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Greville type {1, 2, 3}-generalized inverses for rectangular matrices

Cang Wu?, Jianlong Chen**

#School of Mathematics, Southeast University, Nanjing 210096, China

Abstract. For any complex matrices A and W, m X n and n X m, respectively, it is proved that there exists a
complex matrix X such that AXA = A, XAX = X, (AX)* = AX and XA(WA)* = (WA)*, where k is the index of
WA. When A is square and W is the identity matrix, such an X reduces to Greville’s spectral {1, 2, 3}-inverse
of A. Various expressions of such generalized inverses are established.

1. Introduction

Throughout the paper, let C"*" be the set of all m X n complex matrices and I, be the n X n identity
matrix. For A € C"™", the symbols A* and rank(A) will denote the conjugate transpose and the rank of A,
respectively. When A is square, Ind(A) denotes the index of 4, i.e., the smallest nonnegative integer k such
that rank(A¥) = rank(A**1).

For A € C"™*", recall the four Penrose equations [17]

() AXA=A, (i) XAX=X, (i) (AX) = AX, (iv) (XA)" = XA. (1)

As usual, a common solution of the i-th, ---, j-th equations in (1) is called an {i,-- -, j}-inverse of A and
denoted by AED) and the setof all {i, - - -, jl-inverses of A is denoted by A{i, - - -, j}. It is known that the set
A1, 2,3,4} is nonempty and it consists of a single element A?, called the Moore-Penrose inverse of A.

For A € C™", recall that the Drazin inverse AP of A is the unique common solution of the equations

XA = AF XAX =X,  AX=XA, 2)

where k = Ind(A) [6]. The Drazin inverse of A always exists, and in the special case of Ind(A) < 1, the
Drazin inverse of A is called the group inverse of A and denoted by A*. The spectral idempotent I, — AAP
will be denoted by A™.

The equation XA = AF in (2) is closely related to spectral properties of generalized inverses. For
example, if G is a solution of XAM! = Ak, then every A-vector of A of grade p for A # 0is a A~-vector of G

of grade p (see, e.g., [3, p. 162]). Following Campbell and Meyer [4], any solution of XA*! = AF s called a
weak Drazin inverse of A.
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Although the Moore-Penrose inverse A’ is in general not a weak Drazin inverse of A, Greville [7]
showed that there exists a class of {1, 2, 3}-inverses of A that are weak Drazin inverses of A. According to
[7, Theorem 1], for a {1}-inverse A of A, the composite generalized inverse APAAT + AD(A — AAPA)AY is
a common solution of equations

AXA=A, XAX=X, (AX)'=AX, XAF!=AK 3)

and conversely, any solution of (3) is of the form APAAT + AM(A — AAPA)AT for some {1}-inverse AV of A
(see also [3, p.173, Ex. 52]). These composite generalized inverses will hereafter be referred to as spectral
{1,2,3}-inverses of A.

Spectral {1, 2,3}-inverses can be used like Moore-Penrose inverses when studying the least-squares
problem of linear equations [3], and like Drazin inverses when studying systems of differential equations
with singular coefficients or Markov chains [4, 5].

Unaware of Greville’s work, the present authors studied solutions of (3) under the name of {1, 2,3, 1K)-
inverses [22]. A main idea is that if X is a {1,2,3}-inverse of A and Y is a weak Drazin inverse of A,
then X + (I, — XA)YAX is a spectral {1, 2, 3}-inverse of A. Also, it was shown that A has a unique spectral
{1,2, 3}-inverse if and only if Ind(A) < 1; in this case the unique spectral {1,2, 3}-inverse is exactly the core
inverse of Baksalary and Trenkler [1], which has attracted much attention in the last decade (see, e.g.,
[2,8-12, 15, 16, 18-21]).

In this paper, the notion of spectral {1, 2, 3}-inverses is extended to rectangular matrices. Let A € C™". It
is proved that for any W € C"™"", there exists a class of {1, 2, 3}-inverses X of A such that XA(WA)* = (WA,
where k is the index of WA. This class of {1, 2, 3}-inverses, called W-spectral {1, 2, 3}-inverses of A, reduces
to spectral {1,2,3}-inverses of A when m = n and W = I,, and becomes the Moore-Penrose A" when
W = A*. Some characterizations of W-spectral {1, 2, 3}-inverses are presented, and the set of all W-spectral
{1,2, 3}-inverses is described. Moreover, a canonical form for W-spectral {1, 2, 3}-inverses is given by using
the singular value decomposition.

2. Spectral {1, 2, 3}-inverses for rectangular matrices
We begin with the following definition.
Definition 2.1. Let A € C"™", W € C™™". Then X € C™™ is called a W-spectral {1, 2, 3}-inverse of A if it satisfies
AXA=A, XAX=X (AX)' =AX, XAWA) = (WA, 4)
where k is the index of WA.

Example 2.2. Let A € C™", W € C™™.

(i) When m = n and W = I, (or more generally, W is a nonsingular matrix commuting with A),
W-spectral {1,2, 3}-inverses of A reduce to its spectral {1,2, 3}-inverses.

(ii) When W = A*, the equation XA(WA)* = (WA)* becomes XAA*A = A*A since Ind(A*A) < 1.
Multiplying by A" from the right and using A*AAT = A*, we get XAA* = A*, which is equivalent
to X being a {1,4}-inverse of A. Thus, the A*-spectral {1,2, 3}-inverse of A is exactly the {1,2,3,4}-
inverse At and so it is unique.

The next result shows the existence of W-spectral {1,2, 3}-inverses by giving an explicit construction of
them.

Theorem 2.3. Let A € C™", W € C"™". Then the following statements are equivalent:

(i) X is a W-spectral (1,2, 3}-inverse of A.
(i) X = AL23) 4 (I, — A123 A)[(WA)PWIAAL2D for some (1,2, 3}-inverse A123) of A.
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(iii) X = ALY + (I, - AC2IA)ZAALEY for some (1,2, 3}-inverse A>3 of A and some Z satisfying
ZAWA)K = (WA), where k = Ind(WA).

Proof. Let k = Ind(WA).
(i)=(ii). Assume that X is a W-spectral {1,2,3}-inverse of A. Since XA(WA)t = (WA)', we have
XA(WA)L = (WA)P, ie., (I, — XA)(WA)P = 0. It follows that
X = X + (I, - XA)[(WA)PW]AX.
Thus (ii) follows by taking A®2% = X.
(ii)=(iii). It is clear by noting that (WA)PW is just such a Z.
(iii)=(i). For any {1,2, 3}-inverse A1>® of A and Z satisfying ZA(WA)* = (WA), let
X =AW 4 (1, - AUPIA)ZAAN),
Since AX = AA1?? it is easy to see that X is a {1, 2, 3}-inverse of A. Moreover,

XAWA)F = AVZIAWAY + (I, — AL2IA)ZAWA)
= ABZIAWA)Y + (I, - AT A)(WA)* = (WA

Therefore, X is a W-spectral {1, 2, 3}-inverse of A by the definition. [

For a {1,2,3}-inverse of A and a solution of the equation XA(WA)* = (WA)¥, we may think of Theorem
2.3 as a way to construct a matrix that is simultaneously a {1, 2, 3}-inverse of A and a solution of XA(WA)* =
(WA)-.

Remark 2.4. In a similar vein, taking
Y = AG2Y 1 AC2DAIWAW)P](L, — AATY),

one can show that Y is a {1,2,4}-inverse of A and satisfies (AW)' AY = (AW), where | is the index of AW. This type
of {1, 2, 4}-inverses is dual to W-spectral {1, 2, 3}-inverses.

Also, by Cline’s formula (WA)P = W[(AW)P]2A, we know that
(WAPW = WAW)P. (5)

The next result gives a characterization of the set of all {1, 2, 3}-inverses of A; it is a slight modification
of [3, p. 56, Exercise 12].

Lemma 2.5. For any fixed {1}-inverse AV and {1,2, 3}-inverse A1) of A € C™", the set of all {1,2, 3}-inverses of
A is given by

A{1,2,3) = {AV2 4 (1, - ADA)ZAAL2D . 7 e C™m), (6)
Proof. For any Z € C"™", it is direct to verify that

AU23) (1, — ADA)ZAAV2D € A(1,2,3).
Also, for any X € A{1,2,3}, since AX = AA123 it follows that A(X — A123) = 0 and XAA123 = X. Thus,

A(1,2,3) + (In _ A(l)A)(X _ A(1,2,3))AA(1,2,3)
— A(1,2,3) + (X _A(1,2,3))AA(1,2,3) — A(1,2,3) +X _A(1,2,3) — X/

which shows that X € {A1?? + (I, - ADAYWAAL2Y . W € C"™"}. The proof is completed. [
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Observe Greville’s construction for spectral {1, 2, 3}-inverses:
APAAY + AD(A — AAPA)AT = ADAAT + (I, - ADA)APAAT.

Here, AMAAt is a {1, 2, 3}-inverse of A.
We next present a characterization of the set of all W-spectral {1, 2, 3}-inverses of A.

Theorem 2.6. Let A € C™", W € C™™, and let AY be a {1}-inverse of A. Then the set of all W-spectral
{1,2, 3}-inverses of A is given by

(ADAA" + (I, - ADAWAW)P + SAW)"|AA" : S e C™m).
Proof. Let k = Ind(WA). For any S € C"™", take
X, = ADAAY + (I, - ADA)[WAW)P + S(AW)"|AA*.
Then X; is a {1, 2, 3}-inverse of A by Lemma 2.5, and
X AWAY = ADAWAY + (I, - A(l)A)[W(AW)D + S(AW)”]A(WA)"
= ADAWAY + (I, - ADA)|WAW)PAWA) + S(AW)"A(WA)']
2 ADAWAY + (I, — AV A (WAPWAWAY + SAWAY (WA |
= AVAWA) + (I, - ADA)WAYE = (WA,
Therefore, X; is a W-spectral {1, 2, 3}-inverse of A. In particular,
Xo = AVAAY + (I, - AVA)[WAW)PIAAT

is a W-spectral {1, 2, 3}-inverse of A.
On the other hand, for any W-spectral {1, 2, 3}-inverse X of A, since X and Xj are {1,2, 3}-inverses of A,
it follows by Lemma 2.5 that there exists a T € C"" such that

X = Xo + (I, - AVA)TAX,.
Since XA(WA)* = (WA and XoA(WA)* = (WA, it follows that

[(I, - ADATAX JAWA) =0,
and so

(I, - ADA)TIA(WAY = 0.
Thus we get

(I, — ADATIAWAW)P © [, - AVA)TIA(WAPW

= [(I, = AV A)TIA[WA) [(WA)PT* W =0,

which implies that (I, — ADA)T = (I, — AVA)T(AW)™. Therefore,

X = Xo + (I, - AVA)TAA?
= Xo + (I, - AVA)T(AW)"AA*
= ADAAT + (I, - ADA)WAW)P + T(AW)"JAA".

The proof is completed. [
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In particular, when m = n and W = I,,, we obtain the following characterization for the set of all spectral
{1,2, 3}-inverses. It is a supplement to Greville’s construction.

Corollary 2.7. Let A € C™" and let AV be a {1}-inverse of A. Then the set of all spectral {1,2,3}-inverses of A is
given by {ADAAT + (I, - ADA)AP + SAMAAT : S e C™n).

Using Theorem 2.6, we next consider a canonical form for W-spectral {1, 2, 3}-inverses.
For A € C™", the singular value decomposition states that there exist two unitary matrices U € C"™"
and V € C"™" such that

L 0],
A:U[O O]V, 7)

where X = diag(oy, - - - , 0;) is the diagonal matrix of singular values of A, r = rank(A). Moreover,

10

t_ .

A=V [ 0 0 ] u (8)
. . 10 .

and a general {1, 2, 3}-inverse of A is of the form V 7 0 U for some Z; see [3, p. 208].

The next result shows how to choose a Z to get a W-spectral {1, 2, 3}-inverse for A.

Proposition 2.8. Let A € C"™" be as in (7) and W € C"™" be partitioned as

_ Wi Wy | .
W—V[ oW ]u,

where W1 € C™, and Wy, W3, Wy are of appropriate sizes. Then X € C™"™ is a W-spectral (1,2, 3}-inverse of A if
and only if there is T € C*" such that

X = V[ 7 0 ]u* )
=V wWaewy)? « Tewy)r o |

Proof. First, direct calculation shows that

s (Lol .+, L 0], oz o=zw,
AA—LI[O O]U, AA—V[O O}V’ AW—U[ 0 0 u.
By [12, Eq. 14], we have
D D12
(AW)D =U (Z‘Wl) [(Zwl) ] ZWZ U*,
0 0
and so
b _ | WiEW)P Wi[EW)PPEW, | .
WA= V[ Wa@Wi)® WlEw)PPzw, |4 (19
T _ D
(AW)" = u[ <ZV(\)/1) <2v1v1) W, ]U*. a1

By Theorem 2.6, X is a W-spectral {1, 2, 3}-inverse of A if and only if there is S € C"™ such that

X =A"+ (1, - ATA[WAW)P + S(AW)"]AAT,.
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S1 S

Let S be partitioned as S = V[ T S

] U, where T € C"~"*"_ Then by (10) and (11),

D T _ *1 *2 %
WAW)P + S(AW)™ = v[ WaEW P £ TEW) o |U°
It follows that
(I, — ATA)[WAW)P + S(AW)™JAAT = V 0 0l
" W3(ZW1)D +T(XW)™ 0 !

and therefore

-1
X = A"+ (I - ATAIWAW)P + SAW)TJAAT = V[ W3<zw1>g + T(ZW)" 8 ] H

which completes the proof. [

In the rest of the paper, we study two special cases: matrices which possess a unique W-spectral {1, 2, 3}-
inverse, and matrices for which every (1,2, 3}-inverse is a W-spectral {1,2,3}-inverse. To these ends, we
need the following well known result.

Lemma2.9. Let A C™", Be CP. IfASB=0forall S € C™, then A=00r B =0.

Proof. If A,B # 0, then there exist invertible matrices P; € C"™",Q; € C™" and P, € C"?,Q, € C7™ such
that A = P, [16 8] Qiand B=DP, [g 8] Q,, where r = rank(A) > 0 and t = rank(B) > 0. Now let S;; be an

n X p matrix whose entries are all zeros except the (1, 1)-entry s11. Then
_ _ I, 0 I, 0O s 0
AQ;'S1P;")B =P, [0 0] Sn [6 0] Q=P [ 0 0] Q#0,

contradicting ASB =0forall S e C™*. ThusA=00rB=0. O

By Meyer and Painter [14], A has a unique {1, 3}-inverse if and only if it is of full column rank. Analo-
gously, A has a unique {1, 2, 3}-inverse if and only if A is of full column rank or A = 0. In [22], it was shown
that a square matrix A has a unique spectral {1, 2, 3}-inverse if and only if rank(A) = rank(A?), in which case
the unique spectral {1, 2, 3}-inverse is exactly the core inverse A*AA". Now we consider the class of matrices
which have a unique W-spectral {1, 2, 3}-inverse.

Proposition 2.10. Let A € C"™", W € C'"™". Then A has a unique W-spectral {1,2, 3}-inverse if and only if A is of
full column rank or rank(A) = rank(AWA). Moreover, if A is of full column rank, then A" is the unique W-spectral
{1,2, 3}-inverse of A; if rank(A) = rank(AWA), then W(AW)*AA" is the unique W-spectral {1, 2, 3}-inverse of A.

Proof. Let AV be a fixed {1}-inverse of A. By Theorem 2.6, Xo = AVAA + (I, - AVA)[W(AW)PJAAT is a
W-spectral {1,2, 3}-inverse of A, and so is X; = Xo + (I, — ADA)S(AW)"AAT for any S € C™™".

Now assume that A has a unique W-spectral (1,2, 3}-inverse. Then it follows that X, = X, i.e., (I, —
ADA)S(AW)"AAT = 0 for any S € C™™. Thus by Lemma 2.9, we have I, — ADA = 0 or (AW)"AA" = 0.
When I, — ADA = 0, A is of full column rank. When (AW)"AA" = 0, we have AAT = [(AW)PAW]AA?.
Post-multiplication this equation by A yields A = (AW)P AWA, so rank(A) = rank(AWA).

Conversely, if A is of full column rank, then every {1}-inverse of A is a left inverse and thus a {1, 2, 4}-
inverse. So a {1,3}-inverse of A must be the unique {1,2, 3, 4}-inverse At, and ATA(WA)* = (WA)* holds,
where k is the index of WA. It follows that A is the unique W-spectral {1,2,3}-inverse of A. If rank(A) =
rank(AWA), then

(AW)* and (WA)* exist, A = AW(AW)*A and (AW)"A = 0.
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It follows that

Xo = ADAAY + (I, - ADA)[W(AW)1AAT
= ADAAY + [WAW)AAT — AD[AW(AW)*A]AY
= ADAAT + [WAW)AAT - ADAAT = WAW)'AAT,

and X, = Xo+(I,—~ADA)S(AW)"AAT = X,. Therefore, by Theorem 2.6, W(AW)*AAT is the unique W-spectral
{1,2,3}-inverse of A. [

Similarly, we have the next result.

Proposition 2.11. Let A € C"™", W € C™™. Then every {1, 2, 3}-inverse of A is its W-spectral {1,2, 3}-inverse if
and only if A is of full column rank or WA is nilpotent.

Proof. The “if” part is clear. For the “only if” part, let X be a fixed {1, 2, 3}-inverse of A. Then by Lemma
2.5, X + (I, - XA)SX is a {1, 2, 3}-inverse of A for every S € C"™". Assume that every {1,2, 3}-inverse of A is
its W-spectral {1, 2, 3}-inverse. Let k = Ind(WA). Then we have

XAWA)E = (WA)* and [X + (I, — XA)SX]JA(WA)Y" = (WA)E,

which imply that (I, — XA)S(WA)F = 0 for every S € C"™". Thus, we get (I, — XA) = 0 or (WA)* = 0 by
Lemma 2.9, and so A is of full column rank or WA is nilpotent. The proof is completed. [
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