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Abstract. This study’s main goal is to define approximate statistical convergence in spaces with proba-
bilistic norms. The idea of convergence in random 2-normed space is more generalized as a result of our
demonstrations of some fundamental features and examples of convergence in linear spaces with norms.
More specifically, we demonstrate the findings for sets of statistical limit points and sets of cluster points
of approximate statistically convergent sequences in these spaces. Additionally, we extend the idea of
rough convergence by applying the idea of ideals, which automatically expands the original ideas of rough
statistical convergence and rough convergence. We define the collection of rough ideal limit points and
demonstrate a number of outcomes related to this collection.

1. Introduction

Fast [13] and Steinhaus [37] independently established the idea of statistical convergence for real number
sequences in the same year 1951, and other expansions and implementations of this idea have subsequently
been studied by numerous writers, including [7, 17, 22]. Kostyrko et al. description’s of I-convergence,
which is one of its intriguing generalizations, is cited in [19]. Balcerzak et al. [5], who recently explored
I-convergence for sequences of functions, are cited in this sentence.

Menger [23] proposed the idea of statistical metric spaces, which was later explored by Schweizer and
Sklar [34, 35], giving rise to the theory of probabilistic normed spaces [15]. It offers a vital technique for
broadly utilizing the deterministic outcomes of normed linear spaces. It has many other extremely useful
applications, such as the study of boundedness [11], convergence of random variables [12], continuity
features [1], topological spaces [15], linear operators [16], etc.

Rough convergence is concerned with the approximate numerical resolution of any real-world problem.
It aids in confirming the accuracy of computer program solutions and drawing conclusions from scientific
research. As an intriguing generalization of the typical convergence for sequences on finite dimensional
normed linear spaces, Phu [30] first developed the rough convergence. Later, Phu introduced it on infinite
dimensional normed linear spaces [31]. In addition to developing the concept of rough convergence, he
made contributions to the closeness and convexity of the rough limit set.

The convexity and proximity of the set of rough statistical limit points and rough cluster points of a
sequence were two more factors that Aytar [4] looked into. Maity [24] showed rough statistical convergence
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of order α (0 < α ≤ 1) in normed linear spaces and discussed several significant findings for the set of rough
statistical limit points of order α, both of which were inspired by the work of Aytar. In [25], Maity
established the notion of pointwise rough statistical convergence and rough statistical Cauchy sequences
for real valued functions. Malik and Maity first established rough convergence for double sequences in
normed linear spaces in their article [26]. Later, the authors expanded on this concept and described rough
statistical convergence for double sequences in their article [27].

Many researchers have been inspired to employ ideals concepts by this idea. Rough I-convergence was
presented by Pal et al., [29], using the ideals ofN. Later, in [28], Malik et al. expanded this idea of rough
I-convergence to rough I-statistical convergence and discussed certain topological features of the set of all
rough I-statistical limits of sequences in normed linear spaces. In various contexts, statistical convergence
as well as generalized statistical convergence can be used to further investigate, generalize, and apply the
rough convergence; see [2–4, 30], and [31].

We introduce the idea of rough statistical convergence in the random 2-normed linear spaces in this
study. Additionally, we use the idea of ideals to broaden the idea of rough convergence.

This essay is structured as follows: We provide some preliminary definitions and findings of random 2-
normed spaces in the section that follows. The notions of rough convergence, rough Cauchy sequence, and
the set of rough limit points of a sequence are introduced in Section 3, and we created rough convergence
criteria for this set in RTN. We later prove that this set is convex and closed. Finally, we look into how rough
convergence and rough Cauchy sequence relate to RTN. The idea of rough convergence is expanded upon
in this section using the concept of ideals, which logically goes beyond previous understandings of rough
convergence and rough statistical convergence. We define the group of rough ideal limit points and show
some results that are connected to this group.

2. Definitions, notations and preliminary results

In this section, we will review some fundamental definitions and notations that serve as the foundation
for the current work (see [5, 10, 16, 22, 33–37]).

A distribution function is an element of D+, where

D+ =
{
f : R→ (0, 1); f is left-continuous, nondecreasing, f (0) = 0 and f (+∞) = 1

}
and the subset W +

⊆ D+ is the set W + =
{
f ∈ D+ : l− f (+∞) = 1

}
Here l− f (+∞) denotes the left limit of the

function f at the point x. The space D+ is partially ordered by the usual pointwise ordering of functions,
i.e., f ≤ 1 if and only if f (x) ≤ 1(x) for all x ∈ R. For any a ∈ R, εa is a distribution function defined by

εa(x) =
{

0, if x ≤ a;
1, if x > a.

The set D , as well as its subsets, can be partially ordered by the usual pointwise order: in this order, εa is
the maximal element in D+.

Definition 2.1. A triangle function is a binary operation on D+, namely a function γ : D+ ×D+ → D+, that
is associative, commutative, nondecreasing, and has εa as unit; that is, for all f , 1, h ∈ D+, we have:

(i) γ(γ( f , 1), h) = γ( f , γ(1, h)),
(ii) γ( f , 1) = γ(1, f ),

(iii) γ( f , 1) ≤ γ( f , h) whenever 1 ≤ h,
(iv) γ( f , εa) = f

Definition 2.2. A t-norm is a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] such that for all a, b, c, d ∈ [0, 1] we
have: (i) ∗ is associative and commutative, (ii) ∗ is continuous, (iii) a ∗ 1 = a, (iv) a ∗ b ≤ c ∗ d whenever a ≤ c
and b ≤ d.

The concept of a 2-normed space was first introduced by Gähler [9].
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Definition 2.3. Let X be a linear space of a dimension m, where 2 ≤ m < ∞. A 2-norm on X is a function
∥., .∥ : X × X → R satisfying the following conditions: for every x, y ∈ X, (i)

∥∥∥x, y
∥∥∥ = 0 if and only if x and y

are linearly dependent; (ii)
∥∥∥x, y

∥∥∥ = ∥∥∥y, x
∥∥∥; (iii)

∥∥∥αx, y
∥∥∥ = |α| ∥∥∥x, y

∥∥∥, α ∈ R; (iv)
∥∥∥x + y, z

∥∥∥ ≤ ∥x, z∥ + ∥∥∥y, z
∥∥∥. In

this case, (X, ∥., .∥ is called a 2-normed space.

Example 2.4. Take X = R2 being equipped with the 2-norm
∥∥∥x, y

∥∥∥ = the area of the parallelogram spanned
by the vectors x and y, which may be given explicitly by the formula∥∥∥x, y

∥∥∥ = |x1y2 − x2y1|, where x = (x1, x2), y = (y1, y2).

Recently, Golet [10] introduced the notion of a random 2-normed space as follows.

Definition 2.5. Let X be a linear space of a dimension greater than one, γ a triangle function, and ψ :
X × X → D+. Then ψ is called a probabilistic 2-norm on X and (X, ψ, γ) a probabilistic 2-normed space if
the following conditions are satisfied:

(i) ψx,y(t) = ε0(t) if x and y are linearly dependent, where ψx,y(t) denotes the value of ψx,y at t ∈ R,
(ii) ψx,y(t) , ε0(t) if x and y are linearly independent,

(iii) ψx,y = ψy,x for every x, y in X,
(iv) ψαx,y(t) = ψx,y

(
t
|α|

)
for every t > 0, α , 0 and x, y ∈ X,

(v) ψx+y,z ≥ γ(ψx,z, ψy,z) whenever x, y, z ∈ X.
If (v)is replaced by

(v’) ψx+y,z(t1 + t2) ≥ ψx,z(t1) ∗ ψy,z(t2), for all x, y, z ∈ X and t1, t2 ∈ R+,

then triple (X, ψ, ∗) is called a random 2-normed space (for short, RTN-space).

Remark 2.6. Note that every 2-normed space (X, ∥., .∥) can be made a random 2-normed space in a natural
way, by setting ψx,y(t) = ε0(t −

∥∥∥x, y
∥∥∥), for every x, y ∈ X, t > 0 and a ∗ b = min{a, b}, a, b ∈ [0, 1].

Definition 2.7. Let (X, ψ, ∗) be a RTN. A triple sequence {xmnk} of element of X is said to be statistically
convergent to ζ ∈ X with respect to RTN if for any ϵ, λ ∈ (0, 1) and each z ∈ X, we have δ(A(λ)) = 0, where

A(λ) =
{
(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(t) ≤ 1 − λ

}
.

In this case, ζ is called the statistical limit of the sequence x.

Definition 2.8. Let (X, ψ, ∗) be a RTN and r be a non-negative real number. A triple sequence x = {xmnk} of
element of X is said to be r-convergent to ζ ∈ X with respect to RTN, denoted by x r

−→ x, if for any ϵ, λ ∈ (0, 1)
and each z ∈ X, there exists N0 ∈N×N×N such that for all m,n, k ≥ N0 we have ψxmnk−ζ,z(r+ ϵ) > 1− λ. In
this case ζ is called an r-limit of x.

Remark 2.9. We consider r-limit set x which is denoted by LIMr
x and is defined by

stψ3 − LIMr
x := {ζ ∈ X : x r

−→ x}.

Definition 2.10. Let (X, ψ, ∗) be a RTN and r be a non-negative real number. A triple sequence x = {xmnk} is
said to be r-convergent if stψ3 − LIMr

x , ∅ and r is called a rough convergence degree of x. If r = 0, then it is
ordinary ψ-convergence of triple sequence.

Definition 2.11. Let (X, ψ, ∗) be a RTN and r be a non-negative real number. A triple sequence x = {xmnk} of
element of X is said to be r-statistically convergent to ζ ∈ X with respect to RTN, denoted by stψ3 -lim x = ζ,
if for any ϵ, λ ∈ (0, 1) and each z ∈ X, we have δ(A(λ)) = 0, where

A(λ) =
{
(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) > 1 − λ

}
.

In this case ζ is called rψ-statistical limit of x. If r = 0 then it is ordinary ψ-statistical convergent of triple
sequence.
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3. Rough statistical convergence in RTN

In this section, we introduce the concepts of rough convergence, rough Cauchy sequence, and the set
of rough limit points of a sequence, and we produce rough convergence criteria associated with this set in
RTN. We later demonstrate that this set is both closed and convex. Finally, we investigate the relationships
between rough convergence and rough Cauchy sequences in RTN.

Theorem 3.1. Let (X, ψ, ∗) be a RTN. A triple sequence x = {xmnk} ∈ X, r1 ≥ 0 and r2 > 0. x = {xmnk} is
(r1+ r2)-convergent to ζ in X if and only if there exists a sequence {ymnk} such that for every λ ∈ (0, 1) and each z ∈ X,

ymnk
rψ1
−→ ζ and ψxmnk−ymnk ,z(r2) > 1 − λ,m,n, k ∈N. (1)

Proof. Suppose that (1) is true. Given λ ∈ (0, 1), ϵ > 0, and for all z ∈ X. Choose η ∈ (0, 1) so that

(1 − η) ∗ (1 − η) > 1 − λ. Then ymnk
rψ1
−→ ζ means that there exists an nλ such that

ψymnk−ζ,z(r1 + ϵ) > 1 − η,

whenever m,n, k ≥ nλ. Since ψxmnk−ymnk ,z(r2) > 1 − η then, for m,n, k ≥ nλ , we have

ψxmnk−ζ,z(r1 + r2 + ϵ) ≥ ψxmnk−ymnk ,z(r2) ∗ ψymnk−ζ,z(r1 + ϵ) > (1 − η) ∗ (1 − η) > 1 − λ.

Hence, xmnk is r1 + r2-convergent to ζ.
Now we let xmnk is r1 + r2-convergent to ζ. We define a sequence {ymnk} for each λ ∈ (0, 1) and for every

z ∈ X as following:

ymnk =

{
ζ, if ∥xmnk − ζ, z∥ ≤ r2;
xmnk + r2

(ζ−xmnk)
∥ζ−xmnk,z∥

, if ∥xmnk − ζ, z∥ > r2.

Then, we have

ψymnk−ζ,z(r2) =
r2

r2 +
∥∥∥ymnk − ζ, z

∥∥∥ =
{

1, if ψxmnk−ζ,z(r2) ≥ 1 − λ;
r2

∥xmnk−ζ,z∥
, if ψxmnk−ζ,z(r2) < 1 − λ.

and so
ψymnk−ζ,z(r2) ≥ 1 − λ

for every m,n, k ∈N and every z ∈ X. Since ζ ∈ LIMr1+r2
ψ x, we have

lim infψxmnk−ζ,z(r1 + r2) ≥ 1 − λ,

and so
lim infψymnk−ζ,z(r1) ≥ 1 − λ

for every λ ∈ (0, 1) and each z ∈ X. Hence we have ymnk
rψ1
−→ ζ. Therefore, the proof is complete.

Definition 3.2. Let (X, ψ, ∗) be a RTN. A sequence {xmnk} in X is said to be rough statistically bounded with
respect to the norm ψ for some non-negative number r if for every ϵ > 0 and λ ∈ (0, 1) there exists a real
number M > 0 such that for each z ∈ X,

δ
({

(m,n, k) ∈N ×N ×N : ψxmnk ,z(M) ≤ 1 − λ
})
= 0.

We discover the following intriguing findings on rough statistical convergence in RTN in light of the
aforementioned criteria.

Theorem 3.3. Let (X, ψ, ∗) be a RTN. A triple sequence x = {xmnk} in X is statistically bounded in RTN if and only
if stψ3 − LIMr

x , ∅ for r > 0.
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Proof. Let {xmnk} be statistically bounded in X. Then, for every ϵ > 0, λ ∈ (0, 1) and some r > 0 and each
z ∈ X, there exists a real number M > 0 such that

δ
({

(m,n, k) ∈N ×N ×N : ψxmnk ,z(M) ≤ 1 − λ
})
= 0.

Let K = {(m,n, k) ∈N ×N ×N : ψxmnk ,z(M) ≤ 1 − λ}. For (m,n, k) ∈ Kc we have ψxmnk ,z(M) > 1 − λ. Also

ψxmnk,z(r +M) ≥ ψ0,z(r) ∗ ψxmnk,z(M)
> 1 ∗ (1 − λ) > 1 − λ.

Hence, 0 ∈ stψ3 − LIMr
x and so stψ3 − LIMr

x , ∅.
For the converse, Let stψ3 − LIMr

x , ∅ for some r > 0. Then there exists ζ ∈ X such that ζ ∈ stψ3 − LIMr
x For

every ϵ > 0, λ ∈ (0, 1) and each z ∈ X we have

δ
({

(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) ≤ 1 − λ
})
= 0.

Therefore, almost all elements x are contained in some ball with center ζ which implies that the sequence
x = {xmnk} is statistically bounded in X.

Corollary 3.4. Let (X, ψ, ∗) be a RTN and x = {xmnk} ∈ X be a triple sequence. If x′ = x′mnk is a subsequence of xmnk
then,

stψ3 − LIMr
x ⊆ stψ3 − LIMr

x′

in (X, ψ, ∗).

Example 3.5. Let X = R3. We define the probabilistic norm ψ for x ∈ X, t ∈ R as ψx,z(t) = t
t+∥x,z∥ for each

z ∈ X. Then (X, ψ, ∗) be a RTN under the t-norm ∗ which is defined as x ∗ y = min{x, y}. Then, define a
sequence x = {xmnk} as

xmnk =

{
(−1)mnk, if (m,n, k) , (i2, j2, l2) (i, j, l) ∈N ×N ×N;
mnk, otherwise.

Then

stψ3 − LIMr
x =

{
∅, if r < 1;
[1 − r, r − 1] , otherwise.

and stψ3 −LIMr
x = ∅ for all r ≥ 0. Thus, this sequence is divergent in ordinary sense as it is unbounded. Also,

the sequence is not rough convergent in RTN for any r.

Theorem 3.6. Let (X, ψ, ∗) be a RTN and x = {xmnk} ∈ X be a triple sequence. For all r ≥ 0, the r-limit set stψ3 −LIMr
x

of an arbitrary sequence {xmnk} is closed.

Proof. If stψ3 − LIMr
x = ∅, then nothing to prove. Assume that stψ3 − LIMr

x , ∅ for some r > 0 and consider
y = {ymnk} be a convergent sequence in stψ3 −LIMr

x with respect to the norm ψ to y0 ∈ X. For λ ∈ (0, 1) choose
η ∈ (0, 1) such that (1 − η) ∗ (1 − η) > 1 − λ. Then for every ϵ > 0 and η ∈ (0, 1) and each z ∈ X there exist
m1,n1, k1 ∈N such that

ψymnk−y0,z(ϵ/2)1 − η for all m ≥ m1,n ≥ n1, k ≥ k1

Let us choose ystp ∈ stψ3 − LIMr
x with s > m1, t > n1, p > k1 such that

δ
({

(m,nk) ∈N ×N ×N : ψxmnk−ystp,z(r + ϵ/2) ≤ 1 − η
})
= 0. (2)

For (i, j, l) ∈ {(m,n, k) ∈ N ×N ×N : ψxmnk−ystp,z(r + ϵ/2) > 1 − η}, we have ψxi jl−ystp,z(r + ϵ/2) > 1 − η. Hence,
we have

ψxi jl−y0,z(r + ϵ) ≥ ψxi jl−ystp,z(r + ϵ/2) ∗ ψystp−y0,z(ϵ/2)
> (1 − η) ∗ (1 − η) > 1 − λ.
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Hence (i, j, l) ∈ {(m,n, k) ∈N ×N ×N : ψxi jl−y0,z(r + ϵ) > 1 − λ}. Now we have the following inclusion

{(m,n, k) ∈N ×N ×N : ψxmnk−ystp,z(r + ϵ/2) > 1 − η}
⊆ {(m,n, k) ∈N ×N ×N : ψxi jl−y0,z(r + ϵ) > 1 − λ}, i.e,
{(m,n, k) ∈N ×N ×N : ψxi jl−y0,z(r + ϵ) ≤ 1 − λ}
⊆ {(m,n, k) ∈N ×N ×N : ψxmnk−ystp,z(r + ϵ/2) ≤ 1 − η}.

Then

δ
(
{(m,n, k) ∈N ×N ×N : ψxi jl−y0,z(r + ϵ) ≤ 1 − λ}

)
≤ δ

(
{(m,n, k) ∈N ×N ×N : ψxmnk−ystp,z(r + ϵ/2) ≤ 1 − η}

)
Using (2), we obtain

δ
(
{(m,n, k) ∈N ×N ×N : ψxi jl−y0,z(r + ϵ) ≤ 1 − λ}

)
= 0

and so y0 ∈ stψ3 − LIMr
x.

Theorem 3.7. Let (X, ψ, ∗) be a RTN and x = {xmnk} ∈ X be a triple sequence. If y0 ∈ LIMr0
ψxmnk and y1 ∈ LIMr1

ψxmnk,

then yα := αy0 + (1 − α)y1 ∈ LIMαr0+(1−α)r1
ψ xmnk, for α ∈ [0, 1].

Proof. Given ϵ > 0, λ ∈ (0, 1), r0, r1 > 0 and z ∈ X. Choose η ∈ (0, 1) so that (1 − η) ∗ (1 − η) > 1 − λ. By
definition there exist m(λ),n(λ) and k(λ) such that m > m(λ),n > n(λ) and k > k(λ) implies that

ψxmnk−y0,z (r0 + ϵ) > 1 − η and ψxmnk−y1,z (r1 + ϵ) > 1 − η

which implies that

ψxmnk−yα,z(α(r0 + ϵ) + (1 − α)(r1 + ϵ)) ≥ ψα(xmnk−y0),z(α(r0 + ϵ)) ∗ ψ(1−α)(xmnk−y1),z((1 − α)(r1 + ϵ))

= ψxmnk−y0,z

(
α(r0 + ϵ)

α

)
∗ ψxmnk−y1,z

(
(1 − α)(r1 + ϵ)

1 − α

)
= ψxmnk−y0,z(r0 + ϵ) ∗ ψxmnk−y1,z(r1 + ϵ)
> (1 − η) ∗ (1 − η) > 1 − λ.

Hence, we have
yα ∈ LIMαr0+(1−α)r1

ψ xmnk.

By setting r = r0 = r1 in Theorem 3.7, we have

Corollary 3.8. Let (X, ψ, ∗) be a RTN and x = {xmnk} ∈ X be a triple sequence. Then stψ3 − LIMr
x is convex.

Theorem 3.9. Let (X, ψ, ∗) be a RTN and x = {xmnk}, y = {ymnk} ∈ X be triple sequences. If x rψ
−→ ζ1 and y rψ

−→ ζ2,
then

(i) x + y rψ
−→ ζ1 + ζ2 and

(ii) cx rψ
−→ cζ1 for every c ∈ R.



M. H. M. Rashid / Filomat 38:3 (2024), 979–996 985

Proof. (i) Given ϵ > 0, λ ∈ (0, 1), r0, r1 > 0 and z ∈ X. Choose η ∈ (0, 1) so that (1 − η) ∗ (1 − η) > 1 − λ.
By definition there exist m(λ),n(λ) and k(λ) such that m > m(λ),n > n(λ) and k > k(λ) implies that
ψxmnk−ζ1,z(r1 + ϵ) > 1 − η. Also there exist r(λ), s(λ) and t(λ) such that m > r(λ),n > s(λ) and k > t(λ) implies
that ψymnk−ζ2,z(r2 + ϵ) > 1 − η. Let i = max{m(λ), r(λ)}, j = max{n(λ), s(λ)}, p = max{k(λ), t(λ)} and r = r1 + r2.
For every m > i,n > j, k > p and each z ∈ X, we have

ψxmnk+ymnk−(ζ1+ζ2),z(r + 2ϵ) ≥ ψxmnk−ζ1,z(r1 + ϵ) ∗ ψymnk−ζ2,z(r2 + ϵ)
> (1 − η) ∗ (1 − η) > 1 − λ

and so {xmnk + ymnk}
rψ
−→ ζ1 + ζ2.

(ii) It is clear for c = 0. Let c , 0 and assume that x rψ
−→ ζ1. Given ϵ > 0, λ ∈ (0, 1), r > 0 and every z ∈ X.

By the definition of rψ-convergence there exist m(λ),n(λ) and k(λ) such that m > m(λ),n > n(λ) and k > k(λ)
yields that

ψxmnk−ζ1,z

( r + ϵ
|c|

)
> 1 − λ.

According to this, for all m > m(λ),n > n(λ) and k > k(λ) and every z ∈ X, we can write

ψcxmnk−cζ,z(r + ϵ) = ψxmnk−ζ,z

( r + ϵ
|c|

)
> 1 − λ.

Therefore, cx rψ
−→ cζ1.

Theorem 3.10. Let (X, ψ, ∗) be a RTN. A triple sequence x = {xmnk} in X is rough statistically convergent to ζ ∈ X
with respect to the norm ψ for some non-negative number r if there exists a sequence y = {ymnk} in X, which is
statistically convergent to ζ ∈ X with respect to the norm ψ and for every λ ∈ (0, 1) and each z ∈ X we have
ψxmnk−ymnk,z(r) > 1 − λ for all m,n, k ∈N.

Proof. Let ϵ > 0, λ ∈ (0, 1) and z ∈ X. Suppose that ymnk
rψ
−→ ζ and ψxmnk−ymnk ,z(r) > 1−λ for all m,n, k ∈N. For

given λ ∈ (0, 1) choose η ∈ (0, 1) such that (1 − η) ∗ (1 − η) > 1 − λ. Define

A =
{
(m,n, k) ∈N ×N ×N : ψymnk−ζ,z(ϵ) ≤ 1 − η

}
and

B =
{
(m,n, k) ∈N ×N ×N : ψxmnk−ymnk ,z(r) ≤ 1 − η

}
.

Obviously, δ(A) = 0 and δ(B) = 0. For (m,n, k) ∈ Ac
∩ Bc, we have

ψxmnk−ζ,z(r + ϵ) ≥ ψymnk−ζ,z(ϵ) ∗ ψxmnk−ymnk ,z(r)
> (1 − η) ∗ (1 − η) > 1 − λ.

Then ψxmnk−ζ,z(r + ϵ) > 1 − λ for all (m,n, k) ∈ Ac
∩ Bc. This implies that

{(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) ≤ 1 − λ} ⊆ A ∪ B

and so
δ
(
{(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) ≤ 1 − λ}

)
≤ δ(A) + δ(B).

Consequently,
δ
(
{(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) ≤ 1 − λ}

)
= 0

and this implies that xmnk
rψ
−→ ζ.

Theorem 3.11. Let (X, ψ, ∗) be a RTN and x = {xmnk} be a triple sequence in X. Then there does not exist elements
y,w ∈ stψ3 − LIMr

x for some r > 0 and every λ ∈ (0, 1) and z ∈ X such that ψy−w,z(mr) ≤ 1 − λ for m > 2.
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Proof. We will use contradiction to prove our result. Assume there exists elements y,w ∈ stψ3 − LIMr
x such

that

ψy−w,z(mr) ≤ 1 − λ for m > 2. (3)

As y,w ∈ stψ3 − LIMr
x. For given λ ∈ (0, 1) choose η ∈ (0, 1) such that (1 − η) ∗ (1 − η) > 1 − λ. Then for every

ϵ > 0, η ∈ (0, 1) and z ∈ X we have δ(E1) = 0 and δ(E2) = 0, where

E1 =
{
(m,n, k) ∈N ×N ×N : ψxmnk−y,z(r + ϵ) > 1 − η

}
and

E2 =
{
(m,n, k) ∈N ×N ×N : ψxmnk−w,z(r + ϵ) > 1 − η

}
.

For (m,n, k) ∈ Ec
1 ∩ Ec

2 we have

ψy−w,z(2r + 2ϵ) ≥ ψxmnk−y,z(r + ϵ) ∗ ψxmnk−w,z(r + ϵ)
> (1 − η) ∗ (1 − η) > 1 − λ.

Hence, ψy−w,z(2r + 2ϵ) > 1 − λ. Then (3) ensures that

ψy−w,z(mr) > 1 − λ for m > 2

which is a contradiction. Then there does not exist elements y,w ∈ stψ3 − LIMr
x for some r > 0 and every

λ ∈ (0, 1) and z ∈ X such that ψy−w,z(mr) ≤ 1 − λ for m > 2.

The statistical cluster point of a sequence in RTN is then defined, and certain results are established in
relation to it.

Definition 3.12. Let (X, ψ, ∗) be a RTN. Then µ ∈ X in X is called rough statistical cluster point of the
sequence x = {xmnk}with respect the norm ψ if for every ϵ > 0, λ ∈ (0, 1) and z ∈ X and for some r ≥ 0,

δ
({

(m,n, k) ∈N ×N ×N : ψxmnk−µ,z(r + ϵ) > 1 − λ
})
> 0,

In this case, µ is known as rψ-cluster point of a sequence x = {xmnk}.
Let stψ3 −Cr

x denotes the set of all rψ-cluster points of a sequence x = {xmnk}. If r = 0 then we get ordinary
statistical cluster point defined by Karakus [17] i.e. stψ3 − Cr

x = stψ3 − Cx.

Theorem 3.13. Let (X, ψ, ∗) be a RTN. Then, the set stψ3 −Cr
x of any sequence x = {xmnk} is closed for some non-negative

real number r.

Proof. If stψ3 − Cr
x = ∅, then there is nothing to prove. Assume that stψ3 − Cr

x , ∅. Then, take a sequence

{ymnk} ⊆ stψ3 − Cr
x such that ymnk

rψ
−→ ν. It is sufficient to show that ν ∈ stψ3 − Cr

x. For λ ∈ (0, 1) choose η ∈ (0, 1)

such that (1 − η) ∗ (1 − η) > 1 − λ. As ymnk
rψ
−→ ν, then for every ϵ > 0, η ∈ (0, 1) and z ∈ X there exist

mη,nη, kη ∈N such that ψymnk−ν,z(ϵ) > 1 − η for all m ≥ mη,n ≥ nη and k ≥ kη.
Now choose m0,n0, k0 ∈ N such that m0 ≥ mη,n0 ≥ nη and k0 ≥ kη . Then, we have ψym0n0k0−ν,z

(ϵ) > 1 − η.

Again as y = {ymnk} ⊆ stψ3 − Cr
x, we have ym0n0k0 ∈ stψ3 − Cr

x. Hence,

δ
({

(m,n, k) ∈N ×N ×N : ψxmnk−ym0n0k0 ,z
(r + ϵ) > 1 − η

})
> 0. (4)

Choose (i, j, l) ∈
{
(m,n, k) ∈N ×N ×N : ψxmnk−ym0n0k0 ,z

(r + ϵ) > 1 − η
}
, then we have

ψxi jl−ym0n0k0 ,z
(r + ϵ) > 1 − η.
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Now

ψxi jl−ν,z(r + 2ϵ) ≥ ψxi jl−ym0n0k0 ,z
(r + ϵ) ∗ ψym0n0k0−ν,z

(ϵ)
> (1 − η) ∗ (1 − η) > 1 − λ.

Thus (i, j, l) ∈ {(m,n, k) ∈N ×N ×N : ψxmnk−ν,z(r + 2ϵ) > 1 − λ}. Therefore{
(m,n, k) ∈N ×N ×N : ψxmnk−ym0n0k0 ,z

(r + ϵ) > 1 − η
}

⊆
{
(m,n, k) ∈N ×N ×N : ψxmnk−ν,z(r + 2ϵ) > 1 − λ

}
.

Consequently,

δ
({

(m,n, k) ∈N ×N ×N : ψxmnk−ym0n0k0 ,z
(r + ϵ) > 1 − η

})
≤ δ

({
(m,n, k) ∈N ×N ×N : ψxmnk−ν,z(r + 2ϵ) > 1 − λ

})
. (5)

Using equation (4), we obtain that the set on left side of (5) has natural density more than 0. Therefore,

δ
({

(m,n, k) ∈N ×N ×N : ψxmnk−ν,z(r + 2ϵ) > 1 − λ
})
> 0

and so ν ∈ stψ3 − Cr
x.

Theorem 3.14. Let (X, ψ, ∗) be a RTN. Let stψ3 − Cr
x be the set of all statistical cluster points of a triple sequence

x = {xmnk} ∈ X and r be some non-negative real number. Then, for an arbitrary ν ∈ stψ3 −Cr
x and λ ∈ (0, 1) and z ∈ X

we have
ψζ−ν,z(r) > 1 − λ for all ζ ∈ stψ3 − Cr

x.

Proof. For λ ∈ (0, 1) choose η ∈ (0, 1) such that (1 − η) ∗ (1 − η) > 1 − λ. Let ν ∈ stψ3 − Cx. Then, for every
ϵ > 0, η ∈ (0, 1) and z ∈ X we have

δ
({
ψxmnk−ν,z(ϵ) > 1 − η

})
> 0. (6)

Now we will show that if for ζ ∈ X we have ψζ−ν,z(r) > 1 − η then ζ ∈ stψ3 − Cr
x. Let (i, j, l) ∈ {(m,n, k) ∈

N ×N ×N : ψxmnk−ν,z(ϵ) > 1 − η} then ψxi jl−ν,z(ϵ) > 1 − η. Now

ψxi jl−ζ,z(r + ϵ) ≥ ψxi jl−ν,z(ϵ) ∗ ψν−ζ,z(r)
> (1 − η) ∗ (1 − η) > 1 − λ.

We have ψxi jl−ζ,z(r + ϵ) > 1 − λ. Thus

(i, j, l) ∈
{
(m,n, k) ∈N ×N ×N : ψxi jl−ζ,z(r + ϵ) > 1 − λ

}
.

Now the next inclusion holds.{
(m,n, k) ∈N ×N ×N : ψxmnk−ν,z(ϵ) > 1 − η

}
⊆

{
(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) > 1 − λ

}
.

So,

δ
({

(m,n, k) ∈N ×N ×N : ψxmnk−ν,z(ϵ) > 1 − η
})

≤ δ
({

(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) > 1 − λ
})
.

Using equation (6) we get

δ
({

(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) > 1 − λ
})
> 0

and hence ζ ∈ stψ3 − Cr
x.
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Theorem 3.15. Let (X, ψ, ∗) be a RTN. If B
r
λ(c) = {x ∈ X : ψx−c,z(r) ≥ 1 − λ} represents the closure of open ball

Br
λ(c) = {x ∈ X : ψx−c,z(r) > 1−λ} for some r > 0, λ ∈ (0, 1) and z ∈ X and fixed c ∈ X then stψ3 −Cr

x =
⋃

c∈stψ3 −Cx
B

r
λ(c).

Proof. For λ ∈ (0, 1) choose η ∈ (0, 1) such that (1−η) ∗ (1−η) > 1−λ. Let ν ∈
⋃

c∈stψ3 −Cx
B

r
λ(c) then there exists

c ∈ stψ3 − Cx for some r > 0 and every η ∈ (0, 1) and z ∈ X such that

ψc−ν,z(r) > 1 − η.

Fix ϵ > 0. Since c ∈ stψ3 − Cx then there exists a set E = {(m,n, k) ∈ N ×N ×N : ψxmnk−c,z(ϵ) > 1 − η} with
δ(E) > 0. Now, for (m,n, k) ∈ E

ψxmnk−ν,z(r + ϵ) ≥ ψxmnk−c,z(ϵ) ∗ ψc−ν,z(r)
> (1 − η) ∗ (1 − η) > 1 − λ.

This implies that
δ
({

(m,n, k) ∈N ×N ×N : ψxmnk−ν,z(r + ϵ)
})
> 0.

Hence, ν ∈ stψ3 − Cr
x. Therefore,

⋃
c∈stψ3 −Cx

B
r
λ(c) ⊆ stψ3 − Cr

x.

For the converse, let ν ∈ stψ3 − Cr
x. Then we try to show that ν ∈

⋃
c∈stψ3 −Cx

B
r
λ(c). Suppose that ν <⋃

c∈stψ3 −Cx
B

r
λ(c), i.e., ν < B

r
λ(c) for all c ∈ stψ3 − Cx. Then ψν−c,z(r) ≤ 1 − λ for every c ∈ stψ3 − Cx and z ∈ X. By

Theorem 3.14 for arbitrary c ∈ stψ3 − Cx we have ψν−c,z(r) > 1 − λ for every c ∈ stψ3 − Cx and z ∈ X which is a
contradiction to the assumption. Therefore, ν ∈

⋃
c∈stψ3 −Cx

B
r
λ(c). Consequently, stψ3 −Cr

x ⊆
⋃

c∈stψ3 −Cx
B

r
λ(c).

Theorem 3.16. Let (X, ψ, ∗) be a RTN. Let x = {xmnk} be a triple sequence in X. Then for every λ ∈ (0, 1), we have

(i) If c ∈ stψ3 − Cx, then stψ3 − LIMr
x ⊆ B

r
λ(c).

(ii) stψ3 − LIMr
x =

⋂
c∈stψ3 −Cx

B
r
λ(c) = {ζ ∈ X : stψ3 − Cx ⊆ B

r
λ(c)}.

Proof. (i) Let ϵ > 0. For given λ ∈ (0, 1) choose η ∈ (0, 1) such that (1 − η) ∗ (1 − η) > 1 − λ. Consider
ζ ∈ stψ3 − stψ3 − Cr

x and c ∈ stψ3 − Cr
x. For every ϵ > 0, η ∈ (0, 1) and z ∈ X, define the sets

A =
{
(m,n, k) ∈N : ψxmnk−ζ,z(r + ϵ) > 1 − η

}
with δ(A) = 0,

and
B =

{
(m,n, k) ∈N : ψxmnk−c,z(ϵ) > 1 − η

}
with δ(B) , 0.

Now if (m,n, k) ∈ A ∩ B we have

ψζ−c,z(r + 2ϵ) ≥ ψxmnk−c,z(r + ϵ) ∗ ψxmnk−ζ,z(ϵ)
> (1 − η) ∗ (1 − η) > 1 − λ.

Consequently, ζ ∈ B
r
λ(c) and so stψ3 − LIMr

x ⊆ B
r
λ(c).

(ii) By previous part we have stψ3 − LIMr
x ⊆

⋂
c∈stψ3 −Cx

B
r
λ(c).

Assume that m ∈
⋂

c∈stψ3 −Cx
B

r
λ(c). Then ψm−c,z(r) > 1 − λ for z ∈ X and for all c ∈ stψ3 − Cx. This implies

that stψ3 − Cx ⊆ B
r
λ(c), i.e., ⋂

c∈stψ3 −Cx

B
r
λ(c) ⊆

{
ζ ∈ X : stψ3 − Cx ⊆ B

r
λ(c)

}
.

Further, let m < stψ3 − LIMr
x then for ϵ > 0 and z ∈ X we have

δ
({

(m,n, k) ∈N ×N ×N : ψxmnk−m,z(r + ϵ) ≤ 1 − λ
})
, 0,
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which implies that the existence of a statistical cluster point c of the sequence x = {xmnk with ψxmnk−y,z(r+ ϵ) ≤
1−λ. Hence stψ3 −Cx ⊈ B

r
λ(c) and m < {ζ ∈ X : stψ3 −Cr

x ⊆ B
r
λ(c)}. This implies that {ζ ∈ X : stψ3 −Cx ⊆ B

r
λ(c)} ⊆

stψ3 − LIMr
x and we obtain

⋂
c∈stψ3 −Cx

B
r
λ(c) ⊆ stψ3 − LIMr

x. Consequently,

stψ3 − LIMr
x =

⋂
c∈stψ3 −Cx

B
r
λ(c) =

{
ζ ∈ X : stψ3 − Cx ⊆ B

r
λ(c)

}
.

Theorem 3.17. Let (X, ψ, ∗) be a RTN. Let x = {xmnk} be a triple sequence in X which is statistically convergent to
ζ ∈ X with respect to the norm ψ then there exists λ ∈ (0, 1) such that

stψ3 − LIMr
x = B

r
λ(c)

for some r > 0.

Proof. Let ϵ > 0. For given λ ∈ (0, 1) choose η ∈ (0, 1) such that (1 − η) ∗ (1 − η) > 1 − λ. Since xmnk
rψ
−→ ζ then

there is a set
K =

{
(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(ϵ) ≤ 1 − η

}
with δ(K) = 0 and z ∈ X.

Consider for z ∈ X, w ∈ B
r
λ(c) = {q ∈ X : ψq−ζ,z(r) ≥ 1 − η}. For (m,n, k) ∈ Kc we have

ψxmnk−w,z ≥ ψxmnk−ζ,z(ϵ) ∗ ψw−ζ,z(r)
> (1 − η) ∗ (1 − η) > 1 − λ.

This implies that w ∈ stψ3 − LIMr
x, that is, B

r
λ(c) ⊆ stψ3 − LIMr

x. Also, stψ3 − LIMr
x ⊆ B

r
λ(c). Therefore,

stψ3 − LIMr
x = B

r
λ(c).

Theorem 3.18. Let (X, ψ, ∗) be a RTN. Let x = {xmnk} be a triple sequence in X which is statistically convergent with
respect to the norm ψ then

stψ3 − Cr
x = stψ3 − LIMr

x

for some r > 0.

Proof. Suppose xmnk
rψ
−→ ζ. Then stψ3 − Cx = {ζ}. By Theorem 3.15 for some r > 0 and λ ∈ (0, 1) we have

stψ3 − Cr
x = B

r
λ(c). Also by Theorem 3.17 we get stψ3 − LIMr

x = B
r
λ(c). Hence, stψ3 − Cr

x = stψ3 − LIMr
x.

Conversely, let stψ3 − Cr
x = stψ3 − LIMr

x. By Theorem 3.15 and Theorem 3.16(ii) we have⋃
c∈stψ3 −Cx

B
r
λ(c) =

⋂
c∈stψ3 −Cx

B
r
λ(c).

This implies that either stψ3 − Cx = ∅ or stψ3 − Cx is a singleton set. Then

stψ3 − LIMr
x =

⋂
c∈stψ3 −Cx

B
r
λ(c) = B

r
λ(ζ)

for some ζ ∈ stψ3 − Cx, and it follows then by Theorem 3.17 that stψ3 − LIMr
x = {ζ}.

Definition 3.19. Let (X, ψ, ∗) be a RTN and x = {xmnk} ∈ X be triple sequences. {xmnk} is said to be a rough
Cauchy sequence with roughness degree τ, if

∀λ ∈ (0, 1), ϵ > 0,∃iλ, jλ, kλ : m, r ≥ iλ,n, s ≥ jλ, k, t ≥ pλ : ψxmnk−xrst,z(τ + ϵ) ≥ 1 − λ

is hold for τ > 0, ζ ∈ X and every z ∈ X. τ is also called a Cauchy degree of {xmnk}.
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Proposition 3.20. Let (X, ψ, ∗) be a RTN and x = {xmnk} ∈ X be triple sequences.
(i) Assume τ′ > τ. If τ is a Cauchy degree of a given sequence x = {xmnk} ∈ X, so τ′ is a Cauchy degree of {xmnk}.

(ii) A sequence x = {xmnk} ∈ X is bounded if and only if there exists a τ ≥ 0 such that {xmnk} is a τ-Cauchy sequence
in X.

Theorem 3.21. Let (X, ψ, ∗) be a RTN. If {xmnk} is rough convergent in X, i.e., stψ3 − LIMr
x , ∅, if and only if {xmnk}

is a τ-Cauchy sequence for every τ ≥ 2r.

Proof. Let ζ be any point in stψ3 −LIMr
x. Then, for all ϵ > 0, λ ∈ (0, 1), choose η ∈ (0, 1) such that (1−η)∗(1−η) >

1 − λ and so by definition of rψ-convergent there exist iλ, jλ, kλ such that m, r ≥ iλ,n, s ≥ jλ, k, t ≥ pλ implies
that

ψxmnk−ζ,z(r + ϵ) > 1 − η and ψxrst−ζ,z(r + ϵ) > 1 − η

for every z ∈ X. Consequently, for every m, r ≥ iλ,n, s ≥ jλ, k, t ≥ pλ we have

ψxmnk−xrst,z(2r + 2ϵ) ≥ ψxmnk−ζ,z(r + ϵ) ∗ ψxrst−ζ,z(r + ϵ)
> (1 − η) ∗ (1 − η) > 1 − λ

for every z ∈ X. Hence, {xmnk} is a τ-Cauchy sequence for every τ ≥ 2r. By Proposition 3.20, every τ ≥ 2r is
also a Cauchy degree of {xmnk}.

Let {xmnk} be a rough Cauchy sequence in X. Since {xmnk} be a rough Cauchy sequence, then it is bounded
and consequently it is rough convergent for τ > 0 and for every z ∈ X.

4. Rough ideal convergence

In this section, we extend the notion of rough convergence by the notion of ideals, which naturally
extends the notions of rough convergence and rough statistical convergence. We define the group of rough
ideal limit points and show some results that are connected to this group. See the references provided by
[2, 16, 18, 32] for information on the ideal limit points, ideal cluster points, statistical rough limit points,
statistical rough cluster points, and statistical rough points of sequences in a fuzzy 2-normed space and
probabilistic normed space, respectively.

Let G be a non empty set. Then a family of sets I ⊂ 2G (2G is the power set of G) is said to be an ideal on
G if for each A1,A2 ∈ I we have A1 ∪ A2 ∈ I, and for each A1 ∈ I and each A2 ⊂ A1, we have A2 ∈ I. A non
empty family of sets F ⊂ 2G is said to be filter on G if ∅ < F, for each A1,A2 ∈ F we have A1 ∩ A2 ∈ F and
for each A1 ∈ F and each A2 ⊃ A1, we have A2 ∈ F. An ideal I on G is called non-trivial if I , ∅ and G < I.
It is clear that I ⊂ 2G is an non-trivial ideal on G if and only if F = F(I) =: {G \ K : K ∈ I} is a filter on G. A
non-trivial ideal I ⊂ 2G is called an admissible ideal if I ⊃ {{x} : x ∈ S}. In this paper we consider the case
G =N.

Definition 4.1. Let (X, ψ, ∗) be a RTN and r be a non-negative real number. A triple sequence x = {xmnk} of
elements of X is said to be rough ideal convergent or rIψ3 -convergent to ζ with respect to RTN, denoted by

x
r−Iψ3
−−−→ ζ, if for any ϵ, λ ∈ (0, 1) and z ∈ X, we have{

(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) ≤ 1 − λ
}
∈ I3.

In this case ζ is called r − Iψ3 -limit of x and a triple sequence x = {xmnk} is called rough Iψ3 -convergent to ζ
with r as roughness of degree. If r = 0 then it is ordinary Iψ3 -convergent.

The same reasons as in [30] and [3] for presenting this idea. For instance assume that the sequence
y = {ymnk} is I3-convergent and can not be measured or calculated exactly and one has to do with an
approximated (or I-approximated) sequence x = {xmnk} satisfying ψxmnk−ymnk,z(r) ≥ 1−λ for all m,n, k ∈N and
every λ ∈ (0, 1) and z ∈ X (or for almost all m,n, k that is {(m,n, k) ∈N ×N ×N : ψxmnk−ymnk ,z(r) < 1 − λ} ∈ I3).
Then I3-convergence of the sequence x is not assured, but as the inclusion {(m,n, k) ∈N×N×N : ψymnk−ξ,z(ϵ) ≤
1 − λ} ⊇ {(m,n, k) ∈N ×N ×N : ψxmnk−ξ,z(r + ϵ) ≤ 1 − λ} holds so the sequence x = {xmnk} is rI3-convergent.
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Remark 4.2. Let (X, ψ, ∗) be a RTN and r be a non-negative real number.

(i) Generally, a triple sequence y = ymnk is not Iψ3 -convergent in usual sense and

ψxmnk−ymnk,z(r) ≥ 1 − λ

for all (m,n, k) ∈N ×N ×N or

{(m,n, k) ∈N ×N ×N : ψxmnk−ymnk,z(r) ≤ 1 − λ} ∈ I3

for some r > 0 and each ϵ > 0, λ ∈ (0, 1) and z ∈ X. Then the triple sequence x = {xmnk} is r − Iψ3 -
convergent.

(ii) It is clear that r − Iψ3 -limit of x is not necessarily unique.

(iii) Consider r− Iψ3 -limit set of x which is denoted by Iψ3 -LIMr
x = {ζ ∈ X : x

r−Iψ3
−−−→ ζ}, then the triple sequence

x = {xmnk} is said to be r − Iψ3 -convergent if Iψ3 -LIMr
x , ∅ and r is called a rough Iψ3 -convergence degree

of x.

Theorem 4.3. Let (X, ψ, ∗) be a RTN and r be a non-negative real number. For a triple sequence x = {xmnk} we have
diam(Iψ3 − LIMr

x) ≤ 2r. In general diam(Iψ3 − LIMr
x) has no smaller bound.

Proof. Let ϵ > 0, λ ∈ (0, 1) and z ∈ X. Choose η ∈ (0, 1) so that (1 − η) ∗ (1 − η) > 1 − λ. Assume that
diam(Iψ3 − LIMr

x) > 2r. Then there exists y,w ∈ Iψ3 − LIMr
x such that ψw−y,z(2r) < 1 − λ. Put

A1 =
{
(m,n, k) ∈N ×N ×N : ψxmnk−y,z(r + ϵ) ≤ 1 − η

}
and

A2 =
{
(m,n, k) ∈N ×N ×N : ψxmnk−w,z(r + ϵ) ≤ 1 − η

}
Then A1,A2 ∈ I3 and hence M =N ×N ×N \ (A1 ∪ A2) ∈ F(I3) and so M , ∅. Let (m,n, k) ∈M. Now

ψy−w,z(2r + 2ϵ) ≥ ψxmnk−y,z(r + ϵ) ∗ ψxmnk−w,z(r + ϵ)
> (1 − η) ∗ (1 − η) > 1 − λ

which is a contradiction. Thus diam(Iψ3 − LIMr
x) ≤ 2r.

To prove the converse part, consider a sequence x = {xmnk} such that r-Iψ3 -lim x = ζ. Let ϵ > 0, λ ∈ (0, 1)
be given. Choose η ∈ (0, 1) so that (1 − η) ∗ (1 − η) > 1 − λ. Then for z ∈ X, A = {(m,n, k) ∈ N ×N ×N :
ψxmnk−ζ,z(ϵ) ≤ 1 − η} ∈ I3. Now for each ξ ∈ B

r
(ζ) = {ξ ∈ X : ψξ−ζ,z(r) ≤ 1 − η}we have

ψxmnk−ζ,z(r + ϵ) ≥ ψxmnk−ζ,z(ϵ) ∗ ψζ−ξ,z(r)
> (1 − η) ∗ (1 − η) > 1 − λ,

whenever (m,n, k) < A. Which shows that ξ ∈ Iψ3 − LIMr
x and consequently we can write Iψ3 − LIMr

x = B
r
λ(ζ).

This shows that in general upper bound 2r of the diameter of the set Iψ3 −LIMr
x = B

r
λ(ζ) can not be decreased

anymore.

In [30] it was established that there exists a non-negative real number r such that LIMr
x for a bounded

sequence x. As LIMr
x implies I − LIMr

x, this result is also true for Iψ3 − LIMr
x for any admissible ideal I3. The

converse implication is not generally true. For this we have the following result.

Definition 4.4. Let (X, ψ, ∗) be a RTN and r be a non-negative real number. A triple sequence x = {xmnk} is
said to be Iψ3 -bounded if there exists a real number M > 0 such that

A =
{
(m,n, k) ∈N ×N ×N : ψxmnk ,z(M) ≤ 1 − λ

}
∈ I3

for every λ ∈ (0, 1) and z ∈ X.
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Theorem 4.5. Let (X, ψ, ∗) be a RTN. A triple sequence x = {xmnk} is Iψ3 -bounded if and only if there is a non-negative
real number r such that Iψ3 -LIMr

x , ∅.

Proof. Let x = {xmnk} be an I
ψ

3 -bounded sequence. Then, for every ϵ > 0, λ ∈ (0, 1) and some r > 0 and
z ∈ X, there exists a real number M > 0 such that

A =
{
(m,n, k) ∈N ×N ×N : ψxmnk ,z(M) ≤ 1 − λ

}
∈ I3.

For (m,n, k) ∈ Ac we have ψxmnk ,z(M) > 1 − λ. Also

ψxmnk,z(r +M) ≥ ψ0,z(r) ∗ ψxmnk,z(M)
> 1 ∗ (1 − λ) = 1 − λ.

Hence, 0 ∈ Iψ3 − LIMr
x and so Iψ3 -LIMr

x , ∅.

For the converse, Let Iψ3 -LIMr
x , ∅ for some r > 0. Then there exists ζ ∈ X such that ζ ∈ Iψ3 − LIMr

x. For
every ϵ > 0, λ ∈ (0, 1) and z ∈ X we have{

(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) ≤ 1 − λ
}
∈ I3.

Therefore, almost all elements x are contained in some ball with center ζ which implies that sequence
x = {xmnk} is I

ψ
3 -bounded sequence in X.

The r-Iψ3 -limit set of a sequence is then given various topological and geometrical features.

Theorem 4.6. Let (X, ψ, ∗) be a RTN. The r-Iψ3 -limit set Iψ3 -LIMr
x of a triple sequence x = {xmnk} is a closed set.

Proof. If Iψ3 -LIMr
x = ∅, then nothing to prove. Assume that Iψ3 -LIMr

x , ∅ for some r > 0 and consider y = {ymnk}

be a convergent sequence in Iψ3 -LIMr
x with respect to the norm ψ to y0 ∈ X. For λ ∈ (0, 1) choose η ∈ (0, 1)

such that (1 − η) ∗ (1 − η) > 1 − λ. Then for every ϵ > 0 and η ∈ (0, 1) and z ∈ X there exist m1,n1, k1 ∈ N
such that ψymnk−y0,z(ϵ) > 1 − η for all m ≥ m1,n ≥ n1 and k ≥ k1. Let (m0,n0, k0) ∈ N ×N ×N such that
ym0n0k0 ∈ {ymnk} ⊆ Iψ3 -LIMr

x. Therefore, the set K = {(m,n, k) ∈ N ×N ×N : ψxmnk−ym0n0k0 ,z
(r + ϵ) ≤ 1 − η} ∈ I3.

Clearly, E = N ×N ×N \ K ∈ F(I3) and hence E , ∅. Let (p, q, l) ∈ E and choose m0 > m1,n0 > n1, k0 > k1.
Consequently,

ψxpql−y0,z(r + 2ϵ) ≥ ψxpql−ym0n0k0 ,z
(r + ϵ) ∗ ψym0n0k0−y0,z(ϵ)

> (1 − η) ∗ (1 − η) > 1 − λ.

Hence

E =
{
(m,n, k) ∈N ×N ×N : ψxmnk−ym0n0k0 ,z

(r + ϵ) > 1 − η
}

⊆

{
(m,n, k) ∈N ×N ×N : ψxmnk−y0,z(r + 2ϵ) > 1 − η

}
.

where
{
(m,n, k) ∈N ×N ×N : ψxmnk−ym0n0k0 ,z

(r + ϵ) > 1 − η
}
∈ F(I3). Hence{

(m,n, k) ∈N ×N ×N : ψxmnk−y0,z(r + 2ϵ) > 1 − η
}
∈ F(I3)

and so {(m,n, k) ∈N ×N ×N : ψxmnk−y0,z(r + 2ϵ) ≤ 1 − η} ∈ I3. Therefore, the proof is complete.

Theorem 4.7. Let (X, ψ, ∗) be a RTN. The r-Iψ3 -limit set Iψ3 -LIMr
x of a triple sequence x = {xmnk} is convex.
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Proof. Let ϵ > 0 and λ ∈ (0, 1) be given. Choose choose η ∈ (0, 1) such that (1 − η) ∗ (1 − η) > 1 − λ. Let
y0, y1 ∈ Iψ3 -LIMr

x. Then for z ∈ X, put

Q1 =
{
(m,n, k) ∈N ×N ×N : ψxmnk−y0,z(r + ϵ) ≤ 1 − η

}
and

Q2 =
{
(m,n, k) ∈N ×N ×N : ψxmnk−y1,z(r + ϵ) ≤ 1 − η

}
.

Then Q1∪Q2 ∈ I3 which implies that E =N×N×N\ (Q1∪Q2) ∈ F(I3) and so E , ∅. Now for all (m,n, k) ∈ E
and each α ∈ [0, 1] we have

ψxmnk−(αy0+(1−α)y1),z(r + ϵ) = ψxmnk−(αy0+(1−α)y1),z(α(r + ϵ) + (1 − α)(r + ϵ)

≥ ψαxmnk−αy0,z(α(r + ϵ)) ∗ ψ(1−α)xmnk−(1−α)y0,z((1 − α)(r + ϵ))

= ψxmnk−y0,z

(
α

r + ϵ
α

)
∗ ψxmnk−y0,z

(
(1 − α)

r + ϵ
1 − α

)
> (1 − η) ∗ (1 − η) > 1 − λ.

Hence, {
(m,n, k) ∈N ×N ×N : ψxmnk−(αy0+(1−α)y1),z(r + ϵ) ≤ 1 − λ

}
∈ I3

which implies that αy0 + (1 − α)y1 ∈ Iψ3 -LIMr
x. Consequently, Iψ3 -LIMr

x of the triple sequence x = {xmnk} is
convex.

Theorem 4.8. Let (X, ψ, ∗) be a RTN and r be a non-negative real number. Then a triple sequence x = {xmnk} is r-Iψ3 -
convergent to ζ if and only if there exists a sequence y = {y = ymnk} such that Iψ3 -lim y = ξ and ψxmnk−ymnk,z(r) > 1−λ
for all (m,n, k) ∈N ×N ×N and every λ ∈ (0, 1) and z ∈ X.

Proof. Let ϵ > 0, λ ∈ (0, 1) and z ∈ X. Suppose that ymnk → rψζ and ψxmnk−ymnk ,z(r) > 1 − λ for all m,n, k ∈ N.
For given λ ∈ (0, 1) choose η ∈ (0, 1) such that (1 − η) ∗ (1 − η) > 1 − λ. Define

A =
{
(m,n, k) ∈N ×N ×N : ψymnk−ζ,z(ϵ) ≤ 1 − η

}
and

B =
{
(m,n, k) ∈N ×N ×N : ψxmnk−ymnk ,z(r) ≤ 1 − η

}
.

Then A ∪ B ∈ I3 and hence M =N ×N ×N \ (A ∪ B) ∈ F(I3). For (m,n, k) ∈M, we have

ψxmnk−ζ,z(r + ϵ) ≥ ψymnk−ζ,z(ϵ) ∗ ψxmnk−ymnk ,z(r)
> (1 − η) ∗ (1 − η) > 1 − λ.

Then ψxmnk−ζ,z(r + ϵ) > 1 − λ for all (m,n, k) ∈M. This implies that

{(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) ≤ 1 − λ} ⊆ A ∪ B

and so
{(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) ≤ 1 − λ} ∈ I3

and this implies that xmnk
r−Iψ3
−−−→ ζ.

Conversely, suppose that the given condition holds. For any ϵ > 0, λ ∈ (0, 1) and z ∈ X. Choose η ∈ (0, 1)
such that (1 − η) ∗ (1 − η) > 1 − λ. Then the set

A = {(m,n, k) ∈N ×N ×N : ψymnk−ζ,z(ϵ) ≤ 1 − η} ∈ I3.

Observe that

ψxmnk−ζ,z(r + ϵ) ≥ ψxmnk−ymnk ,z(r) ∗ ψymnk−ζ,z(ϵ)
> (1 − η) ∗ (1 − η) > 1 − λ
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for all (m,n, k) ∈M =N ×N ×N \ A. This shows that{
(m,n, k) ∈N ×N ×N : ψxmnk−ζ,z(r + ϵ) ≤ 1 − λ

}
⊆ A ∈ I3.

Consequently, xmnk
r−Iψ3
−−−→ ζ.

Definition 4.9. Let (X, ψ, ∗) be a RTN and r be a non-negative real number. A point ξ ∈ X is called an
Iψ3 -limit point of a triple sequence x = {xmnk} if there exists a set K = {(m j,n j, k j) : j ∈ N} ∈ F(I3) such that
lim j→∞ xm jn jk j = ξ. The set of all Iψ3 -limit points of the sequence x will be denoted by Iψ3 -LIMr

x.

Definition 4.10. Let (X, ψ, ∗) be a RTN and r be a non-negative real number. ξ ∈ X is called an Iψ3 -cluster point
of a triple sequence x = {xmnk} if for any ϵ > 0, λ ∈ (0, 1) and z ∈ X, the set {(m,n, k) : ψxmnk−ξ,z(r+ϵ) > 1−λ} < I3.
The set of all Iψ3 -cluster points of x will be denoted by Iψ3 − Cr

x.

Theorem 4.11. Let (X, ψ, ∗) be a RTN and r be a non-negative real number. For an arbitrary ν ∈ Iψ3 − Cr
x, where

x = {xmnk} is a triple sequence in X, we have ψν−ξ,z(r) ≥ 1 − λ for all ξ ∈ Iψ3 -LIMr
x and every λ ∈ (0, 1) and z ∈ X.

Proof. For λ ∈ (0, 1) choose η ∈ (0, 1) such that (1 − η) ∗ (1 − η) > 1 − λ. Let ν ∈ Iψ3 − Cr
x. Then, for every

ϵ > 0, η ∈ (0, 1) and z ∈ X we have{
(m,n, k) ∈N ×N ×N : ψxmnk−ν,z(ϵ) > 1 − η

}
< I3. (7)

Now we will show that if for ξ ∈ X we have ψξ−ν,z(r) > 1 − η then ξ ∈ Iψ3 − Cr
x. Let (i, j, l) ∈ {(m,n, k) ∈

N ×N ×N : ψxmnk−ν,z(ϵ) > 1 − η} then ψxi jl−ν,z(ϵ) > 1 − η. Now

ψxi jl−ξ,z(r + ϵ) ≥ ψxi jl−ν,z(ϵ) ∗ ψν−ξ,z(r)
> (1 − η) ∗ (1 − η) > 1 − λ.

We have ψxi jl−ξ,z(r + ϵ) > 1 − λ. Thus

(i, j, l) ∈
{
(m,n, k) ∈N ×N ×N : ψxi jl−ξ,z(r + ϵ) > 1 − λ

}
.

Now the next inclusion holds.{
(m,n, k) ∈N ×N ×N : ψxmnk−ν,z(ϵ) > 1 − η

}
⊆

{
(m,n, k) ∈N ×N ×N : ψxmnk−ξ,z(r + ϵ) > 1 − λ

}
.

Using equation (7) we get {
(m,n, k) ∈N ×N ×N : ψxmnk−ξ,z(r + ϵ) > 1 − λ

}
< I3

and hence ξ ∈ Iψ3 − Cr
x.

Theorem 4.12. Let (X, ψ, ∗) be a RTN, r be a non-negative real number and λ ∈ (0, 1). A triple sequence x = {xmnk}

is Iψ3 -convergent to ξ if and only if Iψ3 -LIMr
x = B

r
λ(ξ).

Proof. In Theorem 4.3 we have already proved the necessity part. For the sufficiency, let Iψ3 -LIMr
x = B

r
λ(ξ) , ∅.

Thus the sequence x = {xmnk} is Iψ3 -bounded. Suppose that x has another Iψ3 -cluster point ζ different from ξ.
The point ξ̄ = ξ + r

∥ξ−ζ,z∥ (ξ − ζ) satisfies ψξ̄−ξ,z(r) < 1 − λ for every λ ∈ (0, 1) and z ∈ X. Since ζ ∈ Iψ3 − Cr
x, it

follows by Theorem 4.11 that ζ < Iψ3 -LIMr
x. But this is impossible as ψξ̄−ξ,z(r) > 1 − λ and Iψ3 -LIMr

x = B
r
λ(ξ).

Since ξ is the unique Iψ3 -cluster point of x, it follows that x is Iψ3 -convergent.
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Theorem 4.13. Let (X, ψ, ∗) be a RTN. Let x = {xmnk} be a triple sequence in X. Then for every λ ∈ (0, 1), we have

(i) If c ∈ Iψ3 − Cx, then Iψ3 − LIMr
x ⊆ B

r
λ(c).

(ii) Iψ3 − LIMr
x =

⋂
c∈Iψ3 −Cx

B
r
λ(c) = {ζ ∈ X : Iψ3 − Cx ⊆ B

r
λ(c)}.

Proof. (i) Let ϵ > 0. For given λ ∈ (0, 1) choose η ∈ (0, 1) such that (1−η) ∗ (1−η) > 1−λ. Consider ζ ∈ Iψ3 −Cr
x

and c ∈ Iψ3 − Cx. For every ϵ > 0, η ∈ (0, 1) and z ∈ X, define the sets

A =
{
(m,n, k) ∈N : ψxmnk−ζ,z(r + ϵ) > 1 − η

}
< I3,

and
B =

{
(m,n, k) ∈N : ψxmnk−c,z(ϵ) > 1 − η

}
< I3.

Now if (m,n, k) ∈ A ∩ B we have

ψζ−c,z(r + 2ϵ) ≥ ψxmnk−c,z(r + ϵ) ∗ ψxmnk−ζ,z(ϵ)
> (1 − η) ∗ (1 − η) > 1 − λ.

Consequently, ζ ∈ B
r
λ(c) and so Iψ3 − LIMr

x ⊆ B
r
λ(c).

(ii) By previous part we have Iψ3 − LIMr
x ⊆

⋂
c∈Iψ3 −Cx

B
r
λ(c).

Assume that m ∈
⋂

c∈Cψx B
r
λ(c). Then ψm−c,z(r) > 1 − λ for z ∈ X and for all c ∈ Iψ3 − Cx. This implies that

Iψ3 − Cx ⊆ B
r
λ(c), i.e., ⋂

c∈Iψ3 −Cx

B
r
λ(c) ⊆

{
ζ ∈ X : Iψ3 − Cx ⊆ B

r
λ(c)

}
.

Further, let m < Iψ3 − LIMr
x then for ϵ > 0 and z ∈ X we have{

(m,n, k) ∈N ×N ×N : ψxmnk−m,z(r + ϵ) ≤ 1 − λ
}
< I3,

which implies that the existence of a Iψ3 -cluster point c of the sequence x = {xmnk}with ψxmnk−y,z(r+ ϵ) ≤ 1−λ.
Hence Iψ3 −Cx ⊈ B

r
λ(c) and m < {ζ ∈ X : Iψ3 −Cx ⊆ B

r
λ(c)}. This implies that {ζ ∈ X : Iψ3 −Cx ⊆ B

r
λ(c)} ⊆ Iψ3 −LIMr

x

and we obtain
⋂

c∈Iψ3 −Cx
B

r
λ(c) ⊆ Iψ3 − LIMr

x. Consequently,

Iψ3 − LIMr
x =

⋂
c∈Iψ3 −Cx

B
r
λ(c) =

{
ζ ∈ X : Iψ3 − Cx ⊆ B

r
λ(c)

}
.

Theorem 4.14. Let (X, ψ, ∗) be a RTN, r be a non-negative real number. Let x = {xmnk} be an Iψ3 -bounded sequence.
If r = diam(Iψ3 − Cr

x), then we have Iψ3 − Cr
x ⊆ Iψ3 − LIMr

x.

Proof. Let c < Iψ3 − LIMr
x. Then there exists an ϵ′ > 0 such that the set

K = {(m,n, k) ∈N ×N ×N : ψxmnk−c,z(r + ϵ′) ≤ 1 − λ} < I3.

Since the sequence is Iψ3 -bounded, there exists an Iψ3 -cluster point c′ such that ψc−c′,z(r + ϵ′/2) < 1 − λ.
Consequently c < Iψ3 − Cr

x and the result follows.
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5. Conclusion

This work develops and investigates the notion of rough statistical convergence as well as ideals to widen
the notion of rough convergence for triple sequences in the setting of random 2-normed space. Also, some
fascinating results and connections between these ideas were shown. Definitions of I∗3-rough convergence
and I∗3-rough-Cauchy of triple sequences in probabilistic 2-metric spaces will be given in further work,
which will also look at some connections with the concepts discussed in this study. On the other hand, the
lacunary sequence can benefit from these concepts.
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