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The MPWG inverse of third-order F-square tensors based on the
T-product
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Abstract. We define the T-MPWG inverse of third-order F-square tensors by using the T-core EP de-
composition of tensors via the T-product. Then, we present some characterizations and properties of
the T-MPWG inverse. Moreover, the Cayley-Hamilton theorem of the third-order tensors is extended to
T-MPWG inverses. Examples are also given to illustrate these results.

1. Introduction

A tensor A can be regarded as a multidimensional array of data, which takes the form:
A= (ailizmiN) € ChxhLxXIn

The order of a tensor is the number of dimensions. For the given tensor A the order is N. In general, a
vector is a first-order tensor, and a matrix is considered a second-order tensor. Products of tensors include
Einstein products and T-products, etc.

Kilmer and Martin proposed the tensor T-product and used the discrete Fourier transform to transform
the tensor multiplication into the matrix multiplication for calculation in [6]. Jin, Bai, Benitez and Liu
defined the Moore-penrose inverse of tensors and derived an application to linear models in [4]. Miao, Qi
and Wei introduced T-Drazin inverse and its properties when an F-square tensor was not invertible with
T-product in [8]. Zhang introduced the weak group inverse, core inverse and core-EP inverse of tensors
based on the T-product in [17].

In [10], Wang, Liu and Jin defined the MP weak group inverse of a complex square matrix A with
Ind(A) = k, denoted as A¥"C. The MPWG inverse A"WC of A is the unique matrix X € C™" satisfying
XAX = X,AX = APC and XA = A'APA2. Moreover, it was proved that
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where C is the weak core part of A with C = AA¥A. A" and A" represent the Moore-Penrose inverse and
weak group inverse of A respectively.

In [10], Wang, Chen and Yan gave the polynomial equations of the core-EP inverse matrix A® on complex
tield by using the classical Cayley-Hamliton theorem. Furthermore, some properties of the characteristic
polynomials of A® were derived. Liu and Wang also gave the Cayley-Hamliton theorem of the weak group
inverse A” on complex field by using the core-EP decomposition in [7].

The work is organized as follows. In section 2, we provide some preliminaries. We introduce basic
definitions and properties of tensors firstly Then, we show the definitions of the T-Moore-Penrose inverse,
T-core EP inverse and T-weak group inverse. In section 3, we defined the MPWG inverse of the third-order
tensors based on T-product. Then, we prove that the MPWG inverse of an arbitrary tensor A exists and is
unique by using the technique of discrete Fourier transform. Then, we give some properties of the T-MPWG
inverse and some new representations by using the T-core EP decomposition. In section 4, we discuss the
relationships between the T-MPWG inverse and other known generalized inverses of tensors. Furthermore,
we present the limit expression of the MPWG inverse of the third-order tensors. Supplementary example is
given to illustrate the relationships. In section 5, we extend the Cayley-Hamliton theorem of the third-order
tensors to the T-MPWG inverse, and give some examples to illustrate.

2. Preliminaries

In this section, we mainly introduce the definitions, properties and operation rules of the third-order
tensors based on the T-product.

Let A € C"™™P be a third-order tensor, we denote its frontal faces as A® € C"™" k =1,--- ,p- The
operations bcirc, unfold and fold are defined as follows [6]:

AD Al AP-D Lo AQ) A

AD A A ... A0 A
bcirc(A) :=| . . . . |, unfold(A) :=| . |,

AP ACD AC-D ... AD ne

and fold (unfold(A)) := A, which means that fold is inverse operator of unfold. We can also define
the corresponding operation beirc™! : C"P*"" — C™ ¥, which is the inverse operator of beirc, such that
beire™! (beire(A)) = A.

On the basis of the above operators, the conjugate transpose of A is introduced in [8]. The conjugate
transpose A" is obtained by conjugate transposing each of the frontal slices and then reversing the order of
transposed frontal slices 2 through n:

(A0’
(AP
A = fold | |(AP™V)
Aoy

Definition 2.1. [8] Let A € C"™™¥ be the third-order tensor.
(i) The T-range space of A:

R(A) := Ran ((F ® I,) beire (A) (F, ® I, ))

where Ran means the range space;
(ii) The T-null space of A:

N(A) := Null ((Ff ® I, beire (A) (F, ® 1))
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where Null represents the null space.
The following definitions are introduced in [8]:

Definition 2.2. [§] Let A € C"™™P, B € C™ be two complex tensors. Then, the T-product A+Bisan mxsXp
complex tensor defined by

A+ B := fold (bcirc(A)unfold(B)).
Definition 2.3. [8] Let A € C™™P. If there exists a tensor X € C™™¥ such that
(1) AxX+A = A, (2) XxAxX = X, (3) (A+X)* = A=X, (4) (XxA)* = XxA.
Then X is called the Moore-Penrose inverse of the tensor A and is denoted by A"

The cyclic matrix can be transformed into diagonal shape by the discrete Fourier transform. For the
cyclic matrix beirc(A), in [1, 3], the authors used the discrete Fourier transform to transform it into diagonal
shape: let A € C™"?, then

beire(A) = (Fi ® I,) Diag (A1, Ay ) (F, ® 1),
where A; € C™, (i = 1,--- ,p). On the basis of block diagonal shape, T-rank and T-index was introduced in
[8]:

Definition 2.4. [8] Let A € C™™P,
(i) Let ranky(A) be the rank of the tensor A:

rankr(A) = rank (bcirc (A)) = Zle (rank (A))),

where rank (A;) represents the rank of the matrix A;,i=1,...,p.
(if) Let Indr(A) be the index of the tensor A:

Indr(A) = Ind (bcirc (A)) = max (Ind (A))),
<i<p

where Ind (A;) is the smallest positive integer satisfying rank(Ai.‘) = rank(Ai.‘“), Obviously, Indr(A) = 1 &
Ind(A;) =1foranyi=1,...,p & rank (bcirc (A)) = rank (bcirc (ﬂ)Z).
Definition 2.5. [8] Let A € C™"* and Indr(A) = k. If there exists a tensor X € C"™™P such that

(15 ALX = A, (2) XxAxX = X, (5) ArX = XxA.

Then X is called the Drazin inverse of the tensor A, and is denoted by AP. In particular, when k = 1, X is called the
group inverse of the tensor A and is denoted by A*.

Definition 2.6. [9] Let A € C"™"P. Then

(i) the tensor A is called EP if A+A" = A'+A;

(ii) the tensor A is idempotent if A* = A;

(iii) the tensor A is tripotent if A> = A;

(iv) the tensor A is called Hermitian idempotent if A> = A = A’;
(V) the tensor A is unitary if A*A = AxA" = 1.

Lemma 2.7. [9] Let A € C™"¥ gnd Indr(A) = k. If there exists a tensor X € C™" satisfying
(1) XxA=X = X, (2) R(A") = R(X).
Then X is called the core-EP inverse of tensor A, and it is denoted as A®. It’s also expressed as
X = (A (A ((ﬂ*)k*ﬂkH)T (A
Lemma 2.8. [8] Let A € C™™* and Indr(A) = k. If there exists a tensor X € C™™Y satisfying
(1) A=X? = X, (2) AxX = A=A,

Then X is called the weak group inverse of A and is denoted as A®. 1t’s also expressed as X = (A®)*+A. In particular,
when Indr(A) =1, X = A"
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3. T-MPWG inverse

In this section, we introduce the MPWG inverse of the third-order tensors based on the T-product, and
give some characterizations and properties of it.

Lemma 3.1. [11, 12] Let A € C™"P. Then the following statements about A® hold:
(i) A" is an outer inverse of A, that is, AY+A+AY = AY,

(i) R(AY) = R(A"),

(iii) A=Ak = AT,

(iv) A+AY = A+B, for some tensor B,

(v) AY = AZ, for some tensor Z.

Theorem 3.2. Let A € C™™¥ and Indr(A) = k. Then the following system of equations
(1) XxA+X = X, (2) AxX = AP+C, (3) XxA = A+ A +A>

is consistent and its unique solution is the tensor X = AAP+C, where C = AAY+A is the weak core part of tensor
A

Proof. Let
Aq
DFT(Circ(Unfold(A))) = ,
Ap
then
A7
DFT(Circ(Unfold(AP))) = . ,
Ay
PA-{
DFT(Circ(Unfold(A"))) = . ,
A
A
DFT(Circ(Unfold(A®))) = ,
Ay
A
DFT(Circ(Unfold(AY))) =
Ay
Let
X1
DFT(Circ(Unfold(X))) = .
Xp

We will check X = A"+ AP+C satisfies the there equations in the system.
Notice that

DFT(Circ(Unfold(X))) = DFT(Circ(Unfold(A+AP+C)))
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i.e.
X1 AIA? C
= /Xi:A;'rAl‘DCi/(i:l/'”/p)
X, AIAPC,
where C = A+AY+A, then
DFT(Circ(Unfold(C))) = DFT(Circ(Unfold(A+AY+A))),
i.e.
G ALAYA,
= ,Ci=AATA, (i=1,---,p).
Cy A,,A?Ap
By AAP = APA and CAPC = AAPAAPAAPA = AAPAA®A = AAYA = A, we can get
'X1A1X1
DFT(Circ(Unfold(X*A*X))) =
L XpApXy
'(A’{A? C1)A; (AIA? Cy)

| (AAPCAALARC,)
[ATADC A ATAP AL AV A,

tAD tAD
AIADC,A,ATADA,AYA,

[AtADC, APC,
| A;AE CA,Cy
'AIA? Cy
+AD
I AA)Cy
X,
= = DFT(Circ(Unfold(X))).
Xp
Therefore, X+ A+X = X.
On the other hand,
'A1X1
DFT(Circ(Unfold(A*X))) =
L ApXp
A1ATAPC,
i A,,A;A,’? Gy
’AlAiA?AlA?Al
APA;AEA,,AS’AP

943
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>A1AJ{A1A?A?A1
i AATAAD AT A,
—AlAllj AT A
i ApADATA,
[APC,
= . = DFT(Circ(Unfold(A"+C))).
AJC,

Therefore, AxX = AP=C.
From (v) in Lemma 3.1, for some tensor Z, we have A® = A+Z, A® = A*Z, and because A*1AP = Ak,

then
>X1A1

DFT(Circ(Unfold(X*A))) =
i XpAp
ATAPC A,

ASADC,A
! peip PP
ATADA; AP A2

;
» A ATAP A, AY A
(ATAD A AR Z, A2

t AD k 2
- ApATADA,ALZ, A2
[ AT 2
ATAKZL A2

i A ATARZ, AT
[ATAT A2
= = DFT(Circ(Unfold(A+AY+C))).

A ATABA?

Therefore, X*A = A*AY+A2.
Above all, X satisfies the three equations.
For the uniqueness, we assume that X; and X, are two solutions of the system. From

ﬂ*Xl — ﬂD*C - ﬂ*XZ, Xl*ﬂ = ﬂ'l'*ﬂ@*ﬂz = Xz*ﬂ,
we have
Xy = (XpxA)xXy = (XoxA)x Xy = Xopx(AxXq) = XpxAxXp = X».

The uniqueness is proved. O

Definition 3.3. Let A € C™™? with Indr(A) = k, and C be the weak core part of A. The MPWG inverse of tensor
A, denoted as AWC, is defined to be the solution of the system in Theorem 3.2.

Theorem 3.4. Let A € C™" with Indy(A) = k. Then
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ANE = A+AYA.
Proof. Applying (v) in Lemma 3.1 and Theorem 3.2, we obtain

ANC = AAPC = AAP+AA"+A
= ﬂ+*ﬂD*ﬂ*ﬂw*ﬂ
= ﬂ+*ﬂD*ﬂ*ﬂk*Z*ﬂ
= ﬂ+*ﬂk*Z*ﬂ
= ﬂ+*ﬂ@*ﬂ

O

Let A € C™"™ be a third-order tensor, and A® represents the kth frontal slice of tensor A. For the
simplicity of the discussion, let

A= [A<1>|A<2)|...|A<p)]_
Example 3.5. Let
AecC¥, A = [A(1)|A(2)],

where

11 -1 1
@ = @ =
<lo o) <[ o}
Applying the discrete Fourier transform, we obtain

beirc(A) = (FY ® ) Diag (A1,A2) (F2 ® ),

where

0 2 2 0
Al:[o o]' A= o]'

From the above, we can get Ind(A1) = 2,Ind(A;) = 1, so Indr(A) = 2. Besides,

-

ISR

-2 0 s |40
o]'ﬂ‘_o 0

o N
o o
|
N
o o
I.\_.I

(A? = A+A* = fold(bcirc(A*)unfold(A*)) = [

16 0)=16 0] (s oot _[ & O
0 0] 0 0]'((?‘))*?‘)‘[0 0

(ﬂ*)Z*ﬂS — [
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AP#((A)+ A% = fold (bcirc(ﬂz)unfold((ﬂ*)z*(ﬂ3))+)

(2 0 -2 0][& O

_ 00 0 offo off_[& o|]-% ©

_fOId—202O61—40_[0000’
0 0 0 0fl0 o0

A = F((A VALY A = fold (beire(APH(A'+A%) yunfold((A')?)

—% 8 _5% 8 3 8_ L o|-1 0

= fold =4 K ,
- 0 % 0f|-2 0 |0 0 0]
[0 0 0 oflo o

A = (A®)*+A = fold (beire((A®)?)unfold(A))

10 -1 o1 1
0 0 0 of[o 0 1 0[-1 0

=foldll 19 1 0—11‘[0 0] 0 o]'
[0 0 0 of[0 O

A+ A = fold (bcirc(A®)unfold(A))

(10 -1 0]f1 1
0 0 0 offo o 2 0[-2 0

=foldll 1 9 1 of|-1 1 ‘[o 0 0]'
[0 0 0 0fl0 O

ANE = AAY+A = fold (beirc(A')unfold(A”+A))

(1 0 -1 0][2 ©
1 0 2 oflo o 1 0[-1 0

— 4 4 —

=fold|] 4 g ; 0—20‘[0 0|0 o]
[§ 0 3 O0]f0 0

In the following, we will give some properties of the T-MPWG inverse of the tensor A € C™".

Lemma 3.6. [5] Let X € C™"?, B € C™", and C € C™™ be given tensors. Then

(i) R(X) € R(B) if and only if there exists U € C™"F such that X = B+U.

(i) N (C) € N (X) if and only if there exists V € C"™P such that X = V=C.

(iil) R(X) C R(B) and N (C) € N (X) if and only if there exists U € C™™F such that X = B+V+C.

On the basis of the T-range space R(A) and T-null space N(A) of A, we introduce the orthogonal
complement space of the T-range space:

Definition 3.7. Let A € C™™?, R(A)" represents the orthogonal complement space of R(A), that is, each tensor
X € €™ can be uniquely represented as

X=Y+Z Y eRA),Ze<cRA"
Lemma 3.8. Let A € CP"F. Then,
N(A) = RA), N(A) = R(A)*.
Proof. Forany Z € RA):, Y € R(A), Y = A=X, where X is arbitrary. Then,
Y+Z =0 (A=X)+Y = X'>»A+Z = O,
so A+Z = O & Z € N(A). Therefore, N(A) = R(A)". N(A*) = R(A)" is similarly proved. O
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Theorem 3.9. Let A € C™" with Indr(A) = k. Then the following conditions are equivalent:

(i) X =AWC = A«AY+A,

(ii) X = X+ AP+C, X+ A+ = AL+ AL,

(iil) AT+ AX = X, AxX = A=A,

(iv) X+ A" = A=AF, XsAYA = X,

(V) X = X+ APsC, R(X) = R(AAY),

(vi) A=X = AP+C, R(X) = R(A").

Proof. That (i) implies all other items (ii)-(vi) can be checked directly.

(ii) = (i) From (v) in Lemma 3.1, since A”Y = A*+Z, for some third-order tensor Z, it follows that

X = X*ﬂDx—C = X*ﬂD*ﬂ*ﬂ@*ﬂ = X*ﬂD*ﬂx—ﬂk*Z*ﬂ = Xx-ﬂk*z:(-ﬂ = ﬂ+*ﬂk*Z*ﬂ = ﬂf*ﬂ@*ﬂ,

(iii) = (i) It's obvious that X = A" +A+X = A +AY+A.
(iv) = (i) According to X*A* = A'+AF, we obtain

X = XeAA = Xs AT+ A = A+ AZ+A = AA A
(v) = (ii) Since A+X is idempotent, it follows that
AxX — (A=X)? = (A — A=X+A)=X = 0,
so R (ATA) = R (X) € N(A - AX+A). We have (A — AX+AWAA* = 0. That is,
A AAF — A X AAAL = 0 = A* = AX= A

Multiplying the last equality by A" from the left side, we get A« A* = AT+ A= XA,
From (I - AARANA* = 0, we have R (X) = R(ANA) € N(I - AM*A). Then (I - A'+A)X = 0.
X = A A=X. Hence, Xx A = A+ A X+ A* = A< AL
Since R(I — A'+A) € N((A)+A?) = N(X), we have that X = A'+A+X, and hence, X»A* = A'+A~.
(vi) = (i) Let X = A"WC. From its definition, we have A+X = AP*C. Then,
AAATNG = AAA A A = A+AYA = AWC,

We obtain that R(X) € R(A'+A) = R(A").

947

i.e.

In order to show that X is the unique solution to the system, we assume that both X; and X, satisfy the

equations. Then,
AxX = AP+C = A+X,, R(X71) € R(A), R(X2) € R(A,
So we get that R(X; — X2) € R(A").

Since A+(X; — X3) = 0, we obtain R(X; — X2) € N(A) = R(A*)*, Therefore, R(X1 — X2) € (R(A)) N

R(ﬂ*) =0. Thus, X1 =X,. O

Theorem 3.10. Let A € C"P with Indp(A) = k. Then
Q) ANC = At ( A=A« A) =+ A,

(ii) AMNC = Ar(AVAA® = AtS(AD) AP,

(iii) ﬂtWG — ﬂ+*ﬂk*(ﬂk+2)®*ﬂ2,

(iV) ﬂ+,WG — ﬂ+*(ﬂk+2*(ﬂk)+)+*ﬂ2,

Proof. Let

Aq
DFT(Circ(Unfold(A))) = o
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A?
DFT(Circ(Unfold(A?®))) = ,
4]
A
DFT(Circ(Unfold(A%))) = ,
A
then
(41474
DFT(Circ(Unfold((A=AY+A)*))) = )
(ApAD AL

From Theorem 3.8 and Theorem 3.9 in reference [12], we have AY = (AA®A)* = (A®)2A = (A?)®A =
AF(AR2)0A = (A2P 4 )TA, ie.

AP = (AATA)" = (AP A = (A Ai = AJ(AT?)A; = (ATP )" A;.
Then,
AY = (AA A = (AY)4A = (Ao A = AS(A?)OxA = (AP A(A)) A,

pre-multiplying the last equality by A" and post-multiplying by A, we obtain A"C = A« AY*A.
So (i)-(iv) are established. O

On the basis of the core-EP decomposition which was introduced in [11], Cong and Ma introduced the
core-EP decomposition of the third-order tensors A € C™*7 based on the T-product in [2]:

Lemma 3.11. [2] Let A € C™™P with Indr(A) = k, rankr(A*) = p. Then A can be decomposed as A = Ay + Ay,
(1) rankp(A2) = rankr(Ar); (2) As = O0; (3) Ay« Ay = ApxAy = O,
where Ay is the core part with Indr(Ay) = 1, Ay is EP. There exists a unitary tensor U € C™"¥ such that

o O
O N

7 S
o N

7 S

_— rs

] *(Ll*, ﬂ1 = 7/[* [ ] *(Ll*, ﬂz = '7/[* [ ]*W*,

where T~ € C™"¥ is singular, S € C™=*P, N' € C=">=0 s pilpotent of index k, i.e. N* = 0.

Lemma 3.12. Let A € C"P. Its T-core EP decomposition as above, then

. T A ~T +A+SxNT

O A = s [(In_, S NNpS A N = (T - N**N)*S**A*S*N’f] .
-1 k+1y~1 7

(11) ﬂD = U+ [7~O (T +(; *T] U,

_ 71 ol ..

(iii) A® —(LI*[ 0 O U,

. B T T28| _ .

(iv) A = U~ 0 0 U,

which can be expressed as the core-EP decomposition form, where
A= [THT + Loy = NBNRST, T = T T758«N 17, and
L
DFT(Circ(Unfold(Z,,—,))) = =T, (i=1,---,p).
Iy
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Proof.
At
DFT(Circ(Unfold(A"))) =
A
Eiv R, .
NERAR
E, F
u,| For ] u;
] P [GP Hy
Ei F
'U1 G1 H1 u;
u, [Ep Fp] Uy
Gy Hy
_ . E F| ..
= DFT (CII'C (Unfold (ﬂ * [ G 7_{] U ))) .

According to reference [11], we obtain
E F TA —TASN?
+_ . _ .
A= U[G H ] u = u[(ln_r -N'N)S*A Nt —(I,_, - N'N)S*aSN* ] u,

SO

T*+A —T +A+S+NT
t— s A
A=U [(In—r - NBN)3=S A Nt —(T,_, - N**N)*S**A*S*N*] u,
where A = [T%T + (L,_, — NTxN)=S 7.
Similarly,
A7
DFT(Circ(Unfold(AP))) =
Ay
-1 k+1y=1,7
= DFT | Circ [ Unfold | U+ T (T U
o o
S0
g1 (7-k+1)—1*7- .
D _ % *
B A P
where 7~ = Z]]:(l) T i+S+N*1=I Furthermore,
®
& 71 0
DFT(Circ(Unfold(A%))) = . = DFT (Circ (Unfold ((IJ* [ 0 O:| *’LI*)))
Ay
SO
71 0 .
A® —‘ZI*[ 0 O]*(LI.
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On the other hand,
o
4 T TS
DFT(Circ(Unfold(A%))) = = DFT (Circ (Unfold (‘LI* [ 0 0 ] *ﬂ)))
Ay
Therefore,
71 7728
W — * #! *
AY =U [ 0 0 ] U*.
O

According to the decomposition of A" and A”, we can easily get the following two inferences.

Corollary 3.13. Let A € C™"P. Then we have

T+A =T+ AT 148 + T 2S*N))
WG _ gt g, 7 — U
AT = AAOA = Ux [(I,ﬂ CNBNSHA (T = NSNS AT 158 + T-255eN) | Y
L
where A = [T+T + (I,—, — NT*N)+S*]~!, DFT(Circ(Unfold(7,_,))) = =1, (i=1,---,p).
Iy

Proof. Since AMNVC = AT+ AY+A, then

ANE = beire™! (bcirc(ﬂ+’WG)) = beirc™ (bcirc(ﬂJr*ﬂ@*ﬂ))

ATAYA,
= beirc™ [ (F) ® 1) (Fy®1,)
ATABA,
T LT AT IS + T 25SeN)

= w*[ 7/[*

(L = NSNS Ly = NSNS ax(T S + T-2SeN) |
where A = [T%T + (L,_, — N:N)=S171. O
Remark 3.14. Using the T-core EP decomposition, we can get that

71 0

*, >(-+: *
FAYA (LI[O 0

]*ﬂ* = A°.

4. Relationships with other generalized inverses of tensors

In this section, we discuss the equivalence between the T-MPWG inverse and other known generalized
inverses of tensors by using the T-core EP decomposition.

Theorem 4.1. Let A € C™" be a complex tensor with Indr(A) = k. Then
(i) AN =AT2=1,,8=0and N =O;
(i) AN = A ©T+T* =1, 8S=0and N =0O;
(i) AYNC = Py = AxA" & A is orthogonal and idempotent;
(iv) ANVC =Qa=AAS T =T, and N = O,
L
where DFT(Circ(Unfold(Z,))) = JLi=1,G0=1,---,p).

Iy
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Proof. Let

ﬂtwc — %{* [ T**A —T**A*(T‘l*s + T_Z*S*N) )] ’(‘(L{* — [gl gZ

Loy = NBN)S A (Tey = NN =S a(T 7158 + T 22 SN

. WG _ G G| _|T S
@ WWG‘?":’[Q gﬂ‘[o N]

S THA=T,8=SNN,N=0and T+T 1+S+T 2S+N) = S.
©T72=71,S=0and N =0.
N WG _ e . |G1 G| _|T O
(i) A =A @[§3 QJ_[S* N*]
& T A =T, T T +8+T 28+N) = O,
(L per = NTsN)2S*3A = 8 and ST 148 + T2+S+N) = N*.
S A=1,T HS+T 2SN =0,SNN =0,N* =0
ST+ *=71,8S=0and N =0.
(i) AMNC = P4 & AVNG = AxA
& Ta=1,T S+ T 28N =0,
(Zner = NT+N)xS+A = O and O = N*NT.
From the reference [15], A is orthogonal and idempotent.
(iv) AWC = Qq & AMNWC = AtA
- [gl gz] B [ TH+nxT T*+0x8 — T 42+ SN TN
Gs Gu|  |(Tuy = NTsN)S 25T NN + (L, — NTx NS +AxS+(T,,_, — NTxN)
7 =1,and N=0. 0O

Remark 4.2. When the tensor A is EP, i.e. A~At = A+ A, we have that
AW = AT = A = A® = AY = AC.

In [16], Yuan and Zuo pointed out the limit expressions for some important generalized inverses. We
extend it to tensors and obtain the limit expressions of the third-order tensors based on the T-product.

Lemma 4.3. [16] Let A € C™™¥ with Indr(A) = k. There exists A satisfying AP+ A+A? = A, then

@) . -1
ﬂR(X*M),N(X*M) = gl_%X* (z+d + Y+ A=X)" =Y.

In [14],Wang and Liu pointed out the limit expressions of the MP inverse of the third-order tensors
based on the T-product.

Theorem 4.4. [14] Let A € C™™F with Indr(A) = k. Then
A" = HmAs (241 + AxA) .
Z—
Applying Theorem 4.4 and the relationship between the T-MPWG inverse and the T-MP inverse A""¢ =
A+ AY+A, we obtain the limit expression of the MPWG inverse of the tensor.
Lemma 4.5. Let A € C™"F with Indr(A) = k. Then

+ WG _ 7(2)
A - ﬂR(ﬂhﬂk),N((ﬂk)**ﬂZ)'

Proof. By the definition of MPWG inverse of matrix, X; is an outer inverse of A;, i.e. X;A;X; = X; i=1,--- ,p).
From X; = A:.fAl@Ai, we have

X1A1X1 X1 AIA?Al

X,4,X, X, ATADA,



M. He et al. / Filomat 38:3 (2024), 939-956 952

Hence,
DFT (Circ(Unfold(X*A+X))) = DFT (Circ(Unfold(X))).

Therefore, AWE = AWWC A ATNWG,
Using the T-core EP decomposition, we have A«A"C = AY+A. Then

N (A% A) € N(A+AY*A) = N(AVNVC) C N(AANVC) = N(AV+A),
N (A®xA) € N(AAY+A) = N(A*A?) C N(A®)?+A%) = N(AY+A),
50 N(AWC) = N(AY+A) = N(A®). Hence,
X e NAMWC) & A2+X € N(A®) = N((AY)),
X e N(AMWC) & X € N((AY+A?).
So we have

R(AT A" = RATWCAK) C R(ATVE) = R(ATAY+A) = R(AT* A = Z+A) C R(AT+AF).

Therefore,
+,WG _ 42)
A - ﬂR(ﬂ**ﬂ"),N((ﬂ")**ﬂz)'
O
From Lemma 4.4, we can get
+,WG _ 72) _ 72
A - ﬂ‘R(ﬂ**ﬂk),N((ﬂ*’)**ﬂz) - ﬂ'R(ﬂ**.7("*(_7(")**?12),N((ﬂ*’)'*ﬂz*ﬂ**ﬂk)’

Theorem 4.6. Let A € C" with Indr(A) = k. Then
AWE = gi_%ﬂu (Z*I + ﬂk*(ﬂk)**ﬂ?a*ﬂw‘)_l * Ak (A AL,
Proof. Let X = A, Y = A*+(A*)'+«A2. Then from Lemma 4.4, we can get
ANE = limXs (2] + YxAeX) ' 1Y
= lim A (22T + AAY A FAY) | 5 A (A 5
= limA's (227 + AR 5 A (A 5L,
U

An example is given to illustrate the theorem:

Example 4.7. Consider the tensor
Ac CZXZXZ, A= [A(1)|A(2)],

in Example 3.1, where

Since Indp(A) =2,
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L ol-1 o0 -1 0|1 0 2 0|-2 0
t 4 4 * 2 _
y‘—[}Ioio'“f"“1010'“7“00 o
4 0l-4 0 8 0/-8 0
3 _ 4 _ g2 A2Y —
@ [0 0 0],ﬂ_ﬂ ) [0 P 0],
64 0| -64 0 1 0[-10
20 ( ARV AP — WG _
segere=] 8 8|8 0| mec[ 1 0] 0]
FH( A A+ AT = fold (beirc(A(A?) + A% unfold(A'))
64 0 -64 0][1 O
Coall © 0 0 offo of|_[32 o|-32 0
“O%-64 0 64 o0||-1 of|T| 0 0o 0 o0
0 0 0 o]lo o
And
2yt _| 2 00 0 32 0[-32 0] [z+32 0]-32 0
=l +A (ﬂ)*ﬂ*ﬂ‘[o z |0 04+[0 ol o o|7| o z| o o
) ) 5 1 z+32 0 32 0
(2+L + PO AP <A AT)” =[ e 1 L ]

(24 + FOH(PY A+ A) 4 A ALY 5 A2 = fold (bocire(z+] + F+(A) +AC+AT) " Junfol d(AP+(A) +A2))

z+32 32

Z(z+64) (1) 2z +68) Olrea 0O o .
0 = 0 off o 0 0| - 0
= fold 32 z 32 — [ z+64 z+64 ]/
Z(z+64) 0 z(zz++64) 0f|-64 0 0 0 0
o o o 1jlo o0

Therefore,
0] -1
0

lir%ﬂ** (Z*[ + 3{"*(5!{")*>e313>e561+)71 «AkR(AFY A2 = [ (1) 8 ] = AWWE,
Z—>

5. Cayley-Hamilton theorem of the T-MPWG inverse

In this section, we extend the Cayley-Hamilton theorem of the third-order tensors to the T-MPWG
inverse. If bcirc(A) can be Fourier block diagonalized as:

Ay
beirc(A) = (Fi ® 1) (F,®1L).
Ap
P4, (x) is the characteristic polynomial of the matrix A;,
Pa,(x) = det(sl, — Ai) = X" + aj1X" 1 + -+ a;1x + ap,

where a;9 = det(A;),i=1,--- ,p.
Firstly, we introduce the concept of the T-characteristic polynomial and Cayley-Hamilton theorem for
the tensor A € C™"P,

Definition 5.1. [8] Let A € C™" be a complex tensor. Then the T-characteristic polynomial Pr(x) of tensor A has
the expression:
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Pr(x) := LCM (P4, (x), P, (x), -+ , Pa, (x))
where LCM means the least common multipiler.
According to the above definition, let the T-characteristic polynomial of A be of order ¢.
Pr(x) = x' + b_1x'™1 + -+« + bix + by.

Assuming that A € C™"¥ is singular, then there exists at least one matrix A; (i = 1, ,p) in Py, (x) is
singular, i.e., there is at least one det(A;) = 0. Therefore, by = 0.

Theorem 5.2. [8] Let A € C"™P be a complex tensor, and Pr(x) be the T-characteristic polynomial of A. Then A
satisfies the T-characteristic polynomial Pr(x), which Pr(A) = O.

Lemma 5.3. [13] Let A € C™™*. The T-core EP decomposition is as

7 S

ﬂ:(”*[o N

.
then

Pr(A®) = a1(A®)" + ax(A°)"" + -+ + 4,1 (A°) + A® = 0.
Lemma 5.4. [7] Let A € C™"P. The T-core EP decomposition is as

7 S

) S

e
then
Pr(AY) = a1 (A®)" + ay(AY)" ™+ -+ + 2,1 (A% + AY = O.

Theorem 5.5. Let A € C™" with Indr(A) = k. The characteristic polynomial of the matrix A; is Pa,(s) =
det(sl, — A;) = 8" + a; 18"t + -+ +a;15, then

Pr(AMWC) = ay (ATWE)" 4 ap(ATWEY' ™ 4. 4 g, 4 (APWE) 4+ AVNG = O,
ATWE e C¥ s the T-MPWG inverse of A.

Proof. Since Pr(A"C) is a tensor on C™™, we apply bcirc to it:

bcirc (PT(ﬂ+’WG)) =Pr (bCiI‘C(ﬂtWG))

A+,WG
AT,WG
= Pr|(F ®1,) 2 (F,®1)
1, WG
AP
Pr(A}Y)
p T(A;'WG)
= (F)®1,) _ (F,®1I,)
i p T(A;’WG)
0
o)
=(F/®l) _ (F,®1,) = O.
o)

According to the literature [8], we obtain
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Pr(ATWE) = (ATWCY" 4 gp(AWEY' ™ 4. 4 g,y (AWEY 4 AIWE = O,
[

Here is an example to illustrate:

Example 5.6. Consider tensor
AecC¥? A = [A(l)IA(Z)],

in Example 3.1, where

and

Applying the discrete Fourier transform

beirc(A™C) = (Fif ® L) Diag (A}'¢, AT"C) (Fa ® ),

we obtain
we _ |1 1 twe _ |-1 -1
] T R s
Thus
_ +,WG_x_1 —1_
PAI,wc(x)—|xE—A1 |— 0 . =x%-x,
_ +,WG_x+1 1_
PA;,wc(x)—|xE—A2 |— 0 x‘—x2+x,
S0
11 [1 1
+WGY _ _ _
Pne (4] )_[O 0] [0 0]—0,
1 -1 [-1 -1
twey _ -1 -1 |-1 -1f_
s N i I F B
Therefore

beire (Pr(AE)) = Pr (beirc(A™E))

ATWG
=Pr ((FI; ® ) [ ! A+,WG] (F2® 12))
2
WG
=(Ff ®h) [PT(A1 ) Pra +,wc)] (F2®1)
2

=(Ff' e D) [O o] (F,®1) = 0.

Hence, Pr(AMG) = a;(AWWE)? + AMWE = 0.
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