pu <i<py ), li:q, <i<quh{j:ra<j<w),{j:s, <j<s,}are finite for all n,m € N in the
above expression, by the assumption and the conditions (i) and (i3), we get

{(m, n) e N?: (Pml%

ie., LI,-]- — U ({WDS(I2)}[(/>,1,U]) and {ui]'} € {WDS(IZ)}[Qb,lp]- Consequently, {WDS(Iz)}[(pr,lpr] - {WDS(I2)}[¢),¢]. O

(G 1) pw << G, 1n < j < 50, [dy(Us) — dy(U)] 2 6}| > y} €I,

By Theorem (3.1), Theorem (3.4), Theorem (3.8) and Theorem (3.9), we get the following corollary.
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Corollary 3.10.

i. Let (i,”' i”) be bounded. If a double sequence {U,;} is WD[13](4,y)-summable to a set U, then this sequence is
WDS(Z )14 y1-convergent to same set.

ii. Let thesets {i : py < i < pph, li:qy <i<quh {j:rm <j<rh{j:s, <j< s, be finite for all

m,n € N. If a double sequence {Ujj} € L2, is WDS(I2)q,y)-convergent to a set U, then this sequence is
WDI13]¢,y1-summable to same set.
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