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Abstract. Let G be a graph and let k ≥ 2 be an integer. A {K1, j : 1 ≤ j ≤ k}-factor of G is a spanning
subgraph of G, in which every component is isomorphic to a member in {K1, j : 1 ≤ j ≤ k}. A graph G is
called a {K1, j : 1 ≤ j ≤ k}-factor deleted graph if for any e ∈ E(G), G has a {K1, j : 1 ≤ j ≤ k}-factor excluding
e. In this article, we first give a characterization of {K1, j : 1 ≤ j ≤ k}-factor deleted graph. Then we show a
lower bound on the binding number (resp. the size) of G to ensure that G is a {K1, j : 1 ≤ j ≤ k}-factor deleted
graph. Finally, we construct two extremal graphs to claim that the bounds derived in this article are sharp.

1. Introduction

In this article, we only deal with finite and undirected graphs which possess neither loops nor multiple
edges. Let G be a graph with vertex set V(G) and edge set E(G). The order of a graph G is the number
n = |V(G)| of its vertices and its size is the number q = |E(G)| of its edges. Let Iso(G) and iso(G) denote the
set of isolated vertices and the number of isolated vertices of G, respectively. A graph G is said to be trivial
if n = 1, otherwise we call G non-trivial. For a vertex v ∈ V(G), we denote by EG(v) the set of edges which
are incident to v. The degree of v, denoted by dG(v), is |EG(v)|. An isolated vertex is a vertex with degree 0,
and an isolated edge is an edge which doesn’t admit a common endpoint with any edge in G. A pendant
edge is an edge with an endpoint of degree 1. For a vertex v ∈ V(G), the set of neighbors of v is denoted by
NG(v). For a subset S ⊆ V(G), the neighborhood of S is defined by NG(S) =

⋃
v∈S

NG(v). For any S ⊆ V(G), we

denote by G[S] the subgraph of G induced by S, and by G − S the subgraph formed from G by removing
the vertices in S and the edges incident to vertices in S. For any E′ ⊆ E(G), we use G − E′ to denote the
subgraph formed from G by removing the edges in E′. For convenience, denote G − {v} and G − {uv} by
G − v and G − uv, respectively. For disjoint sets S,T ⊆ V(G), EG(S,T) denotes the set of edges of G joining a
vertex in S and a vertex in T, and set eG(S,T) = |EG(S,T)|. For two distinct graphs G1 and G2, the join and the
union of G1 and G2 are denoted by G1 ∨ G2 and G1 ∪ G2, respectively. For a graph G and an integer k ≥ 2,
we denote by kG the disjoint union of k copies of G. As usual, a path, a complete graph and a star of order
n are denoted by Pn, Kn and K1,n−1, respectively.

The binding number of G, denoted by bind(G), was first introduced by Woodall [16] and is defined by

bind(G) = min
{
|NG(X)|
|X|

: ∅ , X ⊆ V(G),NG(X) , V(G)
}
.

2020 Mathematics Subject Classification. Primary 05C70.
Keywords. graph; binding number; size; star-factor; star-factor deleted graph.
Received: 21 June 2023; Accepted: 03 August 2023
Communicated by Paola Bonacini
* Corresponding author: Sufang Wang
Email addresses: wangsufangjust@163.com (Sufang Wang), zw_wzu@163.com (Wei Zhang)



S. Wang, W. Zhang / Filomat 38:3 (2024), 1101–1107 1102

A subgraph of a graph G is spanning if the subgraph covers all vertices of G. Let H be a set of
connected graphs. Then a spanning subgraph H of a graph G is called an H-factor if each component of
H is isomorphic to a member of H . An H-factor is also referred as a component factor. Let k ≥ 2 be an
integer. A {K1, j : 1 ≤ j ≤ k}-factor is also called a star-factor of G. A P≥k-factor of G is its spanning subgraph
each of whose components is a path of order at least k.

In mathematical literature, the study on component factors attracted much attention. Kaneko [6]
presented a characterization for a graph with a P≥3-factor. Kano, Katona and Király [7] posed a simple
proof for this characterization on a graph with a P≥3-factor. Gao and Wang [4] characterized a P≥3-factor
with respect to binding number. Zhou, Bian and Pan [24] established a relationship between binding
number and P≥3-factors of graphs. Wang and Zhang [13] presented an isolated toughness condition for
a graph to have a P≥3-factor. Wu [17] provided two degree conditions for the existence of P≥3-factors in
graphs. Zhou et al [19, 20, 23, 29, 30] showed some sufficient conditions for graphs to possess P≥3-factors.
Amahashi and Kano [1], and Las Vergnas [10] independently derived a necessary and sufficient condition
for a graph with a {K1, j : 1 ≤ j ≤ k}-factor, where k ≥ 2 is an integer. Kano and Saito [9] obtained a sufficient
condition for a graph to possess a {K1, j : m ≤ j ≤ 2m}-factor, where m ≥ 2 is an integer. Zhou, Xu and
Sun [31] derived some results on the existence of star-factors in graphs. Kano, Lu and Yu [8] proved that a
graph G has a {K1,2,K1,3,K5}-factor if iso(G−S) ≤ |S|2 for every S ⊆ V(G). Wang and Zhang [14], Zhou [18, 21],
Zhou, Liu and Xu [28] established the relationships between degree condition and graph factors. Wang
and Zhang [15], Zhou, Bian and Sun [25] investigated the connections between binding number and graph
factors. Zhou [22], Gao, Wang and Chen [5] showed some isolated toughness conditions for the existence
of graph factors. Some other results on graph factors were obtained by Zhou and Liu [26, 27], Plummer
[12], Bekkai and Kouider [2], Egawa, Furuya and Kano [3].

A graph G is called a {K1, j : 1 ≤ j ≤ k}-factor (or a star-factor) deleted graph if for any e ∈ E(G), G has
a {K1, j : 1 ≤ j ≤ k}-factor (or a star-factor) excluding e. In this article, we first establish a necessary and
sufficient condition for a graph to be {K1, j : 1 ≤ j ≤ k}-factor deleted. Based on this result, we derive two
sufficient conditions, with respect to binding number and isolated toughness, to determine whether a graph
G is {K1, j : 1 ≤ j ≤ k}-factor deleted.

Theorem 1.1. Let k ≥ 2 be an integer. Then a graph G is a {K1, j : 1 ≤ j ≤ k}-factor deleted graph if and only if

iso(G − S) ≤ k|S| − ε(S)

for any S ⊆ V(G), where ε(S) is defined by

ε(S) =


2, if there exists an isolated edge in G − S;
1, if there exists a pendant edge that is not an isolated edge in G − S;
0, otherwise.

Theorem 1.2. Let k ≥ 2 be an integer, and let G be a graph with δ(G) ≥ 2. If its binding number bind(G) > 1
k−1 ,

then G is a {K1, j : 1 ≤ j ≤ k}-factor deleted graph.

Theorem 1.3. Let k ≥ 2 be an integer, and let G be a connected graph of order n ≥ k+2. If |E(G)| >
(n−k+1

2
)
+k−1,

then G is a {K1, j : 1 ≤ j ≤ k}-factor deleted graph.

2. The proof of Theorem 1.1

The following characterization for a graph with a {K1, j : 1 ≤ j ≤ k}-factor, derived by Amahashi and
Kano [1] and Las Vergnas [10], will be used to verify Theorem 1.1.

Lemma 2.1 ([1, 10]). Let k ≥ 2 be an integer. Then a graph G contains a {K1, j : 1 ≤ j ≤ k}-factor if and only if

iso(G − S) ≤ k|S|

for any S ⊆ V(G).
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Proof of Theorem 1.1. Necessity: For any e ∈ E(G), let Ge = G − e. A graph G is a {K1, j : 1 ≤ j ≤ k}-factor
deleted graph if and only if Ge has a {K1, j : 1 ≤ j ≤ k}-factor. According to Lemma 2.1, we possess

iso(Ge − S) ≤ k|S| (1)

for any S ⊆ V(G). The following proof will be divided into three cases.
Case 1. There exists an isolated edge e in G − S.

In this case, we possess ε(S) = 2 and iso(Ge − S) = iso(G − S) + 2. Together with (1), we derive

iso(G − S) = iso(Ge − S) − 2 ≤ k|S| − 2 = k|S| − ε(S).

Case 2. There exists a pendant edge e that is not an isolated edge in G − S.
In this case, we have ε(S) = 1 and iso(Ge − S) = iso(G − S) + 1. Combining these with (1), we get

iso(G − S) = iso(Ge − S) − 1 ≤ k|S| − 1 = k|S| − ε(S).

Case 3. Neither Case 1 nor Case 2 holds.
In this case, it is obvious that ε(S) = 0 and iso(Ge − S) = iso(G − S). In terms of (1), we infer

iso(G − S) = iso(Ge − S) ≤ k|S| = k|S| − ε(S).

Sufficiency: Note that iso(G − S) ≤ k|S| − ε(S) ≤ k|S|. Combining this with Lemma 2.1, G contains a
{K1, j : 1 ≤ j ≤ k}-factor. Suppose, to the contrary, that G is not a {K1, j : 1 ≤ j ≤ k}-factor deleted graph. Then
there exists e ∈ E(G) such that Ge doesn’t possess a {K1, j : 1 ≤ j ≤ k}-factor. By virtue of Lemma 2.1, we
obtain

iso(Ge − S) > k|S|. (2)

In what follows, we consider three cases by the position of e.
Case 1. e ∈ E(G[S]) or e ∈ E(S,V(G) − S).

Obviously, iso(G − S) = iso(Ge − S). In view of (2) and ε(S) ≤ 2, we infer iso(G − S) = iso(Ge − S) > k|S| ≥
k|S| − ε(S), a contradiction.
Case 2. e ∈ E(G − S).
Subcase 2.1. e is an isolated edge in G − S.

In this subcase, ε(S) = 2 and iso(Ge − S) = iso(G− S)+ 2. Using (2), iso(G− S) = iso(Ge − S)− 2 > k|S| − 2 =
k|S| − ε(S), a contradiction.
Subcase 2.2. e is a pendant edge that is not an isolated edge in G − S.

In this subcase, ε(S) = 1 and iso(Ge−S) = iso(G−S)+1. It follows from (2) that iso(G−S) = iso(Ge−S)−1 >
k|S| − 1 = k|S| − ε(S), a contradiction.
Subcase 2.3. e is not a pendant edge in G − S.

In this subcase, ε(S) = 0 and iso(Ge − S) = iso(G − S). According to (2), we infer iso(G − S) = iso(Ge − S) >
k|S| = k|S| − ε(S), a contradiction. This completes the proof of Theorem 1.1. □

3. The proof of Theorem 1.2

Proof of Theorem 1.2. Suppose, to the contrary, that G is not a {K1, j : 1 ≤ j ≤ k}-factor deleted graph. Then it
follows from Theorem 1.1 that

iso(G − S) ≥ k|S| − ε(S) + 1 (3)

for some S ⊆ V(G).
Claim 1. S , ∅.
Proof. Assume that S = ∅. Together with δ(G) ≥ 2, G − S has neither isolated edge nor pendant edge. In
view of the definition of ε(S), we deduce ε(S) = 0. Together with (3), we obtain

0 = iso(G) = iso(G − S) ≥ k|S| − ε(S) + 1 = 1,
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which is a contradiction. This completes the proof of Claim 1. □
The following proof will be divided into two cases by the value of iso(G − S).

Case 1. iso(G − S) = 0.
According to (3) and ε(S) ≤ 2, we possess

0 = iso(G − S) ≥ k|S| − ε(S) + 1 ≥ k|S| − 1,

which yields |S| ≤ 1
k . According to the integrity of |S|, we infer |S| = 0. Recall that δ(G) ≥ 2. Then G has

neither isolated edge nor pendant edge. In view of |S| = 0 and the definition of ε(S), we derive ε(S) = 0.
Combining this with (3), we obtain

0 = iso(G) = iso(G − S) ≥ k|S| − ε(S) + 1 = 1,

which is a contradiction.
Case 2. iso(G − S) ≥ 1.

In this case, we have Iso(G − S) , ∅, NG(Iso(G − S)) , V(G) and |NG(Iso(G − S))| ≤ |S|. By virtue of the
definition of bind(G), we get

1
k − 1

< bind(G) ≤
|NG(Iso(G − S))|
|Iso(G − S)|

≤
|S|

iso(G − S)
,

which leads to

iso(G − S) < k|S| − |S|. (4)

It follows from (3), (4), Claim 2 and ε(S) ≤ 2 that

k|S| − 1 ≥ k|S| − |S| > iso(G − S) ≥ k|S| − ε(S) + 1 ≥ k|S| − 1,

which is a contradiction. This completes the proof of Theorem 1.2. □

4. The proof of Theorem 1.3

In this section, we first provide the following lemma, which will be used to prove Theorem 1.3.

Lemma 3.1 ([11]). Let k ≥ 2 be an integer, and let G be a connected graph of order n.
(i) For n ≥ k + 2 and (k,n) < {(2, 7), (3, 9)}, if |E(G)| >

(n−k−1
2

)
+ k + 1, then G has a {K1, j : 1 ≤ j ≤ k}-factor.

(ii) For (k,n) = (2, 7), if |E(G)| > 11, then G has a {K1,1,K1,2}-factor.
(iii) For (k,n) = (3, 9), if |E(G)| > 15, then G has a {K1,1,K1,2,K1,3}-factor.

Proof of Theorem 1.3. Suppose, to the contrary, that G is not a {K1, j : 1 ≤ j ≤ k}-factor deleted graph. Choose a
connected graph G such that its size is as large as possible. Then we proceed with the following two cases.
Case 1. G contains no {K1, j : 1 ≤ j ≤ k}-factor.

For n ≥ k+2 and (k,n) < {(2, 7), (3, 9)}, using Lemma 3.1 (i), we possess |E(G)| ≤
(n−k−1

2
)
+k+1 <

(n−k+1
2

)
+k−1,

which contradicts the hypothesis that |E(G)| >
(n−k+1

2
)
+ k − 1.

For (k,n) = (2, 7), by Lemma 3.1 (ii), we possess |E(G)| ≤ 11 < 16 =
(7−1

2
)
+ 1, a contradiction.

For (k,n) = (3, 9), from Lemma 3.1 (iii), we have |E(G)| ≤ 15 < 23 =
(9−2

2
)
+ 2, a contradiction.

Case 2. G contains a {K1, j : 1 ≤ j ≤ k}-factor.
In terms of Lemma 2.1, we derive

iso(G − S) ≤ k|S| (5)

for any S ⊆ V(G). By virtue of Theorem 1.1, G is not a {K1, j : 1 ≤ j ≤ k}-factor deleted graph if and only if
there exists some subset S ⊆ V(G) such that at least one of the following two statements is true.

(1) G − S has an isolated edge, and iso(G − S) ≥ k|S| − 1;
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(2) G − S has a pendant edge that is not an isolated edge, and iso(G − S) ≥ k|S|.
Subcase 2.1. Statement (1) is true.

According to (5) and Statement (1), we derive k|S| ≥ iso(G − S) ≥ k|S| − 1. In view of the choice of G, one
has
• G[S] is a complete graph;
• G − S contains at most two non-trivial connected components, one of which is a K2 component, the

other is a complete graph, say G1;
• G is the join of G[S] and G − S, namely, G = G[S] ∨ (G − S).
For convenience, we write |S| = s and |V(G1)| = n1. Obviously, n1 = 0 or n1 ≥ 2. Then we proceed by

showing the following fact.
Fact 1. Let G and S satisfy the conditions in Subcase 2.1.

(a) If iso(G − S) = ks − 1, then |E(G)| ≤
(n−k+1

2
)
+ k − 1;

(b) If iso(G − S) = ks, then |E(G)| <
(n−k+1

2
)
+ k − 1.

Proof. (a) Recall that iso(G − S) = ks − 1 (s ≥ 1). Then we possess n = (k + 1)s + 1 + n1 and |E(G)| =(n−ks−1
2

)
+ s(ks − 1) + 2s + 1 =

(n−ks−1
2

)
+ s(ks + 1) + 1. By a simple computation, we obtain(

n − k + 1
2

)
+ k − 1 − |E(G)| =

(
n − k + 1

2

)
+ k − 1 −

(
n − ks − 1

2

)
− s(ks + 1) − 1

=
1
2

((2ks − 2k + 4)n − (k2 + 2k)s2
− (3k + 2)s + k2 + k − 6)

=
1
2

((2ks − 2k + 4)((k + 1)s + 1 + n1) − (k2 + 2k)s2
− (3k + 2)s + k2 + k − 6)

=
1
2

(k2s2
− (2k2

− k − 2)s + (2ks − 2k + 4)n1 + k2
− k − 2)

≥
1
2

(k2s2
− (2k2

− k − 2)s + k2
− k − 2)

=
1
2

(s − 1)(k2s − k2 + k + 2)

≥0,

which leads to |E(G)| ≤
(n−k+1

2
)
+ k − 1.

(b) Recall that iso(G−S) = ks (s ≥ 0). Then we obtain n = (k+1)s+2+n1 and |E(G)| =
(n−ks−2

2
)
+s(ks)+2s+1 =(n−ks−2

2
)
+ s(ks + 2) + 1.

We easily see that s + n1 , 0 (otherwise s = n1 = 0, which yields n = 2, which contradicts n ≥ k + 2).
Furthermore, we easily see s ≥ 1 (otherwise s = 0 and n1 , 0, which implies that G has at least two connected
components G1 and K2, which contradicts that G is a connected graph). By a simple computation, we derive(

n − k + 1
2

)
+ k − 1 − |E(G)| =

(
n − k + 1

2

)
+ k − 1 −

(
n − ks − 2

2

)
− s(ks + 2) − 1

=
1
2

((2ks − 2k + 6)n − (k2 + 2k)s2
− (5k + 4)s + k2 + k − 10)

=
1
2

((2ks − 2k + 6)((k + 1)s + 2 + n1) − (k2 + 2k)s2
− (5k + 4)s + k2 + k − 10)

≥
1
2

((2ks − 2k + 6)((k + 1)s + 2) − (k2 + 2k)s2
− (5k + 4)s + k2 + k − 10)

=
1
2

(s − 1)(k2s − k2 + 3k + 2) + 2

>0,

which yields |E(G)| <
(n−k+1

2
)
+ k − 1. Fact 1 is verified. □
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Based on Fact 1, we possess |E(G)| ≤
(n−k+1

2
)
+ k − 1, a contradiction.

Subcase 2.2. Statement (2) is true.
By virtue of (5) and Statement (2), we obtain k|S| ≥ iso(G − S) ≥ k|S|, namely, iso(G − S) = k|S|. According

to the choice of G, one has
• G[S] is a complete graph;
• G− S contains one non-trivial connected component, say G1. And G1 is a complete graph to which an

edge has been attached;
• G is the join of G[S] and G − S, that is, G = G[S] ∨ (G − S).
We also write |S| = s and |V(G1)| = n1. Clearly, n1 ≥ 3. Then we proceed by showing the following fact.

Fact 2. |E(G)| ≤
(n−k+1

2
)
+ k − 1.

Proof. Observe that n = (k+1)s+n1 and n1 ≥ 3. Then |E(G)| =
(n−ks−1

2
)
+s(ks+1)+1. By a simple computation,

we possess(
n − k + 1

2

)
+ k − 1 − |E(G)| =

(
n − k + 1

2

)
+ k − 1 −

(
n − ks − 1

2

)
− s(ks + 1) − 1

=
1
2

((2ks − 2k + 4)n − (k2 + 2k)s2
− (3k + 2)s + k2 + k − 6)

≥
1
2

((2ks − 2k + 4)((k + 1)s + 3) − (k2 + 2k)s2
− (3k + 2)s + k2 + k − 6)

=
1
2

(s − 1)(k2s − k2 + 5k + 2) + 4

≥0,

which implies |E(G)| ≤
(n−k+1

2
)
+ k − 1. Fact 2 is proved. □

According to Fact 2 and the hypothesis of Theorem 1.3, we have(
n − k + 1

2

)
+ k − 1 < |E(G)| ≤

(
n − k + 1

2

)
+ k − 1,

which is a contradiction. This completes the proof of Theorem 1.3. □

5. Extremal graphs

In this section, we create two graphs to claim that the bounds established in Theorems 1.2 and 1.3 are
sharp, respectively.

Theorem 5.1. Let k ≥ 2 and m ≥ 2 be two integers, and let Gm = Kt ∨ ((k − 1)K1 ∪ K2 ∪ Km), where t = 1. We
have bind(Gm) = 1

k−1 and Gm is not a {K1, j : 1 ≤ j ≤ k}-factor deleted graph.

Proof. Obviously, bind(Gm) = 1
k−1 . Set S = V(Kt). Then |S| = t = 1 and iso(Gm − S) = k − 1. Since Gm − S

contains an isolated edge, we obtain ε(S) = 2. Thus, we deduce

iso(Gm − S) = k − 1 > k − 2 = k|S| − ε(S).

By virtue of Theorem 1.1, Gm is not a {K1, j : 1 ≤ j ≤ k}-factor deleted graph. □

Theorem 5.2. Let k ≥ 2 and n ≥ k + 2 be two integers, and let G be a connected graph with vertex set
V(G) = V(Kn−k+1) ∪ {v1, v2, . . . , vk−1} and edge set E(G) = E(Kn−k+1) ∪ {uvi : u ∈ V(Kn−k+1), i = 1, 2, . . . , vk−1}.
Then |E(G)| =

(n−k+1
2

)
+ k − 1 and G is not a {K1, j : 1 ≤ j ≤ k}-factor deleted graph.

Proof. It is straightforward to check that the size of G is |E(G)| =
(n−k+1

2
)
+ k− 1. Set S = ∅. Then iso(G− S) = 0

and G − S contains an pendant edge that is not an isolated edge. In terms of the definition of ε(S), we see
ε(S) = 1. Thus, we infer

iso(G − S) = 0 > −1 = k|S| − ε(S),

According to Theorem 1.1, G is not a {K1, j : 1 ≤ j ≤ k}-factor deleted graph. □
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