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Abstract. A generalization of the deeply investigated harmonic functions, known asα-harmonic functions,
have recently gained considerable attention. Similarly to the harmonic functions, an α-harmonic function
u on the unit discD is uniquely determined by its values on the boundary of the disc ∂D. In fact, for any
z ∈ D, the value of u(z) can be given as a contour integral over ∂Dwith a modified Poisson kernel. However,
this integral can be difficult to evaluate, or the values on the boundary are known only empirically. In such
cases, approximating u(z) with an interpolatory formula, as a weighted sum of values of u at n nodes
on ∂D, can be an attractive alternative. The nodes and weights are to be chosen so that the degree d of
exactness of the formula is maximized. In other words, the formula should be exact for all basis functions
for α-harmonic functions of degree up to d, with d as large as possible. In the case of harmonic functions, it
is known that there is an interpolation formula of degree of exactness as large as d = n− 1. The objective of
this paper are formulas of this type for α-harmonic functions. We will prove that, given n, in this case the
degree of exactness cannot be n − 1, but there is a unique interpolation formula of degree n − 2. Finally, we
will prove convergence of such formulas to u(z) as n→∞.

1. Introduction

For a complex-valued function u defined in a region D in the complex plane, two differential operators
are commonly used:

∂z(u) =
1

2
(ux − iuy) and ∂̄z(u) =

1

2
(ux + iuy), where z = x + iy.

In what follows, D will be the unit discD: |z| 6 1.

The standard Laplace operator is ∆ = ∂z∂̄z. A function u : D → C is harmonic if it satisfies the Laplace
equation ∆u = 0. The functions Re zk and Im zk are harmonic and form a basis for harmonic polynomials,
which are dense in the space of harmonic functions.

The Dirichlet boundary problem for harmonic functions is the problem of determining a harmonic
function u if its values on the boundary ∂D are known:

u(z) = f (z) for z ∈ ∂D and ∆u = 0. (1)
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It is not required that u be defined on ∂D. Thus, f is in general a distribution on ∂D and the boundary
condition actually means limr→1− u(reiθ) = f (eiθ).

The solution to the boundary problem (1) is then given by the Poisson integral

u(z) = P[ f ](z) =
1

2π

∫ 2π

0

u(eiθ)
1 − |z|2

|z − eiθ|2
dθ for z ∈ D.

An extension of the Laplace operator are the so-called weighted Laplace operators

∆w = ∂zw(z)−1∂̄z,

in a domain Ω of the complex plane C which is equipped with a weight function w : Ω → (0,∞). We
mention that weighted Laplacians seem to have been first studied systematically by P. Garabedian [3].

In the study of Bergman spaces on the unit discD one often considers so-called standard weights, which
are weight functions of the form

w(z) := wα(z) = (1 − |z|2)α,

where α > −1 is a real constant. For an account of recent developments in Bergman space theory we
mention the monograph [6] by Hedenmalm, Korenblum and Zhu. The case α = 0 is commonly referred to
as the unweighted case, whereas the case α = 1 has attracted special attention recently, with contributions
by Hedenmalm, Shimorin and others (see for instance [18], [19], [20], [32] in [12]).

For α > −1, we will denote the weighted Laplace operator corresponding to the weight wα by ∆α:

∆α = ∂z(1 − |z|
2)−α∂̄z for z ∈D.

A function u that satisfies the equation ∆αu = 0 onD is called α-harmonic. In particular, the case α = 0 yields
the harmonic functions. Properties of α-harmonic functions have recently been investigated in a number
of papers. For instance, their Lipschitz continuity was investigated in [10].

The associated Dirichlet boundary value problem is

lim
r→1−

u(reiθ) = f (eiθ) for z ∈ ∂D and ∆αu = 0, (2)

where f is a distribution onD. It is shown in [12] that the solution to the boundary problem (2) is given by

u(z) = Pα[ f ](z) =
1

2π

∫ 2π

0

Pα(ze−iθ) f (eiθ)dθ for z ∈D, (3)

where Pα is the α-harmonic Poisson kernel inD:

Pα(z) =
(1 − |z|2)α+1

(1 − z)(1 − z̄)α+1
. (4)

A basis in the space of α-harmonic functions is formed by the functions

eα,k(z) = Pα[e
ikθ](z), for an integer k.

Then Pα(z) =
∑∞

k=−∞ eα,k(z) for z ∈D. We have

eα,k(z) = zk, k = 0, 1, 2, . . . , and eα,−k(z) =
z̄k

B(k, α + 1)

∫ 1

0

tk−1(1 − t|z|2)αdt, k = 1, 2, . . . . (5)

Since eα,k(eiθz) = eikθeα,k(z), rotation of the variable z about the origin preserves α-harmonicity. However,
unlike the harmonic case, α-harmonicity is not preserved under translation of the variable.
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When D is any open, bounded and simply connected region in the xy-plane, assuming that its boundary
∂D is a rectifiable Jordan curve, a numerical approach to the boundary value problem ∆u = 0 with u ≡ f
on ∂D was discussed in [1, 7]. Namely, for a given ζ ∈ D, the value of u(ζ) can be approximated by an
interpolation formula of the form

u(ζ) ≈

n∑

k=1

Aku(zk), (6)

where the n nodes z1, . . . , zn lie on the boundary ∂D and the weight coefficients Ak are constants. An
n-node formula (6) is a Gauss harmonic interpolation formula if it gives the correct result whenever u(z) is
of the form P(z) + Q(z̄) for some polynomials P and Q of degree at most n − 1. Barrow and Stroud [1]
established the existence of an n-node Gauss harmonic interpolation formula with positive real weights Ak.
They further note that, under the assumption that u(z) is continuous on ∂D, the positivity of the weights
Ak implies convergence of Gauss harmonic interpolation formulas to u(ζ) as n → ∞. When D is a circular
region, Johnson and Riess [7] developed a procedure for computing nodes and weights for a Gauss formula.
Harmonic interpolation has applications e.g. in computer graphics, see for instance [5] where an arbitrary
curve is approximated by harmonic interpolation.

In this paper we investigate interpolation formulas of the form (6) for α-harmonic functions u(z) when
α = 1 (here called simply 1-harmonic functions) and the region D is the unit discD. In this case, formula (6) is
said to have the degree of exactness d if it gives the correct result whenever u(z) is a linear combination of the
base functions ek given by (5) for −d 6 k 6 d. We will prove that there is no n-node 1-harmonic interpolation
formula of degree of exactness n − 1 (that would be called a ”Gauss 1-harmonic formula”), but there is a
unique n-node 1-harmonic interpolation formula of degree n− 2. Although its weights are not positive nor
real, we will prove convergence of these formulas to u(ζ) as n→ ∞.

2. 1-harmonic interpolation formulas

Our objective are interpolation formulas of the type (6) when u is a 1-harmonic function on the unit disc
D and ζ inside the unit circle. Thus, we will require the nodes z1, z2, . . . , zn to lie on the unit circle.

The basis (5) for α = 1 becomes

ek(z) = zk and e−k(z) =
(

k + 1 − k|z|2
)

z̄k for k > 0. (7)

We observe that for |z| = 1 we have ek(z) = z−k. Suppose that

n∑

j=1

w jz
k
j = ek(ζ) (8)

holds for −d1 6 k 6 d2, where d1, d2 are nonnegative integers. The formula (6) has the degree of exactness d
if min{d1, d2} > d. Consider the polynomial

P(z) = (z − z1)(z − z2) · · · (z − zn) = anzn + an−1zn−1 + · · · + a1z + a0 (an = 1).

Multiplying the equation
∑n

j=1 w jz
r−k
j
= er−k(ζ) in (8) by arζ

k and adding over r = 0, 1, . . . , n yields

k−1∑

r=0

|ζ|2(k−r)
(

(k−r+1) − (k−r)|ζ|2
)

· arζ
r +

n−1∑

r=k

arζ
r = −ζn.

for n − d2 6 k 6 d1. This can be written as
(

1, 1, . . . , 1
︸     ︷︷     ︸

n−k

, |ζ|2(2 − |ζ|2), |ζ|4(3 − 2|ζ|2), . . . , |ζ|2k(k + 1 − k|ζ|2)
)

· (an−1ζ
n−1, . . . , a1ζ, a0) = −ζn.
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In other words, we have

ApT = zT,

where

p = (an−1ζ
n−1 . . . a1ζ a0) and z = ζn(C1 C2 . . . Cn) ∈ Rn, (9)

with C j = −1 for n − d1 6 j 6 d2, and

A =





1 |ζ|2(2 − |ζ|2) |ζ|4(3 − 2|ζ|2) · · · |ζ|2n−2(n − (n − 1)|ζ|2)
1 1 |ζ|2(2 − |ζ|2) · · · |ζ|2n−4((n−1) − (n−2)|ζ|2)
1 1 1 · · · |ζ|2n−6((n−2) − (n−3)|ζ|2)
...

...
...

. . .
...

1 1 1 · · · |ζ|2(2 − |ζ|2)
1 1 1 · · · 1





.

Then the polynomial P is given by

P(x) = xn + xpT = xn + xA−1zT,

where z and p are given by (9) and

x =
(

(x/ζ)n−1 . . . x/ζ 1
)

.

The inverse of the matrix A is

A−1 =
1

(1 − |ζ|2)2





1 −2|ζ|2 |ζ|4 0

−1 2|ζ|2+1 −|ζ|4−2|ζ|2 |ζ|4

−1 2|ζ|2+1 −|ζ|4−2|ζ|2
. . .

−1 2|ζ|2+1
. . .

. . .

. . .
. . .

. . . |ζ|4

. . . 2|ζ|2+1 −|ζ|4−2|ζ|2 |ζ|4

−1 2|ζ|2+1 −2|ζ|2

0 −1 1





.

In the case d = n − 1 we obtain

P(x) = xn−1(x − ζ) − a(ζ̄x − 1)2, (10)

where a = (1 + Cn) ζn

(1−|ζ|2)2 ∈ C is a constant.

Theorem 2.1. The polynomial P(x) given by (10) has at most two distinct zeros on the unit circle.

Proof. Suppose that x0 is a zero of P(x) with |x0| = 1. Conjugating the equation xn−1
0

(x0 − ζ) = a(1 − ζ̄x0)2

yields 1− ζ̄x0 = ā(x0 − ζ)
2xn−2

0
. These two equation together give aā2(x0 − ζ)

3xn−3
0
= 1, and hence |x0 − ζ| =

1
|a| .

It follows that P(x) has at most two zeros of unit modulus.

Corollary 2.2. There is no n-node 1-harmonic interpolation formula or type (14) of degree of exactness n − 1 for
n > 2.
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We proceed to the case d = n − 2. Now the vector z takes the form = ζn(C1,−1, . . . ,−1,Cn−1,Cn), where
C1,Cn−1,Cn are arbitrary constants, and we obtain

P(x) = xn−2(x + a)(x − ζ) + (bx + c)(1 − ζ̄x)2, (11)

where a =
(C1+1)ζ
(1−|ζ|2)2 , b =

(Cn−1+1)ζn−1

(1−|ζ|2)2 and c =
(Cn−Cn−1)ζn

(1−|ζ|2)2 are some complex constants.

Theorem 2.3. The polynomial (11) has n distinct zeros on the unit circle if and only if a = −ζ, b = 0 and |c| = 1.

Proof. ”Only if” part: Complex numbers of unit modulus are characterized by 1
z = z̄. It follows that, if all

zeros of the polynomial P(x) are of unit modulus, the monic polynomials 1
P(0) xnP( 1

x ) and P(x̄) have the same

zeros, and therefore coincide. Thus, comparing the coefficients of

1
P(0) x

nP( 1
x ) = xn−3(x + b

c )(x − ζ̄)2 + 1
c (1 + ax)(1 − ζx) and

P(x̄) = xn−2(x + ā)(x − ζ̄) + (b̄x + c̄)(1 − ζx)2

we easily obtain a = −ζ, b = 0 and |c| = 1. Therefore,

P(x) = Pn(x) = xn−2(x − ζ)2 + c(1 − ζ̄x)2, where |c| = 1. (12)

”If” part: Let Pn be given by (12). Since obviously Pn(ζ̄−1) , 0, the equation Pn(x) = 0 can be written as

xn−2 = −c f (x)2, where f (x) =
1 − ζ̄x

x − ζ
.

We observe that the Möbius transformation f (x) bijectively maps the unit circle onto itself, and since
| f (0)| > 1, it maps the interior of the unit circle to its exterior and vice-versa. It follows that for |x| > 1 we
have |xn−2| > 1 > |c f (x)|, and for |x| < 1 we have |xn−2| < 1 < |c f (x)|. Therefore, xn−2 = f (x) can hold only if
|x| = 1.

It remains to show that Pn has no multiple roots. Any such root x would also be a root of P′n(x) =
(n − 2)xn−3(x − ζ)2 + 2xn−2(x − ζ) − 2cζ̄(1 − ζ̄x), and since xn−2 = −c f (x)2, substituting will reduce the last
equation to

(n − 2)
(
|ζ|

ζ
x
)2
−
(

n
|ζ|
+ (n − 4)|ζ|

)(
|ζ|

ζ
x
)

+ (n − 2) = 0,

which is a real quadratic in |ζ|x/ζwith a positive discriminant, and hence has two positive real roots different
from 1, contrary to the assumption that |x| = 1.

The polynomial (12) is obtained for b = 0 in (11), that is, for Cn−1 = −1. By (9), this means that (8) actually
holds for −(n−2) 6 k 6 (n−1), so





1 1 · · · 1
z1 z2 · · · zn

...
...

. . .
...

zn−1
1

zn−1
2 · · · zn−1

n





·





w1

w2

...

wn





=





1
ζ
...

ζn−1





.

From here we find

wi =
Pn(ζ)

(ζ − zi)P′n(zi)
=

c(1 − |ζ|2)2

(ζ − zi)P′n(zi)
. (13)

To sum up:
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Theorem 2.4. For each n > 2 and z on the unit circle, there is a unique n-node 1-harmonic interpolation formula (6)
of degree of exactness at least n − 2 whose nodes z1, . . . , zn lie on the unit circle and zn = z. This formula is given by

Kn(u) =

n∑

j=1

w ju(z j), (14)

where the nodes z j are the zeros of the polynomial (12) with c = −zn−2( z−ζ
1−ζ̄z

)2, and the weights w j are given by (13).

ThenKn(u) = u(ζ) whenever u is a linear combination of the functions ek given by (7) for −(n−2) 6 k 6 n − 1.

Since for any ε > 0 and n > 32/(1− |ζ|)2

|P′n(zi)| =
∣
∣
∣(n − 2)zn−3

i (zi − ζ)
2 + 2zn−2

i (zi − ζ) − 2cζ̄(1 − ζ̄zi)
∣
∣
∣

> (n − 2)|zi − ζ|
2 − 2|zi − ζ| − 2|ζ||zi − ζ| > n(1 − |ζ|)2 − 16 > 1

2 (1 − |ζ|)2n,

we have |wi| 6
2(1+|ζ|)2

(1−|ζ|)n and hence the sum of weights is bounded:

n∑

i=1

|wi| 6
2(1 + |ζ|)2

(1 − |ζ|)

for n large enough, which is a well-known criterion for convergence of a sequence of quadratures as n→∞
(see, e.g., [11, p.203]). Therefore:

Theorem 2.5. If u is 1-harmonic in D and continuous on ∂D, then the sequence of interpolation formulas Kn(u)
given by (14) converges to u(ζ) as n→ ∞.

We end this section with a statement that provides closer information about the location of the nodes
z1, . . . , zn on the unit circle.

Theorem 2.6. Every arc of length 2π
n−2 on the unit circle ∂D contains a zero of the polynomial Pn(x) (12).

Proof. A complex number x = cos t+ i · sin t is a zero of Pn if 1(t) := (n− 2)t− 2 f (t) is a multiple of 2π, where

f (t) = arg
1 − ζ̄(cos t + i · sin t)

cos t + i · sin t − ζ
.

Clearly, we can define the argument so as to make f (t) continuous for t ∈ [0, 2π]. It is easy to show that
then f (t) is a decreasing function with f (2π) = f (0)− 2π. Therefore 1′(t) > n− 2 for each t, so when t passes
an interval of length 2π

n−2 , the function 1(t) takes at least one value that is a multiple of 2π.

It follows that the nodes z1, . . . , zn are distributed fairly uniformly on the unit circle, even if ζ is close
to the boundary. In fact, with more careful computation, one could refine the statement of Theorem 2.6 to

give that the distance between any two consecutive zeros of Pn along the circle is between 2π/
(

n− 4|ζ|
1+|ζ|

)

and

2π/
(

n + 4|ζ|
1−|ζ|

)

.

3. Numerical examples

Example 3.1. (a) We will use the interpolation formula (14) for n = 5 and n = 10, with the parameter c set to −1, to
approximate the value u( 1

2 ), where u is the 1-harmonic function

u(z) = 2(z + 1) ln |z + 1| − |z|2 for z , −1, with u(−1) := −1.

The correct value is u( 1
2 ) ≈ 0.9663953243. The nodes z j and the weights w j of the formulasK5 andK10 are shown in

Table 1 and graphically in Figure 1.
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n = 5 : K5(u) = 0.9648 . . .

z1 = −0.6614 − i · 0.75 w1 = 0.0541 − i · 0.0153
z2 = −0.6614 + i · 0.75 w2 = 0.0541 + i · 0.0153
z3 = 0.6614 − i · 0.75 w3 = 0.1959 − i · 0.1097
z4 = 0.6614 + i · 0.75 w4 = 0.1959 + i · 0.1097
z5 = 1 w5 = 0.5

n = 10 : K10(u) = 0.9666 . . .

z1 = −1 w1 = 0.0192
z2 = −0.75 − i · 0.6614 w2 = 0.0221 − i · 0.0053
z3 = −0.75 + i · 0.6614 w3 = 0.0221 + i · 0.0053
z4 = −0.1404 − i · 0.9901 w4 = 0.0343 − i · 0.0159
z5 = −0.1404 + i · 0.9901 w5 = 0.0343 + i · 0.0159
z6 = 0.5 − i · 0.8660 w6 = 0.0750 − i · 0.0433
z7 = 0.5 + i · 0.8660 w7 = 0.0750 + i · 0.0433
z8 = 0.8904 − i · 0.4552 w8 = 0.1983 − i · 0.0813
z9 = 0.8904 + i · 0.4552 w9 = 0.1983 + i · 0.0813

z10 = 1 w10 = 0.3214

Table 1: The nodes z j and weights w j for the formula (14) in Example 3.1 for n ∈ {5, 10}.
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Figure 1: The nodes z j and weights w j for the formula (14) in Example 3.1 for n ∈ {5, 10}.

(b) In order to compare the errors, we now use the formula (14) for n = 5 and n = 10 with c = −1 for different
values of ζ to approximate u(ζ). We obtain the following results.

ζ u(ζ) K5(u) |K5(u) − u(ζ)| K10(u) |K10(u) − u(ζ)|

0.99 1.7586758622 1.7586758512 1.10 × 10−8 1.7586758633 1.11 × 10−9

0.9 1.6290447675 1.6290335082 1.13 × 10−5 1.6290459451 1.18 × 10−6

0.75 1.3961552578 1.3959711650 1.84 × 10−4 1.3961756559 2.04 × 10−5

0.5 0.9663953243 0.9648017744 1.59 × 10−3 0.9665917001 1.96 × 10−4

0.25 0.4953588783 0.4895176678 5.84 × 10−3 0.4961723873 8.14 × 10−4

0 0 −0.0150733146 1.51 × 10−2 0.0024250561 2.43 × 10−3

(c) The same nodes and weights from part (a) can be used if z is any point with |z| = 1
2 . Indeed, since α-harmonicity

is invariant under rotation of z, we can write z = eiθ|z|, define v(x) = u(eiθx) and then evaluate v(|z|) instead.

For example, suppose that we need u( 1
2 ei π7 ) for the 1-harmonic function u(z) = ez. We can use the formula (14)

for n = 5 and n = 10 on the function v(z) = ezeiπ/7
to approximate v( 1

2 ). The results obtained for n = 5 and n = 10 are

K5(v) ≈ 1.5281282288+ i · 0.3418971610 and K10(v) ≈ 1.5322934416+ i · 0.3377334760,

whereas the exact value is u( 1
2 ei π7 ) ≈ 1.5322934702+ i · 0.3377336491.

Example 3.2. (a) We will now apply the formula (14) for n = 5 and n = 10 on the function v(z) = ezeiπ/7
from

Example 3.1(b), but with different choices of the parameter c, to approximate v( 1
2 ).

c K5(v) |K5(v) − v( 1
2
)| K10(v) |K10(v) − v( 1

2
)|

−1 1.5281282288 + i · 0.3418971610 5.89 × 10−3 1.5322934416 + i · 0.3377334760 1.75 × 10−7

1 1.5364531904 + i · 0.3335681930 5.89 × 10−3 1.5322934987 + i · 0.3377338223 1.76 × 10−7

ei π3 1.5379834822 + i · 0.3392543157 5.89 × 10−3 1.5322933345 + i · 0.3377337605 1.76 × 10−7

3+4i
5

1.5381242523 + i · 0.3385625645 5.89 × 10−3 1.5322933488 + i · 0.3377337759 1.76 × 10−7
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Curiously, the error is in each case almost the same in modulus, and moreover, the difference of the arguments
of the error and the parameter c is almost constant. However, this phenomenon seems to be due to the nature of the
function u.

(b) Applying the formula (14) for n = 5 and n = 10 on the function u(z) = 2(z+ 1) ln |z + 1| − |z|2 from Example
3.1(a) with the same choices of the parameter c gives larger errors:

c K5(u) |K5(u) − u( 1
2
)| K10(u) |K10(u) − u( 1

2
)|

−1 0.9648017744 1.59 × 10−3 0.9665917001 1.96 × 10−4

1 0.9686305590 2.24 × 10−3 0.9662496647 1.46 × 10−4

ei π3 0.9670826366 + i · 0.0231630420 2.32 × 10−2 0.9663084775 − i · 0.0029317982 2.93 × 10−3

3+4i
5

0.9673073392 + i · 0.0231187990 2.31 × 10−2 0.9662961073 − i · 0.0026367261 2.64 × 10−3

References

[1] D. L. Barrow, A. H. Stroud, Existence of Gauss Harmonic Interpolation Formulas, SIAM J. Numer. Anal. 13(1) (1976), 18–26.
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[10] M. Mateljević, N. Mutavdžić, A. Khalfallah, Lipschitz Continuity for Harmonic Functions and Solutions of the ᾱ-Poisson Equation,
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