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L} (R™*1) - boundedness of pseudo-differential operators involving the
Weinstein transform

Mohd Sartaj?, S.K. Upadhyay?

*Department of Mathematical Sciences, Indian Institute of Technology (BHU), Varanasi-221005, India

Abstract. In this paper, an L}, (IR"*") - boundedness of pseudo-differential operators associated with class
of symbol S° are proven by utilizing the theory of the Weinstein transform. Using the aforesaid theory
various properties and boundedness results on L} (R"*!) - type Sobolev spaces are given.

1. Introduction

The Weinstein transformation is the generalization of the Fourier and Hankel transform and its kernel
is the product of complex exponential function and normalized Bessel function of the first kind. Using
the theory of the Weinstein transformation many important problems of partial-differential equations,
signal processing, wavelets, mechanics and mathematical sciences have been studied by many authors
[10,11, 18, 21]. Recently, an integral representation of pseudo-differential operators involving the Weinstein
transform was investigated by [18] and discussed many properties. By the paper [18] utilizing the theory of
the Weinstein transform authors gave the application of pseudo-differential operators in the heat equation.
This theory is useful to study L/, - boundedness of pseudo-differential operators involving the Weinstein
transform.

Kohn and Nirenberg [9], Hormander [4] and others developed proper calculus of pseudo-differential
operators by exploiting the theory of Fourier transformation. Calderén and Vaillancourt [1] proved the

L?- boundedness of M-order pseudo-differential operators associated with symbol p(x1, x2, &) € 52461 5, for

0<p<01,0p <land 1\7/1 > (‘Slzﬂ — p, Fefferman [3] proved sharp L’- boundedness results for pseudo-
differential operators in the class Sg s lner [7] discussed the L7- boundedness of pseudo-differential op-

erators with symbol p(x, &, y) € Sﬁ 5 for u < (p — 1)(n + 1), Cato [8] considered the L2- boundedness for

pseudo-differential operators with symbol a(x, &) lies in Sg, , for 0 < p <1, Nagase [12] investigated the LP-
boundedness of pseudo-differential operators with non-regular symbols, Hwang and Lee [6] studied the L?
- boundedness of pseudo-differential operator with symbol class ngo form = —n|1/p—1/2|, Wong [22, p. 77]

proved that the L7(R") - boundedness of pseudo-diffrential operators T, for o € S, Kumar and Ruzhansky
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[20] investigated the L” —L7 - boundedness of (k, a) - Fourier multipliers and using this theory they gave appli-
cations to nonlinear equations. These L” - boundedness results made strong calculus of pseudo-differential
operators involving Fourier transform with different types of symbol classes. Exploiting the Hankel trans-
form theory Pathak and Upadhyay [15], established the LZ - boundedness results of pseudo-differential
operators with symbol class H". Using Lﬁ - boundedness properties authors proved ,, , is bounded linear

operator from W, — Wg’p and W;” — W ™", These spaces are defined in [14]. Upadhyay and Singh
[19], discussed the mapping properties of wavelet transform and found important observations. Saoudi
[16], found the boundedness and compactness of localization operators in the Weinstein setting. Motivated
by the results of [22] and [15] our main objective of this paper is to investigate the L} (IR"*!) - boundedness
of pseudo-differential operators associated with certain class of symbols involving the Weinstein transform.

Contents of this paper are organized in the following way:

Section 1 is introductory which describes the brief history regarding the L, - boundedness of pseudo-
differential operators. Section 2 provides basic notations, definitions, lemmas and theorems that are useful
in other subsequent sections. In section 3, an integral representation of pseudo-differential operators and
other properties are obtained. The L- boundedness of the pseudo-differential operators T, associated
with symbol ¢ € S involving the Weinstein transform techniques is obtained. In the last section, L -
type Sobolev space of order r is defined and boundedness of the pseudo-differential operators T; from
HP — H, ™" is given.

2. Preliminaries

Some standard notations are given below:

R = R™ X (0, 00) = {(x1,%2, "+, X, Xns1) € R 2 x01 > 0}

NG+ = (a1, a0, -+, 4n, an41) €N 10 e NU(0},Yj =1,2,--- ,n+1).
X = (', Xne1) = (X1, 22,0+, X, Xp1) € REFL

(x',y') = Z7=1 XjYj-

1
Ixl* = Xy .

A — 201,02 oo T | n+1 n+1
=t e, for xe R}*" and a € INg™.

D* =D{'Dy?...Dy"D1, for o € NI*!
152 Py (.
J+, the normalized Bessel function of the first kind.
C®(R"*1), the space of C*- functions on R"*! with compact support.
CK(R™1), the space of C- functions on R+,
S.(R"1), the space of C* - functions on R"*!, even with respect to the last variable and rapidly decreasing
together with their derivatives.

e S/(R"1), the space of tempered distributions on R"*1.

For f € L} (IR"*1), the tempered distribution is denoted and defined as

= [ Fonwin @, ues.m )
where
dlua(x) = A(xxf,c_ﬂ—ldx/ 2)
and
1
. ®

T 2n)ieT(a+1)
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dx is the Lebesgue measure on R*!.
e The Weinstein operator on R"*! for (1 + 1) variables is defined by

n+1
? 2a+1 9 1
at —Ay+L, a>-=,

Aan = — t+
’ — Jx? Xni1 OXni1 2
=1 77
where
n
2

An = = 57
ed )x2
=177

is the Laplacian operator defined on IR" for the first n variables and

02 20+1 2
+

7
3xi+1 Xn+1 axn+1

is the Bessel operator defined on (0, o) for the last variale .
e L/ (IR"*1), denotes the space of Lebesgue measurable functions on R?*! such that

1/p
ol = | f BEPApa() <o, 1p<e
IRT'I
Definition 2.1. The Weinstein transform of ¢ € LL(R"*!) is defined by

(Fad)(©) = f T &) @Ma(), VE € RE

R+
where p1,(x) is the measure on R given by (2).

From [2, 10], we take the following results which are useful in this paper:
1. Parseval formula: Let ¢, ¢ € S.(R"*!), then

f PY(x)dpa(x) = f FalO)EFa@)(E)dpa(E).
]R’J:H ]I{1+1

2. Plancherel formula: Let ¢ € S.(R™1), then
IFapllrz = llPllz2-
3. Inversion formula: Let ¢ € LL(R"*!) such that F,(¢) € LL(IR"*!), then
9() = f S ) (Fad) (O dpa(£), ae. & R,
R

4. Amap F, : S.(R*1) - S.(R"*!) is a topological isomorphism and

FloE) = Fap(=E), forall & e RM.
5. Let u(x, &) = e <) ] (xy41Ems1), then

Agti(x, &) = (~lIEIP)u(x, £).

6. Let ¢ € S,(R"™1) and k € Ny, then

[FalAL . 0)1(E) = (DA EIF(Fad)(©).

959

(6)

(10)

(11)

(12)

(13)

(14)
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Theorem 2.2. Let f € S,(IR™H), then from ([13], p. 109), we have
(Falf), u) = (f, Falw)), u € SJ(R™), (15)

and

(F () uy =(f, Fi ')y, ueS(R™). (16)

Definition 2.3. Let ¢ € LL(R™™). Then from ([18], p. 25) the translation of ¢ € LL(R™) is defined by
@O0 = [ 6@D ), 7)
RI*
where

De(x, Y, z) = f 1 exx,lt/)ja(xnﬂtn+1)eii<y,'t/>ja(]/n+1tn+1)
R+

X €7i<zr'tl>fa(zn+1tn+l)d!“la(t)/ o

is well defined and makes sense by the following relation from ([18], p. 24)

Do(x,9,2) =8z + Yy — X)D(Xns1, Yns1,Zns1), VX, y,z € RTH, (19)

where X’ = (X1, , %), ¥ =1, Yn), 2 = (21, ,2zs) and
[ Dt =1, (20)
]I{K‘Fl

for x = (', xp41), ¥ = (¥, Yns1) and z = (2/, zp11).
Definition 2.4. Let ¢ € LL(R™') and ¢ € LLR™™). Then from ([18], p. 25) the Weinstein convolution of
¢ € LL(R™), ¢ € LL(R™1) is given by
@90 = [ @O0 @
]Rz-%-l

By using (17) and (21) the Weinstein convolution of ¢ € LL(R"1), v € LL(R"™*?) is defined by

(P *0 P)(x) = f Dalx, 4, (W)Y (@) pta(y)dpa(2)- (22)

n+l n+
R JR?

Proposition 2.5. From [13], we have
1. Forall ¢, € LL(R™), then ¢ +,, 1 € LL(R™1), and we have

Fal*o ) = Fa(@)F o(P). (23)

2. Let p,q,7 € [1,00], such that 5 + L — ¢ = 1. Then for all ¢ € LE (R and ¢ € LL(IRTY) the function ¢ +, ¢
belongs LT (R™*1), we estimate the following norm

llp *w Pl < Nepllpz lleplls - (24)

Definition 2.6. The symbol class S™ is the set of all functions o : C*(R" x RM) — C, m € R, such that Vg € N
and B,y € INJ*, there exists a constant Cg,, > 0 depending only on B and y, satisfying

IDEDlo(x, &) < Cpp (1 + IEIR)" (L + |1xI2) 7. (25)
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Definition 2.7. Let o : C* (R x R™*') — C be a symbol. Then for ¢ € S.(R™*Y), the pseudo-differential operator
T associated with symbol o € S™ is defined by

(Tag) = [ ¢ Tt rnots, T (e 26

Lemma 2.8. Let s € INy. From [18], we have
(i) If o is a C*- function, then

j r= /|<s— ]

where Ea , forre{0,1,---,s} is a constant depending only on o, 28" +r = (201, -+ ,20,,7) € ]Ng’r1 and 2|0'| +r =
201+ -+ 26, + 1.

(ii) If f, 0 are C®- function, then
S T

2j . 1
shoeal-EEE B T (e

j=0 r=1 q=0 |p’|<2(s—

X &S [DP'Wf(x)][D£’+26’+r—qa(x/ 5)], 28)

where E,, forr € {0,1,---,s} is a constant depending only on a, p" +q = (p1,*++,pn,q), p’' +26' +r—q =
(p1+261,- -, pn+20,,7—q) € NI and |p'|+q = pr+---+pu+q, |0/ | +208|+7—q = p1+201+- - pu + 20, +7—4.

Lemma 2.9. The Schwartz space S.(IR"*') is a subspace of LL,(R"*Y), for all p € [1,00] and a > —1.
Proof. The proof of the result is obvious. [
Theorem 2.10. Let p € [1,00) and a > —3. Then the Schwartz space S.(R"*') is dense in L5 (R*1).

Proof. Let f € S.(R"1), then by Lemma 2.9, f € L/ (R"*1). Also, from the defintion of S.(R"*!), we have
(1 +|IxlPY f(x) € S.(R™™), VkeN.
Let {f:};>1 be a sequence of functions in S.(R"™1) such that fr = 0in S.(R"™1) as r — co. Then, we have
lfillo — 0, asr — oo,
where

Ifillo = sup (1 +[IxIP)| £ (). (29)

n+1
X€RY

Now, we find
|m@mﬁ=ﬁnmmwwm

2\k p_ a\s Hl"(x)
f (1 + [lxlF)*1 fr(x)l A+ P
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Using (29), the last expression becomes
0y gy = 0k [ 0 P
= 1110 fR PR
< I ods [ (1 Py

If we chosse k > 2a + n + 2, then there exists a positive constant C, x such that

A < Capllf7 lko-

LAy =

Therefore, f, — 0 in L (R"*') space as r — co. [

3. An Integral Representation of Pseudo-Differential Operators

An integral representation of the pseudo-differential operators T, associated with a symbol o € 5™
involving the Weinstein transform is obtained and its various properties studied.

Lemma 3.1. Let o > —3 and o be a symbol in S°. Define
K(x,2) = f O oz Enn)ol, Odua(E), (30)
Ry

as a distribution in S,(R"*1). Then
(i) for each fixed x € R, K(x, -) is a function defined on R"*!,

(ii) for large values of k € Ny, there exists a constant C,  such that
K(x,2)| < Car(1+ [IxIP) (1 + [lz1) 7" G1)

Proof. For k € N, (30) can be written as
K(x,2) = f ¢ T @) (L + 12125 = Ag )o@, E)dpalE).
IRT]
Invoking Binomial Theorem, we get

K(x,2) = f o Enn) 1+ [lP)
R

k

X (Z (I;)(—l)’Af,,na(x, E))dﬁla(é)-

r=0
Therefore,

k

K2l < @+ DY (’;) [ ot

r=0
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In view of Lemma 2.8, the last expression becomes

K@, 2)l < (1 +]I2IP) ka]Z Y ()(r)(élf_{ 5 )E;,z

r=0 j=0 I=1 |o'|<r-j

Xf n+1|D26 HG('X £)|dlu'“
R

sartr LES T (o

r=0 j=0 I=1 |¢'|<r—j

% f 1|£n+1|l—r+2a+1|D§6 +la(x, é)|d5
R

Using the fact that 0 € S°, we obtain

k r 2 o
Kol s @+ *Y Y YY) ()( )(51r ’ 5) ! Aot

r=0 j=0 I=1 |¢'|<r—j

X [ el IR )
]RZH

For large values of /, the above expression becomes

IK(x,2)] < (1 + 2] Ziz Y ()( )( rifé) ! AaCaaio

r=0 j=0 I=1 |¢'|<r—j

X | R Y+ IR e

R
Therefore,
K <(1 k1 2)-4 Sk r—j
IK(x, 2)| < (1 + |z (1 + [xIIP) ;;/ IZHZ‘]()( )(51, ,5)
E, 1 AaCas 110 ]Rm(l +||ER) A 2t g e
It gives

k r 2
K, 2)| < (1+ 112071+ 1) qZ Z( )( )

0 j=0 I=1

XE;,AaCI,of (1 +[[E]P) 2+ de.
¢ ]Rfrl

Choosing 7 > 2a + 5 + %, there exists a constant C, s such that

IK(x,2)| < Cap(1+ 1K) + [IzIIP)7*.
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Theorem 3.2. Let o > —3 and o € S™. Then for all u € S.(R"*"), the pseudo-differential operator T, can be written

as
@i = [ ( [, KADU v @ity

in the distributional sense.

(32)

Proof. Exploiting the concept of ([2], p. 266), we can see that Schwartz space S.(R"*!) is invariant under the

translation operator 7¢, x € R”*!. Then for all u € S,(R"*!), we have F,(t¢u) € S.(R"?).
From (17), we have

@0 = [ D05y

In view of (18), above expression becomes
(t4u)(2) = f 1 u(y)( f ot Ene)e ™Y oY Ene)
R+ R

X e—"<z/'5/>fa(zn+15n+1)dﬂa(5))dﬂa(y)'

Therefore,
(zu)(z) = L;M o (i1 Enr)e E oz Enst)
X ( f}R » ”(y)e_iw/,é/>fa(yn+15n+1)dﬂa(y))dya(£)
= fRM ¢ ] 1 Ene1)e T 0 T2t Epet ) (Fatt)(E)dpa ().
Invoking (8), we get

(T0u)(@) = Fal e a1 G} (Fatt)(©)] @)
Therefore, we get
N -1
(Fau)(&) = [ H Jatunrénn)| o (Th)(E) € S(R™?).
In the distributional sense, the pseudo-differential operator T, can be defined as
(Tou)(x) = <€i<x,'£/>fa(xn+15n+l)o(x/ &), (7:0(”)(‘5»

Invoking (33), above expression becomes

(Tow)(@) = (e Ju(tnarEna)o(x, &), [ Tu(tnar Enan)] 1y H(20u)(E))

= (otr,8), 7" (wtu))
= (72 (060, ©)2), (12)).

From (30), we get
(Tow)(x) = (K, 2), (tfu)(2))
- fIR K 0@ ().

(33)
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Invoking (17), the last expression yields

T = [ ke [ Dute v o)
U

Theorem 3.3. Let a > —1 and 6 € CK(R'), k € IN. Assume that for p € INU*L, there exists a positive constant B
such that

Do) < BA+ 1P, 1Bl <k. (34)

If
V(x) = f DT (1 Ene)O(E)a(E), (35)
]Rf:fl

then € LE(R™1), for 1 < p < 0.

Proof. For k € N, (35) can be written as
V(x) = f (a1 + IXIB) FA = A ) OE)AptalE).
]RT]
Invoking Binomial Theorem, we get

Y(x) = f O o &)1+ IIP)
R

k

(X (Jevato@me.

r=0
Therefore,

k

el < 1+ DY (f) fm AL o)

r=0

In view of (27), the last expression becomes

N

ro2j

k .
wons it Y Y3 Y (00

=0 j=0 I=1 |§'|<r—j

x f €11 D 10(8)|dpa (€.
IRT]

Thus, we obtain

kK r 2

Pl < @+ )Y Y (’;)(?)(51 oy )E;,zAa

=0 j=0 I=1 |5'|<r—j

% f |§n+1|l_r+2a+1|D‘256/+16(5)‘d5.
]RT-]
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Using the assumption (34), we obtain

k r 2j
Wl < 1+ D+ Y ()(;)(61’ /o JEaum

=0 j=0 I=1 |&'|<r—

x [ et ||5||2)-2'f’"-ld5.
RI*

M &

For large values of [, above yields

Kk r 2j
el < 1+ DY ()( No, o JEre

r=0 j=0 I=1 |o’

M

x f 1+ ||5||2>’-“2““<1 + IRy e,
R1+1

Therefore,
Kk r 2j . ]
(0
el < (1 + [IxlP) rZ] l):]l b s
XEAB [ (1R
It gives

LI k\(r
Pl <@+l Y3 ) (r)(])

r=0 j=0 I=1

X E/ ,AuB f (1 +[EP) T+ e,
’ ]Riﬂ

Choosing r > 2a + % + 3, there exists a constant B, such that
(@] < Bag( + [lxI?) ™.
Therefore,
lze ety < BaglCL+ 112 1l gy
For large values of k € IN, we have ) € LR, O
Lemma 3.4. Let o > —3 and 6 € CK(R™*") which satisfies (34), then we prove
(W %0 0)(x) = Fo [OE)Faw)(O](),  u € S.(R™) (36)
where 1 (x) is given in (35).

Proof. From Theorem 3.3, we have ¥ € L) (R"*'), 1 < p < co. Then by density of S.(R"*!) in L} (R"*!) and
Propostion 2.5, we get ¢ +, u € LL(IR"*1), for all u € S,(R"™*!). Therefore, for a.e. x € R"*!, we can find

(1 #0 U)(x) = Fo [Falt) #0 u)(E)]().
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Using (23), above expression becomes

(¥ # 1)(X) = Fo  [Fa@)(E)Fa(u)(©)] (). (37)

We can write (35),
Y(x) = 7o (060))@).
Therefore, from (8) we have
(Fat)(©) = 0(5). (38)
Hence, from (37) and (38), we obtain

() *0 w)(x) = Fo " [OE)(Far)(E)]()-
0

Theorem 3.5. Leta > —% and 6 € CK(R™1), k € IN which satisfies (34). Then for 1 < p < o, there exists a constant
Cyx such that

||T6u||Lﬁ(JR¢+1) < Ca,k||u||Lf;(1R¢+1)r ue S*(]Rnﬂ) (39)

where

(Tou)(x) = f ¢ (1 E01) O(E) Fat) (E)pta (). (40)

]R’fl

Proof. Using (11), (40) can be expressed as
(Tou)) = F [0EOFa)(@)], e S(R™).
From Lemma 3.4, the last expression becomes
(Tou)(x) = (@ *0 w)().
Invoking the inequality (24), we get
||T9u||U;(1R3+1) < |Wl|L},(RK+1)||"’I|L§(RT1)'

Using the fact that i € LL(IR"*!), we can find a positive constant C,x such that

||T6M||L§(]Rg+l) < Ca,k||u||L§(Rg+l)-

|

Theorem 3.6. Let @ > —3 and o € S°. Then for 1 < p < co, the pseudo-differential operator T, : LL(RI!) —
LE(R™7Y is a bounded linear operator.

Proof. Let us denote
Zn X NO = {(xll-XZr' o /xn/x‘rl+1) : xj € Z/l < ] <N, Xp+1 € NO}/
and M = (m,my), for m € Z"",m; € INy. Then we write ]Rﬁ+1 as a union of Qy with disjoint interiors, i.e.,

R =R'x(©0,0)= | ] Qu
MeZ"xN,
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where Qy is the product of n-dimensional cube with center at 71, edges of lenth one, parallel to the coordinate

axes and the interval [my, mq + 1].
Let 17 be the smooth function defined on R”*! such that

T](.X) = 1r V.X € QO
and
(Di’n(x)| <C,, YyeN;"!

where C, is a finite constant depends on .
Now, define
om(x, &) = n(x —m)a(x, &), Vx, & e R

Then, from (26) we have
(Tonu)) = fR T o1 o () (Far)(dpa(E):

Using (42), we get

(Tot)() = fR N = M), E(Fau)(E)ia(@)

=n—m) | T 1 Eni1) o, E)Fatt) (E)dpta(E).

n+1
R

Taking (26) we can get
(Tgmu)(x) =n(x - m)(TGu)(x).

Now, we have

P 3 p
Jo Jraelau < [ inte=m(Tacof duco.

Therefore, from (44) we find

Jy ol auncors [ K)ol o

(41)

(42)

(43)

(44)

(45)

Since 0,,(x, £) has compact support in variable x and applying inversion formula of the Weinstein transform

(11) we obtain
w8 = [ O A (o) M)
]RKH
where
(Fon) 1,0 = [ uhunons i)
IR:'H

Invoking (46) in (43), we get

(thmu)(x) = jﬂ;nﬂ ei<X/’£/>fa(xn+1£n+1)
X (LnH ei(x,,/\,>fa(Xn+1An+1)(7-aO'm)(A, é)dya(/\))(ﬂu)(é)d#a(g)

= f e A >]a(xn+l/\n+l)
]R:l_-%-l

X[ e (Faon) A a0 €M) a1
Ri+1

(46)

(47)
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Hence,

(o)) = [ [ D Lt T (1), (18)
IR2+1 Ri‘*l

where

(o)) = f D o (1 Ent)(Fam (A, E)(Fatt)(©)da(E). (49)
]Ri-%-l
Remaining proof of the theorem requires the following lemma.

Lemma 3.7. Let a > —3 and oy, be defined in (42). Then for B € Ni*!,N € N, there exists a positive constant
Ca,N such that

IDE(Faom)(A, &) < Can@ + IAP N+ IEDT, 18l <k. (50)

Proof. Using (47), we have

D}(Faom)A, &) = f e o (st A1) D, )l ).

n+1
R

Invoking (42), we get

Df(Faom)(A, &) = f e AT (ot AN = MDY (x, E)dta ().

n+1
R!

Using (13) for N € Ny, we have

DY (Faom)(A, &) = f AT @1 Apa) (1 + AN
7 ]Riﬂ
X (1= A (n(x = m)Dio(x, &))dpa ().

Invoking Binomial Theorem, we get

DY(Faom)(1, &) = f A0 (et A (1 + AP

n+1
IR+

N
r (er)<—1m;,n(n<x = mDo(x, &)dpia(x)

Therefore,
NN
|D’§(9"a0m)(/\, 5>| < (1+ ||A||2>-N;;(r)

X
]RKH

AL f] < Y Car DY £(0)

[ylsr

A (e = m)Dfo(x, )| dita(x). 1)

From ([13], Lemma 2.1), we have

, YfeCO(R™M). (52)
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Using (52) we can write (51) in the following way:
oo (N
Dk (Faom)t, 0| < @+ ™YY ( ) )c

r=0 |yl<r
X
]Rn+l
+

DY (nex = mDfo(x, ) dpta ().
By Leibnitz formula, the last expression becomes

D4 (Faom)A, ) < (1 + 1A i (N )(Zy)c
e\ aOm ’ = ar

r
r=0 |y|<r 652y 0
X

IR:-H-l

Din(x — m)|

DY’ Do, &)|dpa(x).

Now, o € §° and from (41), we get

DX (Faom)A, )| < 1+ IARY™ i Yy (Zj )(267 )ca,rcécw_b,ﬁ

r=0 |y|<r 62y

X (L [l 7L + 1P P (x).
IRTI

For each g € IN, there exists a constant C, y depends only on a and N such that
|DE(Faom)(1, €)] < Can(l + IAPY (1 + €] .
|

Hence, from Theorem 3.5 and Lemma 3.7, the operator u — T,u defined on S.(R"*!) by (49) can be extened
to a bounded linear operator on LL(R*).

Now, we proof the following Lemma which is useful in our investigation.

Lemma 3.8. The operator (49) can be expressed in the following form

(= [ [ 7 [Faona, Ol @Du v s i), 63)

where

Fo ! [Faom)(A, )] (2) = f T Enr Enet)(Faom ) (A, E)dtal &), (54)
]RKH
inversion formula is taken with respect to the second variable &.

Proof. From (8) and (49), we have
(Tau)) = f & o (tnr Enan)(Faom)(A, €)
]RK+1

X (]]I;"ﬂ e_i<yl/él>ja(]/n+15n+1)u(y)d‘ua(y))dya(5),
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Therefore,

(T)\u)(x) = f . (f . ei(x < >Ta(xn+1én+1)e_i<y < >Ta(yn+1£n+1)
R R

X (Fau) O, Ao ) Ju it

After using (18), we find the following expression

(o= [ ([ ] e,
RK+1 ]RTH ]Rf}_-H
X (Fan ), 80 ()80 (D) Ju(y)a ().

Exploiting Fubini’s Theorem, we get

maw= [ [ ([ nmgn(Fon)a, o)
]RKH IR:_H'l ]R:H-l
X Da(x, y, 2)u(y)dpa(y)dpta(2).
Applying inverse the Weinstein transform (11) with respect to second varibale £ on aforesaid expression,

we yields

(o)) = Fo ! [(Faom) A, )|@)Dalx, y, D) dpta(Ydpta(2),
IR:-H-l R:x+l

where

Fou ! [(Faom)1, )] (2) = f e (2w Enn)(Faom) (A, E)dpta().

]RKH
0

Lemma 3.9. Let o > —3 and N € Ny, then ﬂ_l[(ﬂam)()\, 5)] defined in (54) satisfies the following inequality

7o | FaomdA, &)]| < Bana(@ + IR + P, Vk € N, (55)

Proof. From (54), we have
7 Faonh ] = [ Ot (oo, D)
Taking (14), we find
7 Fronh ] = [ g+ I

X (1= M) (Faou )X, E)dalE).

From Binomial Theorem, we get

Fo [ Faow)A, O] = @ + D) f e (a1 Ens)

n+l
RY

r
r=0

k
> (")<_1)rA;,n(ﬂam)(A, Epa(£).
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Therefore,

Az,n (¢aom)(A/ §)|d[.1a(§)

|7__a 1[(ﬂ0m)(/\r g)“ < 1+ kz(; (r) jI[;Tl

r=

Taking (52), the above expression becomes

k
7 oo, Ol < @+ 1Py ) ) (I;)C fR

=0 [yl<r

DY (Faom)(A, &)|dpa(?).
With help of Lemma 3.7, we find
k
7 [(FeomA O < @+ IBFY Y (’;)ca,rca,N

=0 [yl<r

x f A+ RN + €72 dpa(e)
]erﬂ

k
k
< @+ B Fa+ IR ™ Y Y (r)ca,rca,NAa

r=0 |y|<r

X[ Ry gy,
]Rrr-l

Choosing [y| > a + % + 3, there exisits a constant C, n such that

[P [(Faom)A, &)]) < CanaL + I F@ + JAIR) Y.
|

Now, we have to prove that

1

I
Moy, = ( [ o) <o
RI*

In view of (53), we have

Taull,» =(
Mgy = [

X dita Ve @) da(0)

[ [ 77 [ ol yum
Rﬁ+l Ri—%—l

1
P
Exploiting the Weinstein convolution (22), we get

Tl e = f (7 [ Faodd, )] u)(x>|”dua<x>)’]’

n+1
RY

- 7 [, ] e w)e

LLR;)

Applying (24), we obtain

||TAu||L§(]Rg+1) < ”7_-:(71 [(ﬂgm)()\, é)]||L}I(R$+1)”u”LZ(1RZ“)'

972
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From (55), the last inequality becomes
Tl grovty < BaveCL+ IAIRY NI 4+ 112 s ooy el ey
Choosing large enough k € IN, we get a positive constant C, y such that
Tl gery < Canv(L+ IAIPY Nl sy, N € No. (56)

From (48), we have

r
Il ey = f T 1P dyia()
R

([

The last expression becomes after applying Minkowski’s inequality

i SEURY
[ Rt T O i)
R;rrl

1
r
Tl gy < f ( f (a0 dyte)) et
]RT-l ]RT-]
< f Tl sy Ata(A)-
]Rzrrl

In view of (56), we get

T, 1l ey sca,N,k( f (1+||A||2>*Ndua<m)nu||Lz<m+1>-

R+

+

Choosing N sufficiently large, we get a positive constant E, nx such that
||Tamu||Lfi(]Rg+1) < Ea,N,k”u”Lf’X(RKH)- (57)

We have, after using (45),

fQ (ol duow) < Ty g

Using (57), the last inequality becomes
fQ |(Tou) 0| dpaa(x) < E ) (58)

Now, let us define Qj; be the cube same as Qu and twice edge lenght of Qu. Also let Q;, be the another
concentric cube with Qu and Qy; satisfying Qu € Q3, € Qy-
Let ¢ be the smooth function defined on IR"*!, with compact support and satisfies the following properties:

(i) 0<y(x) <1, VxeRH!

(i) supp(¥) € Qyyr
(iii) and ¥(x) = 1 for all x in a neighbourhood of Qj,.

If we write u = uy + up, where u; = pu and u; = (1 — ¢)u. Then we have

(Tou)x) = fR O &) (e, E)(Faar + 1)) pa ().
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Thus, we get
(Tou)) = f e (tn1 Enn )0, E)(Fattr )()dta(E)
]RK+1

N f 0 o (1 Eni)0 (5, €)(Fatt2 )(E)dpia(E)
]Rﬁﬂ

= (Town ) () + (Tot2) ).
Therefore,
LM |(Tgu)(x)|pdua(x) = LM )(Tgul)(x) +(Tguz)(x)(pdya(x)
<2 fQ ' |(Tot1)@)[ dpta(x)
o2 [ )l o)
Taking (58), we get

[ ral ) < 2l .

Qum

+2PfQ |(Tgu2)(x)|pdya(x).

Since 1y = Yu and supp(y) € Qy;, hence, we obtain

fQ Tl < 2 fQ W dia (1)
+ 27 fQ ' |(Tou2) 0 dpsa(x)- (59)

Taking the concept of Theorem 3.2, we have

(TUMZ)(X) = ( K(X, y)Da(xr Y, Z)d.ua(y) uZ(Z)d(ua(Z)‘
R R

Since u(z) = 0 in a neighbourhood of z € Q},, therefore

(Touz) ()] < f

o ( fR . K, )| D, v, 2)pta(y) 122l pta(2)-

In view of Lemma 3.1, the last inequality gives

(T < Cos [ ([ @+ P70+ WP a2 )
]RK-H_Q;\A ]Ri-v»l
X 13(2)ldj1a 2.
Using the fact

A +1xP)™ < (L +Iml?) ™, Vx € Qu
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the last inequality becomes

|(Tor2)(x)| < Cope@ + [Iml?)7 f

n+
RY

1( f}R ,,+1(1+I|yllz)"‘1)a(x, y,z)dya(y))

X [u(z)|dpq(z)
< Cap(1+ lmlP) (ko Jul) ),

where h(y) = (1 + lyl?)7*.
Therefore,

f |(Toz) ()| dpa() < C° (1 + llm]2) fQ (72 %20 1l (0)| lpra ().

We get from (24),

f |(Tot2) )] dusa(x) < CL (1 + [Py~ I ey 140 g

M

Choosing large values of k € IN, we get a finite constant C, x, such that

Loy

fQ |(To1e2) )] dpta(x) < Caep(1 + llmlP) Pl (60)

Thus, from (59) and (60), we have

fQ |(Tou)@)| dpalx) < YE fQ )P dpa(x)

p 2\—qp p
2 Coajp (L + mIP) Pl -

Summing over all m € Z" x INy, we obtain

f]R » |(Tau)(x)|’7dua(x) < ZPEZ,N,k f]R m|u(x)|pdya(x)

F2Corp( Y A+ Py Yl

meZ"xINy

P 2\~ P
<V(E,+ Carp ), W ImIP) )l -
meZ"xINy

Forg>1land 1 < p < oo, we can find a finite constant C = C(«, k, N, p, q) such that

ol qryey < Clllg e, 1 € SR, (61)
Since S.(R"*1) is dense in L} (R"*1), therefore from (61), T, can be extended to a bounded linear operator on
LRI, D
4. Sobolev Spaces

In this section, we introduce Bessel potential and L], (R"*!) - type Sobolev space of order r. Using L} (R"+!)
- boundedness properties we find the various properties and boundedness results in Sobolev type space.
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Definition 4.1. (Bessel Potential )

Let r € Rand o(&) = (1 + ||E|*)™"/? be a symbol in S™. Then for u € S,(R"™?), the Bessel potential of order r is
defined by
(Jrau)(x) = 7:04_1[(1 + ||5||2)_r/2(7ixu)(5)](x)- (62)

Lemma 4.2. Let u € S/(R**Y), then we have
(i) Joau =u,

(&i) Jraliatt = Jrtatt
Proof.
(i) Taking r = 0 in (62), we get
Uoat)() = Fo [(Far)(©)]@).
Since, u € S/(IR"*!), therefore we obtain
(Jo.at)(x) = u().
(ii) From the Definition 62, we have
Uraloat) (@) = Fo |1+ 1EIR)"(Faoats) ) ©)] )
= Fa 7 [+ IEP) 72 + 1ER) A (Fan)(©)] ()
= 771+ IER) R (Fn)(E) | ()
= (Jretatt)(1).
[

Definition 4.3. Forr € Rand 1 < p < oo, then the following space is defined
HP = {u € SIR™™) 1 [_pqu € L(RET)). (63)
The space H," forms a normed linear space with the following norm

”M”.}(;p = ”]—i’,auHLf’y(]errl)

- ( f}R " |(Lr,au)(é)|pdya(g))1/ r o

We call H" the L} (R"*1)- Sobolev space of order r.

If r = 0 then (63) becomes
0,
Ho" = Ly(REH).

Theorem 4.4. Let r,t € Rand 1 < p < oo, then the Weinstein potential J;, is an isometry of H' onto 7‘(;””’ .
Moreover,
Weattllygeer = Nullggr, ¥V ue H'. (65)

Proof. Letu € H,". Then from (64), we have

“]t,au“ﬂ:”rﬁ = ||]—r—t,a]t,a”||LZ(m3+l )
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Using Lemma 4.2, we find
”]t,a””y.((';ffp = ”I—r,au”LmRiﬂ)-

By invoking (64), above yields
Weattllygon = ldllyer, V€ HP.

The last expression follows that, J;, : HP — 7{;”’” is an isometry.
For eachv € 'H;H’p , take u = J_; ,v. Then, by Lemma 4.2, we get v = J; yu.
Therefore, u € H,”. Hence, J;, : H,' — 7—(;””7 is an onto isometry. [J

Theorem 4.5. Let o(x, &) be a symbol in S™,m € R. Then for r € Rand 1 < p < oo, the pseudo-differential operator
Ty : HY — H, " is a bounded linear operator.

Proof. First, we consider the following operators:
]—r,a : 7_{;,;7 - 7'[a(c),p/

0, 0,
TG]m,a : ﬂap - 7-{04 77,

and

0, r—m,
Jr—ma : Wap - H, p,

which are linear. Then, from Theorem 4.4, the operators J_, , : H," — 7-{2’p and Jr—pmq 7—(2”’ — H, " are
bounded. Also, by Theorem 3.6, Ty 0 : L), — L! is the bounded linear operator. Hence, T; : H — H,"P
is a bounded linear operator. [J

Conclusion: Taking concepts of the papers of Fefferman [3], Illner [7], Cato [8], Nagase [12], Hérmander
[5], Hwang-Lee [6], Wong [22] and Pathak and Upadhyay [15], authors are able to study the LL(R) -
boundedness results of pseudo-differential operators associated with the Weinstein transform on a certain
class of symbol S° and used the aforesaid theory on L} (IR"*!) - Sobolev spaces. The importance of the
Weinstein transform is in the sense that by utilizing this theory authors got more general results and will
be useful for applications of partial-differential equations and other problems related to pseudo-differential
operators. The L,(R"*') - boundedness of pseudo-differential operators provides the bridge between
pseudo-differential operators and maximal - minimal pseudo-differential operators, which are useful in
functional analysis, partial-differential equations and other areas of mathematics.
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