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On (B, C)-MP-inverses of rectangular matrices
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Abstract. For any A € C"™", the set of all n by m complex matrices, Mosi¢ and Stanimirovié [14] introduced
the composite OMP inverse of A by its outer inverse with the prescribed range, null space and Moore-
Penrose inverse. This inverse unifies the core inverse, DMP inverse and Moore-Penrose inverse. In this
paper, we mainly introduce and investigate a class of generalized inverses in complex matrices. Also, it is
proved that this generalized inverse coincides with the OMP inverse. Finally, the defined inverse is related
to OMP-inverses, W-core inverses and (b, c)-core inverses in the context of matrices.

1. Introduction and notation

For complex matrix A, the Moore-Penrose inverse A" [15] and the Drazin inverse AP [6] are two classical
generalized inverses. In the last decade, several new types of mixed generalized inverses were introduced
by combining the Moore-Penrose inverse and the Drazin inverse (or the group inverse). For instance, in
2010, Baksalary and Trenkler [1] introduced the core inverse A® of A with index one (i.e., rank(A)=rank(A?2)).
In 2014, Malik and Thome [11] defined the DMP-inverse AP of A with index m > 1 (i.e., m is the smallest
positive integer such that rank(A¥)=rank(A**!)), extending the core inverse.

In order to unify the core inverse, the DMP inverse and so on, Mosi¢ and Stanimirovi¢ [14] introduced
the composite OMP inverse of a complex matrix by its outer inverse with the prescribed range, null space
and Moore-Penrose inverse.

Motivated by [14], we mainly investigate a special case of OMP inverses, called (B, C)-MP-inverses. The
paper is organized as follows. In Section 2, given A € C™" and B,C € C™", the (B, C)-Moore-Penrose
inverse (abbr. (B, C)-MP-inverse) of A is given. Also, we characterize the (B, C)-MP-inverse of A by its range
and null spaces. But beyond that, it is shown in Theorem 2.8 that X is the (B, C)-MP inverse of A if and only
if X is an outer inverse of A with prescribed range 7~ and null space S. In Section 3, the (b, c)-core inverse
in *-semigroups [21] is investigated in the context of rectangular matrices. Also, the (B, C)-MP-inverse is
related to other generalized inverses.

Throughout this paper, C"™" denotes the set of n X m complex matrices. The symbol I, stands for the
identity matrix of order n.
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For any A € C™™, the column space and the null space of A are respectively defined as R(A) =
{Ax : x € C"™1}and N(A) = {x € C"™ : Ax = 0}. The symbols A* and rk(A) stand for the conjugate transpose
and the rank of A, respectively.

Three basic facts are given as follows: N(A*) = R(A)*, R(A*) = N(A)* and rk(A) + dimN(A) = n. Let
A,B € C™™. Then R(A) € R(B) (resp., N(B) € N(A) ) if and only if there exists some X € C™™ (resp.,
Y € C™") such that A = BX (resp., A = YB).

Let us now recall several notions of generalized inverses. For any A € C"", the Moore-Penrose inverse
A' [15] of A is the unique matrix X € C"™" satisfying

(i) AXA = A, (i) XAX = X, (iii) (AX)* = AX, (iv) (XA)* = XA.

More generally, a matrix X € C"™ satisfying (i) AXA = A is called an inner inverse of A and is denoted by
A~. A matrix X € C"™" satisfying (ii) XAX = X is called an outer inverse of A and is denoted by A®.

Let A € C"™ and B,C € C™". The matrix A is said to be (B, C)-invertible (see [2]) if there exists a
matrix X € C"™" such that XAB = B,CAX = C,R(X) € R(B) and N(C) € N(X). Such a matrix X is called
a (B, C)-inverse of A. It is unique if it exists and is denoted by AIB©). One knows that the inverse along a
matrix is an instance of the (B, C)-inverse. The inverse of A along D is denoted by AP. The standard notion
for the inverse along a matrix can be referred to [2].

Given A € C™", the Drazin inverse of A [6] is the unique matrix AP € C"™" satisfying APAAP = AP,
AAP = APA and APA*! = Ak, where k = ind(A). The smallest positive integer k such that rk(A¥) = rk(A**1)
is called the index of A and is denoted by ind(A). In particular, if ind(A) < 1, then A is called group
invertible. It is well known that A is group invertible if and only if rk(A) = rk(A?).

Following [1], a matrix A € C"™" is called core invertible if there exists some X € C*" such that AX = P4
and R(X) € R(A), where P, represents the orthogonal projector onto R(A). Such an X is called a core inverse
of A [1]. The core inverse of A is unique if it exists and is denoted by A®. One knows from [1] that A is core
invertible if and only if A is group invertible. In this case, we have A® = A*AA".

Let A € C™" with index m. The DMP-inverse (denoted by AP) of A € C"™" is defined as the unique
matrix X € C"™" satisfying XAX = X, XA = APA and A"™X = A"A*. Also, it is shown that AP = APAAT.

Suppose that 7~ and S are subspaces of C"*! and C"™!, respectively. Given A € C"™", a matrix X € C"™" is
called an outer inverse of A with prescribed range 7 and null space Sif X = XAX, R(X) =7 and N(X) =
(see e.g., [20]). The outer inverse of A with prescribed range 7~ and null space § is unique if it exists, and

is denoted by A,(ZZ.) - Some types of generalized inverses are characterized by Aflz.) - Here are several well
known characterizations for generalized inverses :

(1) A = AR a for A € C™ [20],

(2) AP = A;§(Ak) A for A € €™ and k = ind(4) [20].
(3) AP = AR () for A € €™ and D € €™ [2].

(4) AIBC) = A<2> ¢, for A € €™ and B,C € €™ [2].
(5) ADH = Ag(’Ak) an for A € €™ and k = ind(A) [24].

Let A € C"™" be of rank 7, let T be of dimension s < r and let S be of dimension m — s. Suppose Afiz_) S
exists. A matrix X € C"™" is called an OMP inverse of A if it satisfies the system of equations XAX = X,
AX = AA(72_) SAAJr and XA = A(f_) A This inverse is unique if it exists. Also, it was shown in [14] that

X = Afiz_) SAA* is solution to the system above.
Several known generalized inverses are listed as special cases of OMP inverses.

(1) For m = nand A(z) = A*, then the OMP inverse of A coincides with its core inverse.

(2) For m = nand A(Tz) <= AP, then the OMP inverse of A coincides with its DMP-inverse.
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2. The (B, C)-MP-inverse of a matrix

As defined in [14], the OMP inverse of a rectangular matrix A was given by combining its outer inverse

Afﬁ) s and Moore-Penrose inverse A*. The main goal in this section is to introduce and investigate a type of

generalized inverses, called the (B, C)-MP-inverse of A (See Definition 2.1 below).

Definition 2.1. Let A € C™" and B, C € C"™" such that AIBO) exists. The matrix A is called (B, C)-MP-invertible
if there exists some matrix X € C"™" satisfying the system of equations

XAX = X, XA = AIBOA and CAX = CAA™. (1)
Such an X is called a (B, C)-MP-inverse of A.

Following [14], a matrix A € C"™" is called (B, C)-MP-invertible (in the sense of Mosi¢ and Stanimirovic)
if there exists some X € C"" such that XAX = X, AX = AAIBOAAT and XA = AIBOA. Such an X is called
the (B, C)-MP-inverse of A. We remark here the readers that the defined (B, C)-MP-inverse is equivalent to
Mosi¢ and Stanimirovi¢’s (B, C)-MP-inverse [14]. Suppose X € C™" satisfy XAX = X, AX = AAIBOAA?
and XA = AIBOA. Then it satisfies XAX = X, XA = AlBOA and CAX = CAA'. Conversely, given
XAX = X, XA = AIBOA and CAX = CAAY, then by Theorem 2.2 below, X = AIBOAAT, and consequently
AX = AAIBOAAT,

Recently, Herndndez, Lattanzi and Thome [8, 9] introduced two more general 1IMP-inverses and 2MP-
inverses of A, where 1MP-inverses (resp., 2MP-inverses) of A are given by its inner inverses (resp., outer
inverses) and Moore-Penrose inverse. More details on these generalized inverses can be found in [3-
5,7,14,16, 18, 22, 23].

Needless to say, the (B, C)-MP-inverse belongs to 2MP-inverses. However, 2MP-inverses do not have
many properties owned by the (B, C)-MP-inverse, such as the most fundamental uniqueness. It is known
that the OMP inverse is unique whenever it exists, and so is the (B, C)-MP-inverse. We denote the (B, C)-
MP-inverse of A by AlBCF,

The following theorem gives the expression for the (B, C)-MP inverse of A.

Theorem 2.2. The system (1) has a unique solution: X = AIBOAAT,
Proof. Suppose X = AIBOAA*. Then one can directly check that X satisfies the system (1). [

Several known generalized inverses are listed as special cases of (B, C)-MP-inverses.

(1) Form = nand B = C = A, then AlBC) = A* and (A, A)-MP inverse of A coincides with its core inverse.

(1"YForm = n, B = Aand C = A*, then by [17, Theorem 4.4], we have AlBC) = A® and (A, A*)-MP inverse
of A coincides with its core inverse.

(2) Let ind(A) = k, m = nand B = C = A¥. Then AIBO = AP, 5o that (A¥, AF)-MP inverse of A coincides
with its DMP-inverse.

(3) If B = C, then AlB©) = AlB and (B, B)-MP inverse of A coincides with its MMP-inverse along B.

(4) Suppose B = C = A*. Then AIB©) = At and (A", A*)-MP inverse of A coincides with its Moore-Penrose
inverse.

In [2], the writers derived the criterion for the (B, C)-inverse by rank conditions in complex matrices as
follows.

Lemma 2.3. [2, Theorem 4.4] Let A € C™" and B, C € C"™". Then the following statements are equivalent:
(i) A is (B, C)-invertible.
(ii) rk(C) = rk(B) = rk(CAB).
In this case, AIBC) = B(CAB)'C.

Lemma 2.4. [2, Corollary 4.5] Let A € C™™ and B, C € C"™" such that AI®©) exists. Then tk(AB) = rk(CA) =
rk(C) = rk(B).
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Based on the above results, we obtain the following theorem, which plays an important role in the
sequel.

Theorem 2.5. Let A € C™™ gand B, C € C™" such that AIBO exists. Then
(i) REAIBOT A) = RAIBOY = R(B) and R(AAIBOY) = R(AB).
(ii) N(AAIBON = N(AIBOY = N(CAAY) and N(AIBOTA) = N(CA).
(ifi) tk(AB) = rk(B) = rk(AAIBO) = f(AIBOH = r(AIBOA A) = r(CAAY) = rk(CA).

Proof. (i) Since AIBOTAAIBOY = AIBO1 one has RAIBCOA) = RAIBOY). From [2, Theorem 6.6], it
follows that R(AIEOA) = R(B) and R(AAIBO) = R(AB), whence R(AIBOtA) = RAIBOA) = R(B) and
R(AB) = R(AAIBO AB) ¢ R(AAIBOH) = R(AAIBO AAT) € RAAIBO) = R(AB). So, RAAIBO) = R(AB).

(ii) We have N(AAIBOY) = N(AIBO) since AIBOTAAIBOT = AIBOL - Again by [2, Theorem 6.6],
we have N(AIBOA) = N(CA), so that N(AIBOFA) = N(AIBOA) = N(CA). As N(C) € N(AIBO), then
there exists some T € C™" such that AlBO = TC. So, N(CAA') = N(CAAIBOY) ¢ N(TCAAIBOY) =
NAIBOY) ¢ (CAAIBOY) = N(CAAY). Therefore, N(AAIBOT) = N(AIBOY) = N(CAAT).

(iii) It follows from (i) and (ii). O

A matrix A € C"™" is called Hermitian if A* = A. A Hermitian projector matrix is called an orthogonal
projector. It is known that AAIBOT and AIBOT A are both projectors. However, they may not be orthogonal
projectors. We next show under what conditions AAIBOF and AIBOFA are orthogonal projectors.

Theorem 2.6. Let A € C™" and B, C € C"™" such that AVBC) exists. Then the following statements are equivalent:
(i) AAIBOM js an orthogonal projector.
(ii) R(AB) = R(AA*CY).
(iii) R(AATC*) C R(AB).
(iv) R(AB) C R(AATCY).

Proof. To begin with, (ii) = (iii) and (ii) = (iv) are obvious.
(i) = (ii) Given (i), then AAIBOF = (AAIBO1Y 5o that R(AAIBOT) = R((AAIBO1)) = N(AAIBO) L,
By Theorem 2.5, we have

R(AB) RAAIBOT) = N(AAIBONL = N(CAAT):

R((CAATY) = R(AATCH).

(iii) = (i) Since AAIBOF = (AAIBO2 o prove (i), it suffices to show (AAIBOF) = AAIBOL — Ag
R(AATC*) C R(AB), then by Theorem 2.5, we have

R((AAH(B,C)J‘)*) — N(AAH(B,C),T)J_ = N(CAATY: = R(CAA™Y)
R(AATCY) C R(AB) = R(AAIEBO),

Hence, there exists some D € C™" such that (AAIBO1) = AAIBOID = AAIBOYAAIBOD = AAIBOFAAIBO ) =
AAIBO* a5 required.

(iv) = (ii) It follows from Theorem 2.5 (iii) that rk(AB) = rk(CAA") = rk(AA*C*), whence R(AB) =
R(AATC*) since R(AB) € R(AATCY). O

In Theorem 2.7 below, we derive the necessary and sufficient conditions such that AIBOTA is an
orthogonal projector, whose proof is similar to that of Theorem 2.6. We herein leave it to the readers.

Theorem 2.7. Let A € C™" and B, C € C"™" such that AV exists. Then the following statements are equivalent:
(i) AIBO* A is an orthogonal projector.
(i) R((CA)") = R(B).
(iii) R(CA)") < R(B).
(iv) R(B) € R(CA)).
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As stated in Section 1, several types of generalized inverses are described by A(;) s+ We next establish

the criterion of the (B, C)-MP-inverse of A using its A(ﬁ) S

Theorem 2.8. Let A € C™™ and B,C € C™" such that AIBO) exists. Then X = AIBOL if and only if X =

2)
AR(B) N(CAA*)'

Proof. Suppose X = Al Then, by Theorem 2.5, we have XAX = X, R(X) = R(B) and N(X) = N(CAA?),

2
so that X = A,R(B N(CAAY
Conversely, if X = Ag()B) N(CAAYY then XAX = X,R(X) = R(B) and N(X) = N(CAA'), and hence R(AX —

I,) € N(X) = N(CAAY). This implies CAX = CAA*. The inclusion N(C) € N(AIBO) gives AIBC) = SC for
some S € C™™, Also, from R(X) = R(B), it follows that X = AIBOAX = SCAX = SCAA' = AIBOAAT =
AlBOL o

We denote by Py the projector onto M along N, where M, N are two complementary subspaces of C™!,
namely C*™! = M@ N.

It follows from Theorem 2.5 that R(AAIBOF) = R(AB), N(AAIBOY) = N(CAA') and R(AIBOY) c R(B).
So, R(AB) & N(CAAT) = €™ Let X = AIBOAAT. Then AX = Pgap) ncaa) is a projector onto R(AB) along
N(CAAY).

We next give show that X = AIBOAAT is the unique solution of the following system consisting of
Priap)N(caat.-

Theorem 2.9. Let A € C™" and B, C € C"™" such that AIBO exists. Then
AX = Pgiapyn(caaty, R(X) € R(B). )
is consistent and has the unique solution X = AlGO1,

Proof. We assume that X1, X satisfy (2). Then AX; = AXo = Pgap) nvcaat), R(X1) € R(B) and R(X3) € R(B).
We have at once A(X; — X5) = 0, R(X; — X») € N(A) and R(X; — X») € R(B). Consequently, it follows that
R(X7 — X2) S N(A)NR(B).

Given any X € N(A)NR(B), then there exists some T € C"™" such that X = BT = AIBOABT = AIBOAX =
0 and N(A) N R(B) = {0}. Hence R(X; — X3) S NA)NRB) ={0}and X3 = X,. O

Remark 2.10. In Theorem 2.9, R(X) C R(B) is equivalent to the condition X = AIBOAX. Indeed, if
R(X) € R(B), then X = BT = AIBOABT = AIBOAX for some T € C™". For the converse statement, if
X = AIBOAX then R(X) € RAIEO), so that R(X) C R(B) since R(AIBC)) C R(B).

Let CL be the set of n X n projector matrices. Given A € C™™ and B,C € C™" such that AlBO exists,
then AAIBO} ¢ CP, AIBOA € P

The following result presents characterizations for the (B, C)-MP-inverse of A using projectors AAIBC)*
and AlBOFA,

Theorem 2.11. Let A € C™" and B, C € C"™" such that AVB.C exists. Then the following conditions are equivalent:
() X = AlBO)T
(ii) CAX = CAA!, R(X) = R(B).
(iii) CAX = CAAT, X = AIBOAX.
(iv) XAB = B, N(X) = N(CAAY),
(v) XAAIBO = AIBO ri((X) = rk(B), CAX = CAA',
(vi) AX = AAIBOAAT R(X) = R(B).
(vii) AX = AAIB C)AAJr X = AlBOAX,
(viii) AX € CL, R(X) = R(B), N(X) = N(CAA").
(i) AX € €, X = AIBOAX, N(X) = N(CAA™.



H. Zhu, Y. Yang / Filomat 38:3 (2024), 811-819 816

(x) AXA = AAIBOA, R(X) = R(B), N(X) = N(CAA").
(xi) XA = AIBOA, N(X) = N(CAAY).
(xii) XA € C7, R(X) = R(B), N(X) = N(CAAM).

Proof. (i) implies these items (ii)-(xii) by Theorems 2.5 and 2.8; (ii) = (iii), (vi) = (vii), (viii) = (ix), (x) =
(xi) follow from Remark 2.10.

(iii) = (i) It follows from N(C) € N(AIBO) that X = AIBOAX = SCAX = SCAAT = AIBOAAT = AIBO
for some S € C"™™",

(iv) = (v) Since R(AIBC)) C R(B), we have AIBC) = BS for suitable S € C™", This combines with XAB = B
to imply XAAIBC) = AlBC) - According to N(CAA') = N(X) and Theorem 2.5, we have rk(X) = rk(CAAT) =
rk(B). Also, XAB = B implies R(B) € R(X). So, R(X) = R(B). Then X can be written as the form of BT for
suitable T € C™". Post-multiplying XAB = B by T gives XAX = X. So, R(I, — AX) € N(X) = N(CAA").
Therefore, CAX = CAA?.

(v) = (ii) Post-Multiplying XAAIBC) = AlGO by ABimplies XAB = B. Then we have atonce R(B) € R(X),
which combines with rk(X) = rk(B) to ensure R(X) = R(B).

(vii) = (i) Given AX = AAIBOAA?, then it follows that X = AIBOAX = AIBOAAIBOAAT = AIBOAAT =
AlBO)T

(ix) = (iii) By AX € CF, we have X = AIBOAX = AIBOAXAX = XAX. Hence, R(I, — AX) € N(X) =
N(CAAY) and CAX = CAA*.

(xi) = (iv) is obvious.

(xii) = (ii) As XA € CF, then R(A — AXA) € N(X) = N(CAAY), so that CA = CAXA. Post-multiplying
CA = CAXA by A" gives CAAT = CAXAA'. From R(I, — AA") € N(CAA') = N(X), one has X = XAA" and
CAA' = CA(XAA") = CAX. O

Remark 2.12. In Theorem 2.11 above, the condition R(X) = R(B) can be weaken to the inclusion R(X) € R(B).

3. Connections with other generalized inverses

Let A € C™" and B,C,B’,C’ € C"™". Benitez et al. in [2, Remark 4.3] proved that if R(B) R(B),
N(C) = N(C’), then the existence of AIB©) coincides with that of AIB"C) and AIBC = AlB.C)
The following result shows that the converse statement also holds.

Lemma 3.1. Let A € C™"and B,C,B’,C’ € C"™" such that AV®O and AIB'C) exist. Then the following conditions
are equivalent:

(i) AlBC) = AlBC),

(ii) R(B) = R(B’), N(C) = N(C).

(ii) R(B) € R(B'), N(C) € N(C)).

Proof. (i) = (ii) Post-multiplying AIF©) = AlB"C) by AB gives B = Al®"C)AB, and R(B) € R(AIF'C)) C R(B').
Pre- multlplymg AlBO) = AllB.C) by CA yields C = CAAIBC), 5o that N(C') € N(AIEC)) € N(C). Dually,
one can get R(B’) € R(B) and N(C) € N(C’). Consequently, R(B) = R(B’), N(C) = N(C").

(ii) = (iii) is obvious.

(iii) = (i) Note that R(B) € R(B’) implies rk(B) < rk(B’), and N(C) € N(C’) gives rk(C") < rk(C). By
Lemma 2.3, one knows that rk(B) = rk(C) and rk(B’) = rk(C’). So, rk(B) = rk(B’) = rk(C’) = rk(C) and hence
R(B) = R(B"), N(C) = N(C"). Hence AIBO = AIB"C) from [2, Remark 4.3]. [J

It is known from [4] that AT = AI®4) for A € C™™. Taking B’ = C’ = A* in Lemma 3.1, we have the
following result.

Lemma 3.2. Let A € C™" and B, C € C"™" such that AI®O exists. Then the following statements are equivalent:
(i) AIEO = At
(i) R(B) = R(A"), N(C) = N(A").
(i) R(B) € R(A%), N(C) € N(A%).



H. Zhu, Y. Yang / Filomat 38:3 (2024), 811-819 817

It is worth pointing out that if AIBO = AT then AIBOF = AIBOAAT = ATAAT = AT, However, the
converse statement may not be true, namely AlBOt = At does not imply AIBO = At in general. A
counterexample is given below.

1
Example 3.3. Set A = [421 8],3 = [6} %],C = [(2) 8] € C**2. As rk(CAB) = rk(B) = 1k(C), then, by Lemma

1 11 11
2.3, AlBO exists. A simple computation gives AIBC) = C = [8 8],A+ = [g 8] and hence AIGOT = [g 8],
so that AT = AIBO However, AT £ AIBO),

The following theorem presents the necessary and sufficient conditions such that At = AIGOF,

Theorem 3.4. Let A € C™" and B, C € C"™" such that AV exists. Then the following statements are equivalent:
(i) AlBOT — At
(ii) R(A*) = R(B).
(iii) R(A*) € R(B).

Proof. (i) = (ii) Multiplying AlBOY — At by AA* on the right side yields AlBOAA* = AYAA* = A* and
R(A*) € R(AIBO) C R(B). By Lemma 2.4, rk(B) < rk(A) = rk(A*). Consequently, R(A*) = R(B).

(ii) = (iii) is clear.

(iii) = (i) As R(A*) € R(B), then there exists some T € C"™" such that A* = BT = AIBOABT = AIBOAA*,
Multiplying A* = AIBOAA* by (AT)*AT on the right side gives AT = AIBOAAT = AIBOY

Theorem 3.5. Let A € C™™" and B,C € C™" such that AVBCO exists. Then AIBOY = ANBC) if and only if
C = CAA".

Proof. Suppose AlBOF = AlBC) - Pre-multiplying AlBOt = AlBC) by CA yields CAAT = CAAIBOF =
CAAIBO) = C.

Conversely, since N(C) € N(AlIBO), there exists some S € C™" such that AlBC) = SC = SCAAT =
AlBOAAT = AIBOT

Suppose S is a *-semigroup and a, b, ¢ € S. We recall from [21] that a is (b, c)-core invertible if there exists
some x € S such that caxc = ¢, xS = bS and Sx = Sc*. The (b, c)-core inverse x of a is uniquely determined
(if it exists) and is denoted by afz 0" It is shown in [21] that a is (b, c)-core invertible if and only if a is

(b, c)-invertible and c is {1, 3}-invertible. Moreover, aa 9= allbe) o(1,3)

We next give the notion of (b, c)-core inverses in complex matrices.

Definition 3.6. Let A € C™" and B,C € C™". The matrix A is called (B, C)-core invertible if there exists some
X € €™ such that CAXC = C,R(X) = R(B) and N(X) = N(C*). Such an X is called a (B, C)-core inverse of A.

Givenany A € C"™" and B, C € C"™", it can be proved that the (B, C)-core inverse of A is unique if it exists.

As usual, we denote by A(®B o the (B, C)-core inverse of A. Moreover, one has the following equivalence: A

is (B, C)-core invertible if and only if A is (B, C)-invertible. In this case, A, ., = AlBOCT,

Theorem 3.7. Let A € C"™" and B, C € C"™". Then the following conditions are equivalent:
(i) A is (B, C)-MP-invertible.
(ii) A is (B, C)-core invertible.
In this case, AIBO = A%C) CAA?T.

Proof. The equivalence between (i) and (ii) is obvious. It next suffices to give the formula. As A% o exists,

then A ., = AIPOCT, AT, | C = AIPOCTC = AIPO and post-multiplying Ag, . = AIPOCT by CAAT yields

AIBOF Z AIBO AAT = A C)CAA*. O
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As pointed out in [4], AP is the (D, D)-inverse of A forany A, D € C™", and hence AIPD/t = AIDDAAT =
AlPAAT = AN,
The following theorem presents the criterion such that AIGO = AT,

Theorem 3.8. Let A, B,C, D € C™" such that AVBC) and AP exist. Then the following conditions are equivalent:
(i) AlEOF = Al
(i) R(D) = R(B), N(DA) = N(CA).
(iii) R(D) € R(B), N(DA) € N/(CA).

Proof. (i) = (ii) As AIBOT = Al je AIBOAAT = AIPAAT, then AIFOA = AIPA. Post-multiplying
AlBOA = AIPA by B and D give B = AIPAB and AIBOAD = D, respectively. Then R(B) € R(AIP) € R(D)
and R(D) € R(AIBO) C R(B). So, R(B) = R(D). Pre-multiplying AIBOA = AIPA by CA and DA yield CA =
CAAPA and DAAIBOA = DA, respectively. It follows that N(AIPA) € N(CA) and N(AIBOA) € N(DA).
By [2, Theorem 6.6], we have N (CA) = N(AIBC) A) and N(DA) = N(AIPA). Consequently, N(CA) = N(DA).

(ii) = (iii) is trivial.

(iii) = (i) Since R(D) € R(B), there exists some T € C™" such that D = BT = AIBOABT = AIBOAD,
which combines with R(AIP) ¢ R(D) to lead AP = AIBOAAIP Similarly, as N(DA) € N(CA), then
CA = SDA = SDAAIPA = CAAIPA for suitable S € C™". From N(C) € N(AIBO), it follows that
AlBOA = AIBOAAIPA. Consequently, AIPOA = AIPA and AIBOY = AW, [

In Theorem 3.8, taking D = A™ (m = ind(A)), then AI1" = AP, so that A%‘, = AlA" AAT = ADAAT = ADF,

Note that N(A™) = N(A"™*) since A™ = APA™1. So, we have the following result.

Corollary 3.9. Let A,B,C € C™" and ind(A) = m. Suppose AIBO exists. Then the following conditions are
equivalent:

(i) AlBOT — ADt

(i) R(A™) = R(B), N(A™) = N(CA).

(ifi) R(A™) C R(B), N(A™) C N/(CA).

Setting m = 1 in Corollary 3.9, then A is group invertible and hence AP = A*AAY = A®. We claim
herein that N(CA) = N(A) in the item (ii) and N(A™) C N(CA) in the item (iii) can be dropped. Indeed, the
condition N'(A) € N(CA) is evident. By Lemma 2.4, one knows that rk(CA) = rk(A), and consequently the
condition N(CA) = N(A) in the item (ii) can be dropped.

Corollary 3.10. Let A,B,C € C™" and ind(A) = 1. Suppose ANBO exists. Then the following statements are
equivalent:

(1) AlBOT = A®,

(ii) R(A) = R(B).

(iii) R(A) € R(B).

Recently, the author Zhu et al. [22] introduced W-core inverses in complex matrices. For A, W € C"™*",
A is called W-core invertible if there exists an X € C™" satisfying AWX = P4 and R(X) € R(A). Such an X
is called a W-core inverse of A. It is unique if it exists and is denoted by A,. It is proved that A is W-core
invertible if and only if W is invertible along A (i.e., W is (A, A)-invertible). In this case, Al = WA,

We close this section with the following result, relating the (B, C)-MP-inverse and the W-core inverse.

Theorem 3.11. Let A, W € C™". Then the following conditions are equivalent:
(i) W is (A, A)-MP-invertible.
(ii) A is W-core invertible.
In this case, WIADT = A® AWWT,

Proof. It is known that W is (A, A)-MP-invertible if and only if W is invertible along A if and only if A is
W-core invertible. It next only need to give the formula. Since A, = WMAT = WIAADAT and WIAA =
WIADATA, post-multiplying A%, = WIADAT by AWWT gives the equality A) AWW' = WIADATAWIWT =
WIAD W = WAt o
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