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Anisotropic nonlinear elliptic equations with variable exponents and
two weighted first order terms

Mokhtar Naceri®

?ENS of Laghouat; Box 4033 Station post avenue of Martyrs, Laghouat, Algeria.

Abstract. This paper is devoted to studying the existence of distributional solutions for a boundary

value problems associated to a class of anisotropic nonlinear elliptic equations with variable exponents
o =

characterized by two strictly positive—W?0(Q) first order terms (the weight functions belong to the

anisotropic variable exponents Sobolev space with zero boundary), and this is in bounded open Lipschitz
domain (with Lipschitz boundary) of RY (N > 2).

The functional setting involves anisotropic varible
exponents Lebesgue-Sobolev spaces.

1. Introduction

Let Q be a bounded open set in RN (N > 2) with Lipschitz boundary 9Q.

Our goal is to prove the existence of distributional solution to the anisotropic nonlinear elliptic problems
of the form

N N
=Y D{A@)oix, D)) = = Y Di(B@ulul®2) + f(x), in Q.
i=1 i=1

1)
u=0, ondQ,
Where, o
o) f isin L}(Q), and A("), B(*) two strictly positive W7 (Q), such that
A@x) > a, 2)

where, a > 0.
)0 : OXR—>R,i=1,...,N, are Carathéodory functions and satisfying;
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a.e. x € Qand foralln, 7 € R((n, 1) # (0,0)), the following :

ai(x, mn = ealnP®, (3)
N 1-5®
loi(x, NI < 2 [Z P + |h|] , heLY(Q) 4)
=1
aln—n'P®, i pix) =2
(oitx,m) —oi(x, ') (n—7n'") = C4(||‘1\]_—1|])1£M, if1<pix) <2 ()
nl+t)”

where ¢;, I =1,...,4 are positive constants.

This paper is concerned with the study of the existence results of distributional solutions concerning a
class of anisotropic nonlinear elliptic equations with variable exponents and characterized by two first order
terms with strictly positive—VOVL?(‘)(Q) coefficients where the weight functions belong to the anisotropic
variable exponents Sobolev space with zero boundary, and the datum f € L'(Q). The existence results
of this type of equations with various data in the isotropic scalar case, is proven in [1-7]. The existence
of distributional solutions for anisotropic nonlinear weighted elliptic equations with variable exponents it
was studied in [8, 9].

The proof requires a priori estimates for a sequence of suitable approximate solutions (u,), which in turn
is proving its existence by Leray-Schauder’s fixed point Theorem. We then prove the boundedness of u, in
VOVL?(’)(Q) and the a.e. convergence of the partial derivatives Dju,, i =1,...,N in Q, which can be turned
into strong L!-convergence. Equipped with this convergence we pass to the limit in the strong L' sense in
A, (x)oi(x, D) , and in B, (x)u,|u, P2, and finally conclude that the approximate solutions u, converge
to the solution of (1).

The work has been organized in the following form:

Section 2 for some mathematical preliminaries, where here we reminded the isotropic and anisotropic
variable exponent Lebesgue-Sobolev spaces, then some embedding theorems . The main theorem and its
proof come in section 3.

2. Preliminaries

In this section we need to provide some basics definitions and properties about isotropic and anisotropic
variable exponent Lebesgue-Sobolev spaces (see [14-19]).

Let Q be a bounded open subset of RN (N > 2), we denote

C.(Q) = {continuous function p(-): Q+— R suchthat 1<p <p* < oo},
where

p" =maxp(x) and p~ =minp().
xeQ) xeQ)

We define the Lebesgue space with variable exponent LFV(Q) by
LPY(Q) := {measurable functions u : Q — R; Pp) (1) < oo}

where
Ppey () := f [u(x)P¥dx, the convex modular.
Q

The space LP")(Q) equipped with the norm

£l = Al = inf{A > 01 pyy(f/A) < 1}
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becomes a Banach space. Moreover, is reflexive if p~ > 1.

L7 (Q) symbolize to the dual of LF*)(Q) where F%x) + rﬁ =1.

Yu € LPO(Q), Yo € LF'O(Q) the Holder type inequality:

f uvdx
Q
holds true.

We define also the Banach space Wé’p (')(Q) by

1 1
< (l? + F?) [[eellpey 1Ol ¢y < 2l lpey 1Ol ).

WyP(Q) = {f € L'(Q) : IDf| € L"(Q) and £ =0 on IO
endowed with the norm ||f ||W1,p(~)(Q) = IDfllp). Moreover, is reflexive and separable if p(-) € C+(5).
The following Lemma will be used later.
Lemma 2.1 ([15, 16]). If (1), u € LPY(Q), then the following relations hold
(i) Nullyy < 1 (respectively =1, > 1) & pyy(u) < 1 (respectively =1, > 1),

.. . 1 1 1 1
(i) min (o ()7, Py 107 ) < Ity < max s )7 (7).

Sy p- P P P
(i min ([l el ) < pycy (o) < max (e, )

(i) llully) < ppoy() +1,
(V) |ty = ullpey = 0 & pyiy(ty — 1) — 0.

Now, we present the anisotropic Sobolev space with variable exponent which is used for the study of
problems (1).

First of all, let p;(-) : Q- [1,+c0) foralli=1,...,N be a continuous functions, we set Yx € Q

FO= @10 px(), pe@) = maxpi), p-() = min piv)

<i< 1<i

px) =

, pe(x) = max pi(x),

g‘ 1 <i<

i-1 P:(X)
Y =maxp.(x), v_(x) = min p;(x),
pi = ma p+(),  p-(x) = min pi(x)

Np(x) =
po = minp_(x), () =] NI’ for E(x) <N,
xeQ +00, for p(x) > N.
The anisotropic variable exponent Sobolev space W1FO(Q) is defined as follow
WPOQ) = {u € O(Q), Diu € LPO(Q), i=1,...,N],

which is Banach space with respect to the norm

N
il = Mllp. o + Y 1Dl -
i=1

We define the spaces Wé’?)(‘)(()) and Wl'V(')(Q) as follow

LBO) e o7V 7 O@
Wy (Q) = CF(Q) ,

W7 0Q) = W OQ) n WH(Q).
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Remark 2.2. ([13]) If Q is a bounded open set with Lipschitz boundary 9Q), then
W' POQ) = fu e WPO(Q), upg =0},
where, ujaq denotes the trace on dQ of u in W (Q).

We have the following embedding results.

Lemma 2.3 ([13, 14]). Let Q c RY be a bounded domain and P (-) € (C+(Q)N. Ifr € C+(Q) and ¥x € Q, r(x) <
max(p4(x), p*(x)). Then the embedding

Wl'ﬁ(')(Q) — L'(Q) is compact. (6)
Lemma 2.4 ([13, 14]). Let Q c RN be a bounded domain and p () € (C+(Q))N. Suppose that
Vx € Q, pi(x) < 7" (x). 7)
Then the following Poincaré-type inequality holds
N
lllpeocy < C Y IDitll oy, Y € WHPO(Q), ®)
i=1
where C is a positive constant independent of u.

N
Thus Y ||D;utll; 00 is an equivalent norm on W7 O(Q).
rOQ) q
i=1

In this paper, we use the scalar truncation function 73 : R — R at levels +k defined as for all s € R as;
Tk(s) := max(—k, min(k, s)). 9)

In addition to this, we use the standard scalar truncation function T; : R — IR (at height ¢ > 0) defined for
alls € R as;

1 s, ifls|<t,
Tis) = =(s+t—1Is—t]) = 10
()= s+ 1l =ls = ) {ﬂt et (10)
We also need its derivative (see [10-12]);
_J L o Isl<t,
DTf(S)‘{ 0, |s|>t (11)

We need further the following function defined for s € R by

0, if Is|<t,
Gi(s) =4s—t, ifs>t t>0
s+t if s<-t,

as a test function in the approximate weak formulation.
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3. Statement of Results
Definition 3.1. We say that u is a distributional solution for problem (1) if u € W(l)’l(Q), and for all € CX(Q),

N

N
ZfA(x)oi(x,Diu)D,-(pdxzfB(x)uZIulp"(x)_zDi(pdx+ff(x)(pdx.
-1 Vv Q i=1 Q

Our main result is the following.

Theorem 3.2. Let pi(-) > 1,i=1,...,N, are continuous functions on C such that (7) holds and p < N, and let f
is in LY(QQ), and A(-), B() two strictly positive WP O(Q) such that (2) holds. Let o;, i = 1,...,N be Carathéodory
functions satisfying (3), (4), (5). Then the problem (1) has at least one solution u € WLF(')(Q) in the sense of
distributions.

3.1. Approximate solutions
We are going to prove the existence of solution to problem (1).
We define

Ax) _ _B®) fx)

An(x) = » Balx) = ; fa(x) =

eN". (12)

We must first notice that :

Since ©(x) = 17+ is increasing, we deduce by (2) that, for all x € Q

a
1+«

Lemma 3.3. Let p;i(-) > 1,i=1,...,N, are continuous functions on {3 such that (7) holds and p < N, and let f is
in LY(Q) , and A(-), B(-) two strictly positive W1'7(')(Q) such that (2) holds. Let 0;,i =1,...,N be Carathéodory
functions satisfying (3), (4), (5).

Then, there exists at least one weak solution u, € WP O(Q) to the approximated problems

<A (x) <n. (13)

N N
=Y Di{A@)0i(x, Ditty)) = = Y Dy Bu()ualunV2) + fu(x), in Q,
i=1

(14
u, =0, ondQ,
in the sense that
N N
Y, [ Awoits, DangDpdx = [ B, Yl Dipx+ [ fips, (15)
i=1 YO Q i=1 Q
for every ¢ € WIPO(Q) N L¥(Q).
Proof. This proof derived from Leray-Schauder fixed point Theorem.
We consider for X = LP+0(Q) the operator
P:Xx[0,1] — X
(Un/ 6) — ui’l = l;b(vn/é)/
where u,, is the only weak solution of the problem
N N
— ¥ D; (Ay(¥)ai(x, Dit) = & ( D) Di(ann|vn|Pf<x>-2)) inQ),
i=1 i=1 (16)

u, =0 ondQ,
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verify, for all ¢ € WIF0(Q), the weak formulation

N N
Z f Anoi(x, Diuy)Digpdx = 6 f fopdx + f By,vy, Z |Un|pi(x)_2Di(p dx
i=1 VO 0 0 i=1

The existence of the weak solution u of the problem (16) in WIFO(Q) is directly produced by the main
Theorem on pseudo-monotone operators. Let’s prove the uniqueness of this solution.
Let uy, up € Wl'?)(')(Q) be two weak solutions of (16). Considering the weak formulation of #; and uy, by
choosing ¢ = u; — u, as a test function, we have

. (17)

N N
ZL[&@@DMMMm—me=6fUMm—mei[&wzwa”ﬁMm—mwx, (18)
= Jo Q Q —_

and
N

N
ZlfmmmDmmMm—WMx=6jﬁum—mmwifmwﬁywwﬁﬁMm—WMx. (19)
i=1 YO Q Q i=1

By subtracting (19) from (18), we get that

N
Z f Ay (0i(x, Dijuy) — 0i(x, Diutz)) Di(uq — u2) dx = 0. (20)
i=1 Y0

Putting foralli=1,...,N,
I = f (0i(x, Diuq) = 0i(x, Djuz)) (Dju1 — Diup) dx.
Q

Then, By using (13), the fact that (o;(x, Dju1) — 0i(x, Diu3)) (Diu1 — Djuy) > 0 (due (5)), and (20), we get for all
i=1,...,N,

I;=0. (21)
Right now, we put foralli=1,...,N,

Q} ={x € Q,pi(x) 22}, and Qiz ={xeQ,1<pi(x) <2}

Then, By (5) we have, foralli=1,...,N

bz [ D0 - P 22

Q!

i

On the other hand, by Holder inequality, (5), Lemma 2.1, and since uy, uy € VQVL?(‘)(Q), we have

. IDi(u1 — up)|P™ B
fz IDi(ul - u2)|p‘(X) dx <2 1 Ppi(¥)(2-p;(x)) 2 X ”(IDzull * IDil/t2|) : Lﬁ(()z)
Q (IDia] + [Djual) = llLp0 2 [
Di(uy — up)? i Di(uy — up)? n
< 2 max {(f IDi(u1 2)|2_ - dx) ; ,(f IDi(u1 2)|2_ - dx) 7 }
o (|Diu1| + |Diu2|) : @ (IDjua| + [Diua)™"
P\ 1 P |\
xmax{( | (IDanl+Dial)" dx) * (| (IDan|+ Dial) ™ dx) * }
Q Q
Pi n 2-pZ

ol

< 2cmax{(5)”, (1) "} (1 + py, (Danr| + IDaa)) ™

< ¢’ max {(Ii) } (23)



M. Naceri / Filomat 38:3 (2024), 1043-1054 1049

By combining (22), (23), and (21), we obtain

L IDi(u1 — up)PWdx =0, i=1,...,N. (24)
Then, from (24) and (iii) of Lemma 2.1 we conclude that

IDi(u1 — u2)llpyy =0, i=1,...,N. (25)
By using (7) and (25) we get

1 —uzllpy =0, i=1,...,N. (26)
Then, (26) implies that u; = u; and so the solution of (16) is unique.

It is clear that (v, 0) = 0 for all v, € X, because u,, = 0 € LP+(Q) is the only weak solution of the problem
N
- Z D; (A, (x)oi(x, Diuy)) =0 inQ,
u:i 0 ondQ.

Now we'll give an estimate of the solution to the problem (16), for that taking ¢ = u, as test function in
(17), and using (3), (13), (8), Holder inequality, and Young'’s inequality we have

1C-1|-0(0z f IDj,'® dx < C“fn“ )”“"Hp() e [C(é) Zf o dx + & f Daal"? dx] )

Choosing ¢ = 5—+— in (27) and using the boundedness of f, in LPiO(Q), the fact that

2nc’ (1+a) .
Ppi)(©n) < 1Qf + pp,()(vn), we obtain

N
T Z fQ Dt dx < c(n)“unHm(J + "N Py, () (@) + ¢ (). (28)
i=1

Then, we have

N
e ; fQ Dl dx < Cm)u |, + C (). (29)
On the other hand, we have Z fQ [Diu, [P ®) dx > Z min{ ”D un”p’(x), D;u,, (X)}.
7 Dl n
We define foralli=1,...,N; &= {P+ st H ! ” () , We obtain

-, si HD{M,,”pi(') =

N

ARED M =% ¥

i=1

=Y Ipal, - Y (Ipwdl, - o

pi ())
i=1 {i.&i=p7}

> ) Pl = Y, IPanlly, = NZIIDWIIW -

i=1 i, 9;_P+}

D;u,

N —
Z min{)’Diun( Z(_),
i=1

=z

z
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Then, we get

meu,,wzx)dp( ||uan()) - (30)

From (29) and (30), we conclude

s el = Covllully, + € 61)
Si Hun|l—>() <1, we have
[ )

Si H”””—p’(.) > 1, from (31) we have

||u,,)1ip§’1 < c(n). (33)
Then, there exists ¢’(n) > 0 such that
||u,,H_>() < c(n). (34)

Compactness of ¢: Let B be a bounded of LF+0(Q) x [0,1]. Thus B is contained in a product of the type
B x [0,1] with B a bounded of LP+0)(QQ), which can be assumed to be a ball of center O and of radius r > 0.
For u € y(B), we have, thanks to (34):

s, <
For u = ¢(v, 6) with (v,0) € B x [0,1] ( ||v||p GST ). This proves that ¢ applies B in the closed ball of center
O and radius p ( p depend on 1 and r due (28)) in W70(Q) and W'70(Q) — LP0(Q) compactly due (7)
and (6).
Let u, be a sequence of elements of t,b(B), therefore u, = Y(vy, 6,) with (v, 6,) € B. Since u, remains in a

bounded of WI70(Q), it is possible to extract a sub-sequence which converges strongly to an element u of
LP+(-)(Q

LP+O(Q). This proves that y(B) is compact. So ¢ is compact.
Now, let’s prove that; AM > 0,
Y(0,,0) € X x [0,1] : vy = (v, 6) = |[oal|, < M.

For that, we give the estimate of elements of L7+0(Q) such that v, = Y(vy, 6), then we have,

N N
Z f Anoi(x, Djv,)Dipdx = 6([ fapdx + f B,v, Z Ivnl”‘(")‘zDi(p dx|,
i=1 Y0 Q Q i=1

We use in the weak formulation (35) the test function ¢ = v,, and use (3), (13), Young’s inequality, the
boundedness of f, in Li/(Q), the fact that py,)(04) < |Ql + pp,()(vs), we obtain for all € > 0, &’ > 0:

N N
clx . (x)—
D;u,[Pi® dx < vldx +n 0,9 YD;0,.| dx
1+a;fg| Ol | Ufulle Q;m D,
N N
<C(¢') f [l dx + ¢ f foul" @ dx + | C(e) ) f foul" @ dx + e ) f IDjw, P dx
Q Q —1 YQ =1 YQ

N
<C'(&") + €' (1Q + pp,y(vn) + 1 [NC(e)(lQl + Pp.y(0n)) + € Z fQ |D;, [P dx]. (36)
i=1

forall p € W'POQ).  (35)
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Choosing ¢ = gy = in (36), we get

2n(1+a)

N
1a . i(x) ’ i ’
T+ 3 ;:1 fQ D0, l"® dx < (& + nNC(e0) )pp. ) (0n) + C'(e") + (& + nNC(e0) )I2. (37)

Then, we obtain

—2(1 o) Z P (Divw) < (¢ + nNC(e0))pp. () (0n) + C'(e”) + (¢ + nNC(e0) ). (38)

By using (iv) from Lemma 2.1, (8) (since (7)), the fact that p,_()(v,) < +oo (since v, € LF+™(Q))), and for any
fixed choice of ¢’ > 0, we obtain

||Un||p+(.) < c(n). (39)

It then follows from the Leray-Schauder’s Theorem that the operator 11 : X — X defined by y1(u) = 1(u, 1)
has a fixed point, which shows the existence of a solution of (14) in the sense of (15). [J

3.1.1. A priori estimates

Lemma 3.4. Let {u,} ¢ W'PO(Q) be the sequence of approximating solutions of (15). Assume f, A, B and
pi, 0i,i=1,...,N be restricted as in Theorem 3.2. Then

Uy, is bounded in W1'7(')(Q). (40)

Proof. After chousing ¢ = u, in the weak formulation (15), and the same technique as in the proof of (39)
we can get (37) (Of course with replacement v, by u,), and on the other hand with the use of (30), we obtain

”uan() < C(n). (41)
O

Lemma 3.5. Let {u,} ¢ W7 O(Q) be the sequence of approximating solutions of (15). Assume f, A, Bandp;, 0,i =
., N be restricted as in Theorem 3.2. Then there exists a subsequence (still denoted (u,)) and u € WL?(')(Q), such
that

u, — u weakly in W1'7(')(Q) and a.e in Q, (42)
Hence, up to a further subsequence, foralli=1,...,N
Diu, — D a.e.in Q. (43)

Proof. From (41) the sequence (u,) is bounded in WLV(')(Q).
So, there exists a function u € WL?(')(Q) and a subsequence (still denoted by (u,)) where for them, we find
that (42) is fulfilled.

Taking T(u,) as test function in (15) and using (3), (13), and Young inequality it follows that for any
e>0

C1(X

f IDi(T(1t,) )|p”‘)dx<tHf||L1(Q)+C(e)(1+t”+)Z f B[P dx+s f IDi(Ti (1, )P dx. (44)

Thanks to (44) we deduce that forallt >0and alli=1,...,N

Di(Ty(uy)) € LP™(Q) and T(u,) — Ty(u) weakly in W7 O(Q). (45)
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Now, let us define foralli=1,...,N and t > 0 fixed
I', (%) = (01(x, Di(Te(un))) = 03(x, Di(Te())))( Di(Te(1u)) = Di(T(w))

For0<60<1,0<h<tandalli=1,...,N, we can get

0 0 0
f (1)) dx = f () dx+ f () dx
Q {ITe ()= Te(w)|>h} {ITt(un)=Te ()l <h}

0 1-6
< (f If,;i(x) dx) “le(uVl) - Tt(u)| > h})
Q

0
+ ( f I (x) dx) Q9. (46)
(T un)-Te ()<}
Then, we can write
0
f () dx <]y + 2. (47)
Q

Where,

0 1-6
h= (f I, dx) 1T (ua) = Te0) > ]

0
I = ( f Ifn(x)dx) Q0.
{ITe(u)-Te(w)l<h)

For every fixed h, thanks to (45), and the convergence in measure of T;(u,), we can get

lim ;=0 (48)

n—+co

Now, choosing T, (1, — Tr(u)) (with 0 < h < t) as test function in (15) and using (3), (13), we obtain

N N
Y f 0i(x, Di(Ti(1tn)))D(Tn(Ti(atz) = To(u))) x = ) f 0i(x, Di(Ge(u))Di{ Ti(a0)) dx
i=1 Y@ =1 =T (w)l<h)
N
<ch+c ; fQ Bnunmnwi(’f)*zD,-(Th(un - Tt(u)))dx. (49)

Then, using (49) and the fact that If,n (x) = 0 (since (5)), we deduce

N N
0<) f I,()de =Y fQ (0i(x, Di(To(ua))) = 0:(x, Di(Te(14))))Di{ Tu(To(uan) = To(u))) dx
i=1

i1 AITiw)-Tiw)|<h)

N
<ch+¢ Z f B,,unIunI”‘(")‘ZDZ-(Th(u,Z - Tt(u))) dx
-1 vQ
N

+ f 0i(x, Ditt) Di(Ty(u)) dx

= J >t~ Ty w)l<h)

N
=Y [ oo DT D) = T (50)
i=1
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By noticing that {[u, — T:(u)| < h} C {lu,| < h +t} C {Ju,| < 2t}, and that (o;(x, Di(T2(u)))) is bounded in
LPi®(Q), and (45), we can pass to the limit with respect to 1 in (50) when n — +c0, we get

N N
limsupz f Ifn(x)dxsch+c’z f BuluP®2Dy(Ty,(Gy(w))) dx
n—+eo 47 Ty -Tiw)l<h) i1 VO
N
+ 7Dy Ty(u)), (51)
;£<|u|<t+h} ! 1( ! )

where 1, € LVi¥(Q) is the weak limit of o;(x, Di(Ta(u1,))).
After letting h — 0 in (51), we obtain

lim J, =0. (52)

n—+oo

We combine (47), (48), (52), and using (5), we get

n—+co

im [ (1L,m) dx=o0. (53)
Q

From (53) we deduce, like in [1], that: for every t > 0 and everyi=1,...,N
Di(Tt(u,)) — Di(T¢(u)), almost everywhere in Q. (54)
And through the results obtained in [2] we can get (43). O

Lemma 3.6. Let A(-), B(-) are in I/OVL_V)(')(Q), and A,(:), Bude(:) be defined in (12). Then A,(:), Bnde(-) are bounded
in WLPO(Q) and
A, — A, Strongly in VVLV(')(Q) (55)
B, — B, Strongly in Wl'_p)(')(Q). (56)

Proof. Since, for all x € Q

DiAy) = 24D g N,

(1)

n

we have that IDiAn(x)i < |D;A(x)|, and therefore A, (-) € W1'7(')(Q), dueto 0 < A,(x) < A(x), we gbtain that,
A, is bounded in WY70)(Q), and (55). In a similar way we get the boundedness of B, in W'?)(Q) and
(56). O

3.2. Proof of the Theorem 3.2 :
From (4) and (40), we getforalli=1,...,N

N
f |oi(x, Ditt,)IP1O dx s(1+c§'f) f ZIDiunlpf(")th dx
Q Q

j=1
<(L+) f
Q

oi(x, Diu,) is bounded in LFIO(Q), i=1,...,N. (57)

pi ’ 17
S +C <.
- pe)

j=1

N
N Y IDju [ + |h|] dx < Cllu,

And therefore
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By (43) and (57) we have, foralli=1,...,N

pi(-)

oi(x, Diuy) — oi(x, D) weakly in L"iO(Q), pi(-) = =T (58)
Now, we have

f(|un|m(~)—1)ﬁi<~> dx = f |un|pl(~) dx < C.

Q Q

Then, we obtain

(|, 972 is bounded in LF(Q), i=1,...,N. (59)
By (42) and (59) we have, foralli=1,...,N

U072 = ylulPO=2  weakly in LFiO(Q). (60)

Then, from (58), (60), (55), and (56) , we can pass to the limit in the weak formulation (15). This proves
Theorem 3.2.
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