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On class of fractional impulsive hybrid integro-differential equation
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Abstract. In this work, a class of a impulsive hybrid fractional integro-differential equation with hybrid
boundary conditions is studied by the generalization of Dhage’s fixed point theorem by three operators.
This study ends with on example illustrating the theoretical findings.

1. Introduction

During the last three decades fractional calculus and its applications become diversified more and has
materialize as a significant tool for the comprehensive applications in mathematical modeling of nonlinear
systems. The nonlocal nature of fractional order operators accounts the hereditary properties involved in
various systems in terms of fractional differential operator. For further reference see [12, 14, 19, 20]. and
the references cited therein.

The definitions like Riemann-Liouville (1832), Grunwald-Letnikov(1867), Hadamard (1891,[21]) and Ca-
puto(1997) are used to model problems in engineering and applied sciences and the formulations are used
to model the physical systems and has given more accurate results. In 1891, Hadamard introduced the new
derivative. For more details one can refer [6, 8, 10, 18] and the references cited therein.

The impulsive differential equations served as the foundations of micro world of biology, which has to
be led to a reconsideration of nature. It is also important for a variety of applications in bio-informatics
and practical utilizations in biotechnologies [7, 15]. In addition to the great importance of studying the
existence of solutions to fractional differential equations using the many theories of the fixed point, several
studies have been conducted over the years to investigate how stability concepts such as the Mittag-Leffler
function, exponential, and Lyapunov stability apply to various types of dynamic systems. Ulam and Hyers,
on the other hand, identified previously unknown types of stability known as Ulam-stability [25]. This
example is not exclusive, many similar works can be found in [26-29].

In 2015, Surang. Sitho et al.[16], discussed the following boundary value problem:

NS 1Bi (7
D(W) = p@®),ie]=[0,T], 0<t<l,

p(0) =0,
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where D" denotes the Riemann-Liouville fractional derivative of order 7, 0 < 7 < 1, I° is the Riemann-
Liouville fractional integral of order ¢ > 0, ¢ € {1,B2,...,Bu), ¥ € C(J x R, R\ {0}), ® € C(J X R, R), with
i € C(J xR, R) with ¢;(0,0)=0,i=1,2,...,m.
Benchohra and al.[11] are discussed the following boundary value problems for differential equations with
fractional order

‘Dy(t) = f(t,y(t)), for each te]=[0,T], O0<a<l,

ay(0) + by(T) = ¢,

where ‘D* is the Caputo fractional derivative, f : [0,T] X R — IR, is a continuous function, 4, b, ¢ are real
constants witha + b # 0.

Motivated by some recent studies on impulsive hybrid fractional integro-differential equations, we consider
the following value problem :

il SGO-IFE(R,3(R), 11 3(R),... ' §(R ~ ~ 2 ~ 2 ~ ~ N
DI PS5, 800, 9900, . 4560, R € = [0T], <152

N e e A . 1
() =9(x) + L(3(%;)), #i€(0,1),i=12,...,n, M
5(0) =9 S(1) _9
©(0,9(0),I18(0),... I 9(0)) — VO0r (TSI (), eIy — V17

where fy,...,0, > 0, Ry,..., &, > 0,9 € R, D' denotes Caputo fractional derivative of order i. I* is the
Riemann-Liouville fractional integral of order £ > 0. ¢ : ] X R* — R\ {0}, £ : ] X R" — R is continuous
with &(0, 9(0), I 9(0), ..., " 3(0)) = 0 and @ € C(J x R¥, R) is a function via some properties.

The problem (1) considered here is general in the sense that it includes the following three well-known
classes of initial value problems of fractional differential equations.

By a solution of the peoblem (1) we mean a function ¥ € C(J, R) such that

(Hop) (i) The function % — PEREINE S‘?ﬁ) ///// S00) is increasing in R for every # € J, and

(ii) 9 satisfies the equations in (1).

This paper is arranged as follows. In Section 2, we recall some concepts and some fractional calculation law
and establish preparation results. In Section 3, we study the existence solution of the initial value problem
(1), based on the Dhage fixed point theorem. In section 4, example is provided to further clarify of the
study’s finding. In section 5, a conclusion and a future work are introduced.

2. Preliminaries

Recalling some preliminary facts, some basic definitions and properties of the fractional calculus .
Throughout this paper denotes Jo = [0, 1], J1 = (%1, %2), - .., Ju-1 = Btu=1, R, Ju = G, T, n € N, > 1.
For #; € (0,1) such that #; < %, < ... < %,, we define the following spaces:
], = ] \ {}Atlr ﬁZI sy ftn}r

¥={9€C(R):9eC()and left (%) and right limit 8(%;)) exist and 9(%;) = 9(#;),1 <i<n)}.
Then the space (:»%, ||.I) endowed with the norm:
191l = sup{[9(2)], % € J}.
Clearly X is a Banach algebra with respect to above supremum norm .

Definition 2.1. [10] The R-L fractional integral of the function n € L'([a,b], R"), of order i € R* is defined by

X e i1
Iin() = f %W(S)ds,

where T is the gamma function.
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Definition 2.2. [10] For a function 1 given on the interval [a, b], the Riemann-Liouville fractional-order derivative

of 1, is defined by
(% S)" -1
TR (dt) f T O

where n = [i] + 1 and [{] denotes the integer part of 1.

(‘DL =

Definition 2.3. [10] For a function 1 given on the interval [a,b], the Caputo fractional-order derivative of 1, is
defined by

; 1 * (% = syt
el &) — (n)
( Da*ﬂ)(%) l-v(n _ i\) L P(K) T] (S)dS,
where n = [1] + 1 and [{] denotes the integer part of 1.
Lemma 2.4. [10] Let £ > 0 and 9 € C(0, T) N L(0, T). Then the fractional differential equation
D'8(%) =

has a unique solution
() = Tlftt_l +727:(L_2+...+Tn1:t ,

wheret; e R,i=1,2,...,n,andn—-1<i<n.
Lemma 2.5. Let { > 0. Then for 3 € C(0,T) N L(0, T) we have
I'DIS(3) = 9(A) +co+ it + ...+ X7,

foresomec; € R,i=1,2,...,n—1. Wheren = [i] + 1.

Lemma 2.6. [9]  For any & nonempty, closed convex and bounded subset of a Banach algebra X and for any
operators U, € : ¥ — Xand B : & — ¥ such that:

() Nand € are Lipschitzian with Lipschitz constants % and p, respectively,
(i) Bis compact and continuous,
i) 9=UIBn+C9 = SeESforallne§,
(i) W+ p < 1, where W = |F(S)|.
Then the equation § = AIBY + €3 has a solution.

Lemma 2.7. :[13] Let t € (0,1) and 1 : [0, T] — R be continuous. A function 9 € &([o, T], R) is a solution of the

fractional integral equation
(-5 s)‘l f (A—s)’1
s)ds + s)ds,

if and only if S is a solution of the following problem:

(2)

DIS(%) = n(x), % € [0,T]
@) =99, a>0.
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For brevity let us take,
1 1

1= 5= 38— 7o f (T~ x(s)ds — 2,
_PPo(,9(),109(%), ..., "9(R))
= o D), (D), .., ()
e Gy - IFE(S, 9(2:), THO(Ry), ..., I S(Ry))
Y= LT o S TG NG

n [ (s, 9(s), 1 9(s), .., T 9(s))ds

0= Z (P(%z/\g(%;), I69(%;), ..., [9(3))

i=1

Lemma 2.8. Then, for any x € L'(],R), the function 3 € &, R) is a solution of the

TRER, 950,11 (), .., I 9(5 - - .
D %Zpo« s(/;) fff )s(i>,ff;1,,s<ﬁ>)(%))) =x(%), ae ne]=[0T], 1<i<2,
N N N N . 3
(%) = S(6) + TG, K€ ©1),i=1,2,...,n, )
9(0) -9 X(T) =9
©(0,90),I18(0),... 1 9(0)) — V07 (TSI (T),. eIy — V17

if and only if O satisfies the hybrid integral equation

(%) = (%, (%), [ 9(%), ... IfnS(ﬁ))[y +0+nu1 + 9

(=) (-9t i b 5
f F(A) s)ds f F( ) &(s,9(s), I"N(s), ..., I"(s))ds, 3 €]0,T]. 4)

Proof. We assume that 9 is a solution of the problem (3).

SG)-IFEGS(), I 3(R),.... [ ()
Q2,920 11 3(R),.., I (%))

If % € [#, %1], By definition, ( ) is continuous. Applying I’ of the order ¢ on both
sides of (3), we can obtain,
900 —IFE(3, (30, "9 (3Y), . .., 1" 9(30))
P, (), 119(R), ..., I8(#))

=I'x(%) —co — a1 %,

so we get

S(%) o REG, S(R), 1 9(R), ..., I+ S(R))
o0, G0, T 9G, sy~ LA == ad e 8 G0, -, [ 9(50))

Substituting ¥ = 0 we have

3(0)
©(0,9(0), 11 9(0), ..., I°9(0))

And substituting 9 = T we have

= —3.

Cop = —

X(T)
@(T,3(T), [ 3(T),..., I"¥(T))
Then

=I'y(T) + 99— 1T +d.

1 .
1 = T(SO + I[)((T) - ST + d)
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In consequence, we have

) = (cp(ﬁ,S(ﬁ),IﬁS(ﬁ),...,1%9(2)) i) f (G —s) " x(s)ds + (1 - %)\90 + %ST

— )1 _ - (%_S)k 1 G} T
’IT()f (T —38)""x(s)ds f F( ) &(s,9(s), 1" N(s), ..., I"N(s))ds.
If % € [#4, 5], then
(860 = FE(, 860, 11 9(R), ..., o9\
P ( PG, G0, I 9(R), ..., T 9(R)) )‘W‘)’ * & [, 2ol ©
S(AT) = 3(X7) + h(S(A))). (6)

According to Lemma 2.7 and the continuity of % — @(, 9(%), ["9(R), ..., I"3(%)), we have

S(R) = IFE(3, 9(R), 18R, ..., I79(3))  (SG)) = IFE(, 9(), 1M 9(3), ..., I 8(31))
P, 9(2), 1M 9(R), ..., [ H(R)) - PRy, 9(), [19(R1), ..., [ (31))

B (%1 _ S)L 1 (% _ S)l 1
L T (A) x(s)ds + f T ( D x(s)ds.

() — IFE(3, (), [19(%), ..., T9(3)) _ (B(A]) + L(S(AY)) — [FE(B, 9(3), ["S(3), ..., 1" 8(31)
(%, (%), 1 8(K), ..., [29(R)) P31, 9(31), [19(1), . ..., 9 (31))

2 (5 q)i-1 X p a1
—j; —(%11"(;)’) )((s)ds+f(; (%F(Lf)) x(s)ds,

Since

according to
- 5 5y T4 b Q( 4 [ A -1 ! sl
(A7) = (@(%1,9(%1),119(%1),---,I”S(%1)) o) (1 =) x(e)ds + (1 = =) P + =97
0

- f (T — )" x(s)ds -

D 3 .
) fo TR cESE 16, 9(s))ds).

Then we get

(%) = p(x, S(ﬁc),IﬁS(ﬁc),...,If"S(fc))[% fo (%1 — ) x(s)ds
LS() = IFEGa, 9G0), I8 (), ..., 1" 8(%1))

. f G e, 1196, s ¢
0

) e, 9G), T3, TG
M a9t * (=)

| T O [ Er s+ )
(x—s 1

E(s,9(5), I 9(s), . .., 1" 9(s))ds,
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so, one has

_g)fl

() = (3, 9(2), 1 (%), ..., " 9(0)| f | (xlr( %)

. L(S(A))) — IFE(3, S (), "9 (21), - S(31)) f (B —s)!
@(%1,\9(%1)1 mdGa), ... I 3(%1)) (D)

&(s,9(5), I 9(s), ..., I 8(s))ds

Xx(s)ds + nxnq + 80]

* (3 —s)*! N N
+‘f0 T®) &(s,9(s), 1" 9(s), ..., I"S(s))ds.

If % € [#,, %3], we have

() — IFE(3, (), [19(%), ..., T 8(%))  (B(R]) = IFE(%a, 8(%2), ['9(32), ..., I" 8 (31))

0, 9G0, I9(R), ..., [n8() (2, 9(G2), [19(302), .., [0 9(32))
2o (1 q\i-1 AT |
_ fo %X(s)ds+ fo (%r(i)) X(s)ds.

Since

() — IFE(3, (), [19(%), ..., 19(3)) _ (8(%7) + L(8(%7)) — [FE (B2, 9(32), " 8(B1a), . .., I 8(%t2)
PR, S(R), [19(%), ..., 1 9(3)) - (2, 3(R2), [19(%2), . ..., I3 (R2))

28 _ o\i—1 i) -1
—j; (%21"(;) )((s)ds+f( ) x(s)ds.

For

A : [ (s, 9(6), 10906, .., 17 9(5))ds
3G5) = (B2, (), [19(G), . .., [ S(3 — ——
(#7) = p (2, 9(a), 1" (5t2) G|, 5, Fro Gy, TG

. L(3())) = IFE(, S(30), ['8(), . .., 1" 8(3)) N 2 (5 — 5)i!

Xx(s)ds +nuq + So]

P, 9(), T19Ga), -, [+9(a)) o IO
" i Mg(s 9(s), I 9(s). ..., I 3(s))ds.
o T(R) T

Therefore, we obtain

Il(‘g(;:tl_) - Iﬁg(ﬁlr S(ﬁtl)/ I \9(}21), sy If“‘g(ﬁl))
PR, (1), 119 (%), ..., 10 9(3y))

8 = 93, 90, 1" 8(%), ..., I"9(30)|

(29(25) = '€, 8(22), ' 9G), ... I"S() | [ G (s, 9(5), 10 9(s), ..., I 9(9))ds
00, (), [19(a), .., [9 () 00, SGa), I 9(), ..., 9 ()
B G (5, 9(6), 14 8(6), .. I*9(E)ds (P (37, — 5)i-1
(2, 9(0), T 9(Ra), .- w9 (302)) +fo ¥0)

s " G -9 LR g g
+f0 F(f) X(S)dS— ; 1_.(,\) X(S)ds f E(S ‘9(5) I S(S) I S(S))ds

)((s)ds + nx + 90
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Consequently, we get

() = (&, (), T 9(%), .

sy Y, OG0 ~ITEG 56 TG, I 9G4)

P PR, 9(3), [13(3), . .., IS (%))

2 [ (s, 8(6), 11 9(S), .. IS )ds P (s, — 5y
+Z 0 +f(; %X(s)ds+n%1+30

Y G S TS, T 5) 3
-1 2 (4 q\i-1 Hos k-1 A A
f (}‘r(s)) x(s)ds — fo %X(s)ds]+ fo %é(s,&(s),l”&(s),...,I‘"S(s))ds.

By using the same method, for % € [%&;, #i1[(i = 3,4, ...,n), one has

S(R) = (&, (%), I"9(%), .

LOGE) = &G, 90, T9(30), ..., I 8(50)
A0 ))[Z 00, 900, TS (R), -~ 90

i (;t,—s) . .
é(s 9(s), 11 9(s), . .., I"S(s))ds o (g _ )il
+ Z 0 + L %x(s)ds + 1+ 9

L go(}t,,S(%,),I SGa), - I S() D
al ' G o - i G oae] + | ’ G (6,809, 196, -5
Conversely, assume that 9 satisfies (20). If & € [, 1], then we have
60 = (360, 11860, .., 17860 = s + (1= 2) 4 28 ”)
- w6 (7 - s - 20 f £ F‘(S’; I s, 96,1095, ., I 3(5)ds.

Then, we multiplied by (p(:ft,S(ft),I“S(zft), ..., I"3(%)) and applying D’ on both sides of (8), we get first
equation in (3).
3

Acai G e =T and § i i ,
gain, substituting # = 0 and % in (8),and 9 — P 9G0, TS G0, TS ()

3
3, (), [0 9(%), ..., [ 9 (%))’

is increasing in R for

R € [#y, 4], the map § — is injective in IR. Then we get
¢

3(0) s 3(T)
@(0,9(0), 11 9(0), ..., [+3(0) @(T, (T), [13(T), ..., [:3(T))

=97,

If % € [y, %[, then we have

LI S( ))[Z L) — IFE(, 9(30), I9(), ..., "9 (3))

8(5) = ¢, 860, 1" 9G0,. oG, S, I SG), -, T 9(30)

Zfo ER e O O (7 sy
ST, TSy TO

i=1

X(s)ds + nxq + 9

L 1 %) _ o)1 _ k-1 R
f G- r(A) x(s)ds — (2 ) X(s)ds] f Gt ) L &5, 9(5), 1M 9(s), ..., [ 9(s))ds. (8)
0

Then, we dividing by ¢(%, (%), [19(%), ..., I"9(%)) and applying D’ on both sides of (8), we get equation
(5) . Again by (H)), substituting & = #; in (8) and taking the limit of (8), then (8) minus (8) gives (6).
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Similarly, for % € [#;, #1[(i = 2,3, ..., n), we get

[ S(0) — FE(3, 90, I 8(%), ..., T8 (50)\ .
oG, G0, 1 9Gy, ., sy )Y 2

S()) = 3(#]) + h(S(%])). (10)
U

This completes the proof.

3. Main Result

In this section, we prove the existence of a mild solution for problem (1) by Lemma 2.6. For this study,
we need the following assumptions. Assume that :

(H;) The functions ¢ : JR™! — xR\ {0}, £ : [ X R"*! — R, @ : ] x R¥*! — R are be a Carathéodory
functions, £(0, 9(0), 1 9(0),..., I 3(0))) = 0 and there exist
p,m: ] — (0, c0) with bound ||p|| and ||| respectively, such that

n+l

|(P(ft/ Vi,V2,... rvn+1) - (P(j:t/ w1,W2,.-., (Un+1)| S p(ﬁt) Z |Vi - Cl)i|, (11)
i=1
and
n+1
£, V2 V) = EG @1, @2, @) S Y i = i, (12)
i=1
for # € Jand (w1, @y, ..., Wns1), V1, V2, ..., Vus1) € R,
(H;) There exists a function & € L'(],R) such that
(%, w1, @, ..., W) < h(3), (%, w1,%, ..., wx) € ] X RE, (13)
(H3) There exists r > 0 such that
il 2 T T*
Fol ly +0+mu1 + 9 |+ ) + =55 ko
r> ( T(t+1) ) T(R+1) . (14)

Th Tin Wall 2 TF T*
L= (L g+ + ) (WP + 0+ 13+ 90 | i) + il

where Fy = sup|@(%,0,0,0...,0)| and Ky = sup|&(%,0,0,0...,0)|.
neJ —r nef —_—
n n

Theorem 3.1. Assume that the conditions (H1) — (Hz) hold. Then the initial value problem (1) has at least one
solution on | provided that

Th T [l T? T*
L) + [l ]<1

(1+r(fl—_'_l)+...+m)[llpl|(|y+6+n%1+90|r(“_l) +liml g | < (15)
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Proof. we define a subset & of X as
S={0ek: 0=,

where r satisfies inequality (14).
Clearly & is closed, convex, and bounded subset of the Banach space . Now we define three operators,
q: X — Xby:

WS(R) = (3, S(R), [0 8(%), ..., ["9(%)), xe] (16)
B:E— ¥by:
BI(H) =y + 0+ nuy + 9 + f Gt T (A)L @(s, 9(s), IF19(s), ..., M 9(s))ds, % €], (17)

and €: ¥ — Xby:

2 (J:t _ S)1€—1
I'(%)

We shall prove that the operators 9, B, and € satisfy all the the hypothesis of Lemma 2.6.

Claim 1. We will prove that 9 and € are Lipschitzian on ¥, that is, the assumption (i) of Lemma 2.6 holds.
Let 9,v € X. Then by (H;), for & € ] we have

Es(x) = (s, 9(), I 9(s), ..., ["9(s))ds, # €] (18)

B9() - M)l = 1o, SR, IM9(R), ..., ["9(R)) — (&, v(3), ["v(R), ..., ["v(3))]
Tll T[’l
< su d(R) — v(k —_— .t =
up(p96) ~ 06N+ gy + -+ g )
Til Ttn

< “p”(l-l-m +...+ r(fn—-l-l))ns_v”l
forall % € J.
This implies that

Tfl Tfn

909 — dtwl| < [Ipll(1 + IS = vll,

—_—
' +1) I',+1)
forall 9,v € €. ) »

So 9l is a Lipschitz on X with Lipschitz constant ||p||(1 + r(LTl_il) +...+ %)

Analogously, for any 9,v € ¥, we have

_ o\k-1
€9 — Cu(x)| = f (%F(S)) [E(s, 9(s), I 9(s), ..., I O(s)) — &(s, v(s), I v(s), . .., I"v(s))]ds
R N T (% )Kl
< supilS60 ~ o1 + ey + o f =
<l P L b ) LN
- G +1) T, +1) 1"(1€+1) !

forall & € J.
This implies that

IES - &ol| < flmll(1 + 19 —vll

T o T*
Ta+n TG+ 1))r(1e+ 1
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+

So,Cisa Lipschitzian on X with Lipschitz constant ||m||(1 + I ) I

r(L +1 TG, +D) TR+

Claim 2. We prove that the operator B is completely continuous on &. We first prove that the operator B
is continuous on &.

Let {9,} be a sequence in & converging to a point 9 € &. Then by the Lebesgue dominated convergence
theorem, for all &t € |, we obtain

-1
lim (y+0+nmxa+8+ f vt - (f)) @(5,84(5), 11 94(5), . .., 1% 9,(s))ds)

-1
=y +0+nu + 0+ f U= TG )) lim (@(5, 9u(5), I8, (5), - .., I8, (5))ds)
_ S)l 1

0] (s, 9(s), [F19(s), . ..., I 9(s))ds

p2d
—y+6+nx1+90+f (%
In consequence, we have

lim B9, = BY.

n—o0

This shows that B is continuous on CASA. . .
It is sufficient to show that the set B(©) is a uniformly bounded in &. For any 9 € S, we have

. * (B —s)i! . .
IBI(F) = |y + 6+ g + 9 + f Wm(s,&(s),l’“S(s),...,I"kS(s))ds
0
Tf
Iy L+1ol+Tnlixal+1 8 | +(ill S e 1)) Ky,

for all & € J. Taking supremum over the interval ], the above inequality becomes, 1B < K; forall 9 € &.
This shows that B(S) is uniformly bounded on S.

Next we show that & is an equicontinuous set in X. We take, 11,75 € Jwith1; <1, and and 9 € &.
Then we have

R R T2 (TZ _ S)f—l o 2
1B9(1,) — BI(11)| = ' T@(s,&(s),l 19(s), ..., IF9(s))ds
0
T (1q =)t ¢ ¢
= | T KO IS, 1 (s + [+ 6+ 1m0+ 90) = (v + 6 + npa + S)]
0
(1 = 5)! = (11 — 5)" & &
< fo o) |(s, x(s), "' 9(s), . .., [ 9(s))|ds
T2 _ o)1
+ f %@(s, x(s), I 9(s), ..., I (s))lds
Ty |(’l’2 _ S)Z—l _ (Tl _ S)i—1| T2 (Tz _ S)a—l
< fo o Pilids + [ Sl

Thus, we have that I‘BS(’Q) - ?39(71)| —0as1 — 1

which is independent of 9 € S.

which is independent of § € &.Thus, B(&) is equlcontmuous So B is relatively compact on &. Hence, by
the Arzela-Ascoli theorem, 8 is compact on €.

Claim 3. The hypothesis (iif) of Lemma 2.6 is satisfied.
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Let 9 € ¥ € Sbe arbitrary elements such that § = 9B + 3. Then we have

8(0) = (3, 930, 1" 8(30), ..., TS|y + 6+ 11 + S

f . ;«)) G s 891596, 10090 (19)
f (%r_(S))K 1 (s, 9(s), 1 9(s), ..., [" 8(s))ds, 3 € [0, T]. 20)

19(20)| < |99B9 + €9
< lp(, S(%), [ 9(R), ... Ifnsmm[ |y +0+nu1 + 9|

f . 1|CD(S 8(s), I} 9(s) ms<s>>ds|ds+ f (A—as 8(s), 1"8(s), ..., I"3(s))ds]ds
I(7) .

< (o, S(R), I"8(%), ..., I" (%)) — p(%,0,...,0)| + |p(%,0,. ..,O)I)( |y +0+nu1+ 9|

(% _ S)t 1
o [ E o)

_ o\k-1 . .
f B (5,99, 1 96), ., I#9(8)) = £(5,0 ..., 0) +1E(5,0, .., )]s

TR
1l T )
Ia+1)

Til Tfn
< e
< [riei(1 + Ta+D) TG+
7l|m|| T* Th Tt T*
r(;e+1)(1 r(f1+1)+"'+r(an+1))+r(1e+1)k0

)+P0](|y+6+r]%1+80|+

We deduce that

Th Thn
9l < 14—+t ———
911 [ + Th+1) TG+ 1)
rllmllTﬁ ( Th + + Tt ) + T* k

Tk+1D)V  ThH+1D) 7 Tan+1)/) TR+

[l T° )

)+F0](|y+6+nx1+80|+r(a+1)

(21)

thatis, 9 € &.
Claim 4. Finally we show that *W + p < 1, that is, (iv) of Lemma 2.6 holds.
Since

W =1B(S)|l = sup{sup |B(H)]}
9e& e
Al T[)

S<|y+6+n}t1+\90|+m,

(22)

and by theorem 3.1 we have

T Tf,, T;%
( T

v RIS e 1))[||p||W+ ||m||m] <1,

. ~ Tin
with ¥ = (1 + r(l +1) +. F(l,,+1 )”P” and p = ||m||r(1<+1)<1 + r(ll+1) Tt W)

Thus all the conditions of Lemma 2.6 are satisfied and hence the operator equation 8 = 9B + €9 has a
solution in &. In consequence, problem (1) has a solution on J. This completes the proof. [
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4. Exemple

In this section we give an example to illustrate the usefulness of our main results. Let us consider the
following fractional boundary value problem:

—3%

20491 V2|9 (x
251e~ : £) 4 SEOHL TIISE0I
( d@-12 [ 15(3+%) ( sin S(#)+ V213030145 )] ) _

Di| — o 52 sin §(%) + cos(l 9() + 1, 7 € [ = [0,1],
100 (SlnS(%)+ Vs +3) (23)
Spt) = S(ft’) +(=2804))), %0 # 0,1,
50) W _ g
POS00) — @(1,9(1),1*19(1)) /
Puti=1, 0= V2R = L& = LT =1, n = k = Lo, 9,v) = S (sinv() + £ +3), a(%,9,v) =

A . A 1 A 2 A A
52 sin 3(3%) + cos(Ii9(32)) + 1, E(3, 9, v) = EE(sinv(%) + i), m(%) = 585, and p(%) = CE for
nel0,1].

Note that, [|@(%, 9,v)|| < %% + 2, and

1
oG, 9,) — o, ) < EE D 18 - 9w -,
100
and
62, 8,9) = £, 1)) < (s )19 = 1+ v v,
v SR ST
We have
T Ti ]| TF T*
b ~ 0.18957628293 < 1.
(1+ TSI F(Zn_l_l))[”pll(|)/+6+1]%1+SO| r(z+1)) ||m||m+1)] 0.18957628293 <

By using the theorem 3.1, the problem (23) has a solution.

5. Conclusion

Most natural phenomena are treated using different types of fractional differential equations. This
diversity in this type of equation helps us to scrutinize the integration of many phenomena in various
fields. This helps us in creating programs that enable us to consume rational materials.In our contribution,
we presented the existence of the integral solution of a impulsive hybrid differential equation in the the
frame of the fractional derivative. The main results are obtained by using on the generalization of Dhage’s
fixed point theorem by three operators.For future work, we study the coupled for this problem.
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