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Available at: http://www.pmf.ni.ac.rs/filomat

Pseudo-Ricci-Yamabe solitons on real hypersurfaces in the complex
projective space

Young Jin Suha, Changhwa Woob,∗

aDepartment of Mathmatics & RIRCM, Kyungpook National University, Daegu 41566, Republic of Korea
bDepartment of Applied Mathematics, Pukyong National University, Busan 48547, Republic of Korea

Abstract. In this paper, we give a complete classification of Hopf pseudo-Ricci-Yamabe solitons on real
hypersurfaces in the complex projective spaceCPn. As its applications, first we give a complete classification
of gradient pseudo-Ricci-Yamabe solitons on real hypersurfaces with isometric Reeb flow in the complex
projective space CPn. Next we prove that a contact real hypersurface in CPn which admits the gradient
pseudo-Ricci-Yamabe soliton is pseudo-Einstein.

1. Introduction

Among the class of Hermitian symmetric spaces with rank 1 of compact type, we have complex projective
space CPn = SUn+1/S(U1 ·Un), which is geometrically quite different from the case of rank 2. It has a Kähler
structure and Fubini-Study metric 1 of constant holomorphic sectional curvature 4 (see Romero [34], [35],
and Smyth [38]). The complex projective space CPn is considered as a kind of real Grassmann manifolds of
compact type with rank 1 (see Kobayashi and Nomizu [26]).

Recently, Yamabe solitons and Ricci solitons on almost co-Kähler manifolds and three dimensional
N(k)-contact manifolds have been investigated by Chaubey-De-Suh [10], and [18]. Moreover, the study of
the Yamabe flow was initiated in the work of Hamilton [23], Morgan and Tian [27] and Perelman [30] as a
geometric method to construct Yamabe metrics on Riemannian manifolds.

A time dependent metric 1(t) on a Riemannian manifold M is said to be evolved by the Yamabe flow if
the metric 1 satisfies

∂
∂t
1(t) = −γ1(t), 1(0) = 10

on M, where γ denotes the scalar curvature on M. Then in this paper let us consider a pseudo-Ricci-Yamabe
soliton (M,V, η,Ω, δ, ρ, γ, 1) as follows:

1
2

(LV1)(X,Y) + δRic(X,Y) + ψη(X)η(Y) = (Ω −
1
2
ργ)1(X,Y) (1.1)
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for any tangent vector fields X and Y on M, whereΩ is said to be a pseudo-Ricci-Yamabe soliton constant, the
functions δ, ρ and ψ are any constants and γ the scalar curvature on M, and LV denotes the Lie derivative
along the direction of the vector field V.

When the function ψ identically vanishes, the pseudo-Ricci-Yamabe soliton is said to be a Ricci-Yamabe
soliton. When the function δ vanishes, it is said to be a quasi-Yamabe soliton due to Chaubey-Lee-Suh
[15]. If the functions δ and ψ both vanish, the soliton (1.1) is said to be Yamabe soliton. We also say that
the pseudo-Ricci-Yamabe soliton is shrinking, steady, and expanding according to the pseudo-Ricci-Yamabe
soliton constant function Ω > 0, Ω = 0, and Ω < 0 respectively.

On the other hand, it is well known that there exist two focal submanifolds of real hypersurfaces in
Hermitian symmetric spaces of compact type and only one focal submanifold in Hermitian symmetric
spaces of non-compact type (see Cecil and Ryan [8] and Helgason [22]). Since the complex projective space
CPn is a Hermitian symmetric space of compact type, any real hypersurface has two focal submanifolds
(see Djorić and Okumura [19], Pérez [32]). Among them we consider two kinds of real hypersurfaces in
CPn with isometric Reeb flow or contact hypersurfaces. In CPn, Cecil and Ryan [8], and Okumura [28] gave
a classification of real hypersurfaces with isometric Reeb flow as follows:

Theorem A. Let M be a real hypersurface of the complex projective space CPn, n ≥ 3. Then the Reeb
flow on M is isometric if and only if M is an open part of a tube of radius 0 < r < π

2 around a totally geodesic
CPk
⊂ CPn for some k ∈ {0, · · · ,n − 1} or a tube of radius π

2 − r over CPℓ, where k + ℓ = n − 1.

When a real hypersurface M in the complex projective space CPn satisfies the formula Aϕ + ϕA = kϕ,
k , 0 and constant, we say that M is a contact real hypersurface in CPn. In the papers due to Blair [3],
Okumura [28] and Yano and Kon [47], they introduce the classification of contact real hypersurfaces in CPn

as follows:

Theorem B. Let M be a connected orientable real hypersurface in the complex projective space CPn,
n ≥ 3. Then M is a contact real hypersurface if and only if M is congruent to an open part of a tube of radius
0 < r < π

4 around an n-dimensional real projective space RPn or a tube of radius π
4 − r over Qn−1, where

0 < r < π
4 .

Motivated by these results, in this paper we give some characterizations of real hypersurfaces in the
complex projective space CPn regarding a family of geometric flows. Indeed, we know that a solution of
the Ricci flow equation ∂

∂t1(t) = −2Ric(1(t)) is given by

1
2

(LV1)(X,Y) + Ric(X,Y) = Ω1(X,Y),

where Ω is a constant and LV denotes the Lie derivative along the direction of the vector field V (see
Chaubey-Suh-De [11], Morgan-Tian [27], Perelman [30], Wang [45] and [46]). Then this solution (M,V,Ω, 1)
is said to be a Ricci soliton with potential vector field V and Ricci soliton constant Ω.

As a generalization of the notion of Ricci flow, the Ricci-Bourguignon flow (see Bourguignon [4] and [5],
Catino-Cremaschi-Djadli-Mantegazza-Mazzieri [6]) is given by

∂
∂t
1(t) = −2(Ric(1(t)) −

1
2
ργ1(t)), 1(0) = 10.

This family of geometric flows with ρ = 0 reduces to the Ricci flow ∂
∂t1(t) = −2Ric(1(t)), 1(0) = 10. If the

constant ρ = 1, it is said to be Einstein flow. The critical point of the following Einstein flow

∂
∂t
1(t) = −2(Ric(1(t)) −

1
2
γ1(t)), 1(0) = 10,

implies that the Einstein gravitational tensor Ric(1(t))− 1
2γ1(t) vanishes. For a four-dimensional space time

M4, this is equivalent to the vanishing Ricci tensor by virtue of dγ = 2div(Ric). In this case M4 becomes
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vacuum. That is, 1(t) = 1(0), the metric is constant along the time (see O’Neill [29]). For ρ = 2
n , the tensor

Ric − γ
n1 is said to be traceless Ricci tensor, and for ρ = 1

n−1 , it is said to be the Schouten tensor.

As another generalization of the notion of Ricci flow, recently, Güler and Crasmareanu [20] introduced
a new geometric flow which is a scalar combination of Ricci and Yamabe flow by using Ricci-Yamabe map.
This flow is also said to be a Ricci-Yamabe flow of type (δ, ρ). A solution to such a Ricci-Yamabe flow is
called Ricci-Yamabe soliton if it moves only by one parameter group of diffeomorphism and scaling. In this
case, the Riemannian manifold (M, 1), n > 2 is said to be (δ, ρ)-Ricci-Yamabe soliton or simply Ricci-Yamabe
soliton if it satisfies the equation

1
2
LV1 + δRic1 = (Ω −

1
2
ργ)1,

where LV1 denotes the Lie derivative of the metric 1 along the vector field, γ the scalar curvature, and
Ω, δ, ρ real scalars.

If the Ricci operator Ric of a real hypersurface M in CPn satisfies

Ric(X) = aX + bη(X)ξ (1.2)

for smooth functions a, b on M, then M is said to be pseudo-Einstein. Then we introduce a complete
classification for pseudo-Einstein Hopf real hypersurfaces in the complex projective space CPn due to Cecil
and Ryan [8] as follows:

Theorem C. Let M be a pseudo-Einstein real hypersurface in the complex projective space CPn, m ≥ 3.
Then M is locally congruent to one of the following:

(i) a geodesic hypersphere,
(ii) a tube of radius r around a totally geodesic CPk, 0 < k < n − 1, where 0 < r < π

2 and cot2r = k
n−k−1 ,

(iii) a tube of radius r around a complex quadric Qn−1 where 0 < r < π
4 and cot22r = n − 2.

Let M be a Hopf hypersurface in the complex projective space CPn. Then we have

Aξ = αξ

for the shape operator A with the Reeb function α = 1(Aξ, ξ) on M in G2(Cn+2). When we consider a tensor
field J for any vector field X on M , which is a Kähler structure on the tangent space TzM, z∈M, then JX is
given by

JX = ϕX + η(X)N,

where ϕX = (JX)T is the tangential component of the vector field JX, η(X) = 1(ξ,X), ξ = −JN, and N denotes
a unit normal vector field on M.

In this paper we introduce a new notion named generalized pseudo-anti commuting property for the Ricci
tensor of a real hypersurface M in the complex projective space CPn as follows:

Ricϕ + ϕRic = fϕ (1.3)

for a smooth function f on M in CPn (see Ki and Suh [24], and Yano and Kon [47]).

It is known that Einstein and pseudo-Einstein real hypersurfaces M in the complex projective spaceCPm

(see Besse [1], Cecil-Ryan [8]) satisfy the condition of generalized pseudo-anti commuting Ricci tensor, that is,
Ricϕ + ϕRic = fϕ, where f denotes a smooth function on M in CPm. Real hypersurfaces of type (B) in the
complex projective space CPm, which are characterized by Aϕ + ϕA = kϕ, k , 0 also satisfy the formula of
generalized pseudo-anti commuting Ricci tensor.

Now in this paper, by using the notion of generalized pseudo-anti commuting Ricci tensor (1.2), we give
a theorem as follows:
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Main Theorem 1. Let M be a Hopf pseudo-Ricci-Yamabe soliton (M, ξ, δ,Ω, ρ, γ, 1) of the type (δ, ρ) in
the complex projective space CPn, n≥3. Then M is locally congruent to one of the following:

(i) a geodesic hypersphere, Ω − 1
2ργ = 2{(n − 1)cot2(r) + n}δ, and ψ = 2nδ,

(ii) a tube of radius r around a totally geodesic CPk, 0 < k < n − 1, where 0 < r < π
2 , cot2(r) = k

n−k−1 ,
Ω − 1

2ργ = 2nδ, and ψ = 2δ,
(iii) a trivial Yamabe soliton with Ω = 1

2ργ, and ψ = 0,

Let us denote by D f the gradient vector field of the function f on a real hypersurface M in the complex
projective space CPn defined by 1(D f ,X) = 1(grad f ,X) = X( f ) for any tangent vector field X on M.

Now let us consider the gradient pseudo-Ricci-Yamabe soliton (M,D f , ξ, δ,Ω, ρ, γ, 1). It is a generalization
of gradient η-Einstein soliton derived from a generalized Ricci potential for a Riemannian manifold (M, 1)
(see Catino-Mazzieri [7], Cernea-Guan [9]). It is defined by

Hess( f ) + δRic + ψη⊗η = (Ω −
1
2
ργ)1,

where Hess( f ) is defined by Hess( f ) = ∇D f and for any tangent vector fields X and Y on M

Hess( f )(X,Y) = XY( f ) − (∇XY) f .

Then a gradient pseudo-Ricci-Bourguignon soliton in CPn can be defined by

∇XD f + δRic(X) + ψη(X)ξ = (Ω −
1
2
ργ)X

for any vector field X tangent to M in CPn. Then first by Theorem A we can assert a classification theorem
for gradient pseudo-Ricci-Bourguignon solitons in CPn as follows:

Main Theorem 2. Let M be a real hypersurface in CPn with isometric Reeb flow, n≥3. If it admits a
gradient pseudo-Ricci-Yamabe soliton (M,D f , ξ, δ,Ω, ρ, γ, 1) of the type (δ, ρ), then M is locally congruent
to one of the following

(i) a geodesic hypersphere, Ω − 1
2ργ = 2{(n − 1)cot2(r) + n}δ, and ψ = 2nδ,

(ii) a tube of radius r around a totally geodesic CPk, 0 < k < n − 1, where 0 < r < π
2 , cot2(r) = k

n−k−1 ,
Ω − 1

2ργ = 2nδ, and ψ = 2δ,
(iii) a trivial gradient Yamabe soliton with Ω = 1

2ργ, and ψ = 0,

Next by virtue of Theorem 1 let us consider a contact real hypersurface in the complex projective space
CPn. Then we can assert a classification of gradient pseudo-Ricci-Yamabe soliton in CPn as follows:

Main Theorem 3. Let M be a contact real hypersurface in the complex projective space CPn, n≥3. If it
admits the gradient pseudo-Ricci-Yamabe soliton (M,D f , ξ, δ,Ω, ρ, γ, 1) of the type (δ, ρ), then M is pseudo-
Einstein and locally congruent to a tube of radius r around a complex quadric Qn−1 where 0 < r < π

4 and
cot2(2r) = n−2. Moreover, the soliton constants are given byΩ− 1

2ργ = 2nδ, andψ = 2(2n−1)δ, or otherwise
it becomes a trivial gradient Yamabe soliton with Ω = 1

2ργ and ψ = 0.

2. Some general equations

Let M be a real hypersurface in the complex projective space CPn and denote by (ϕ, ξ, η, 1) the induced
almost contact metric structure. Note that ξ = −JN, where N is a (local) unit normal vector field of M.
Then the vector field ξ is said to be the Reeb vector field on M in CPn. The tangent bundle TM of M splits
orthogonally into TM = C⊕Rξ, where C = ker(η) is the maximal complex subbundle of TM. The structure
tensor field ϕ restricted to C coincides with the complex structure J restricted to C, and ϕξ = 0.
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We now assume that M is a Hopf hypersurface. Then we have

Aξ = αξ,

where A denotes the shape operator of M in CPn and the smooth function α is defined by α = 1(Aξ, ξ) on
M. When we consider the transformed JX by the Kähler structure J on CPn for any vector field X on M in
CPn, we may write

JX = ϕX + η(X)N.

Then by using Kähler structure ∇̄J = 0, we get the following

(∇Xϕ)Y = η(Y)AX − 1(AX,Y)ξ and ∇Xξ = ϕAX,

where ∇̄ is the Levi-Civita connection of CPn and ∇ the corresponding one on M.
Now we consider the equation of Codazzi

1((∇XA)Y − (∇YA)X,Z) = η(X)1(ϕY,Z) − η(Y)1(ϕX,Z) − 2η(Z)1(ϕX,Y).

By the equation of Gauss, the curvature tensor R(X,Y)Z for a real hypersurface M in CPn induced from
the curvature tensor R̄ of CPn can be described in terms of the almost contact structure tensor ϕ and the
shape operator A of M in CPn as follows:

R(X,Y)Z = 1(Y,Z)X − 1(X,Z)Y
+ 1(ϕY,Z)ϕX − 1(ϕX,Z)ϕY − 21(ϕX,Y)ϕZ
+ 1(AY,Z)AX − 1(AX,Z)AY

(2.1)

for any vector fields X,Y,Z ∈ TzM, z ∈ M. From this, contracting Y and Z on M in CPn, we get the Ricci
tensor of a real hypersurface M in CPn as follows:

Ric(X) = (2n + 1)X − 3η(X)ξ + hAX − A2X, (2.2)

where h denotes the trace of the shape operator A of M in CPn. Then by contracting the Ricci operator in
(2.2) the scalar curvature γ of M in CPn is given by

γ =
∑2n−1

i=1
1(Ric(ei), ei) = 4(n2

− 1) + h2
− TrA2, (2.3)

where the function h denotes the trace of the shape operator A of M in CPn.

Putting Z = ξ in the Codazzi equation, we get

1((∇XA)Y − (∇YA)X, ξ) = −21(ϕX,Y).

Since we have assumed that M is Hopf in CPn, differentiating Aξ = αξ gives

(∇XA)ξ = (Xα)ξ + αϕAX − AϕAX.

From this, the left side of the above equation becomes

1((∇XA)Y − (∇YA)X, ξ)
= 1((∇XA)ξ,Y) − 1((∇YA)ξ,X)
= (Xα)η(Y) − (Yα)η(X) + α1((Aϕ + ϕA)X,Y) − 21(AϕAX,Y).

Putting X = ξ in above two equations and using the almost contact structure of (M, 1), we have

Yα = (ξα)η(Y).

Inserting this formula into two previous equation implies

0 = 21(AϕAX,Y) − α1((ϕA + Aϕ)X,Y) − 21(ϕX,Y).

By virtue of this equation, we can assert the following
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Lemma 2.1. Let M be a Hopf real hypersurface in CPn, n ≥ 3. Then we obtain

2AϕAX = α(Aϕ + ϕA)X + 2ϕX

for any tangent vector field X on M.

In the proof of our Theorems 1 and 2, we want to provide further details about Hopf real hypersurfaces
in the complex projective space. By using the formulas given in section 3 we want to introduce an important
lemma due to Okumura [28] and Yano and Kon [47] as follows:

Lemma 2.2. Let M be a Hopf real hypersurface in CPn. Then the Reeb function α is constant. Moreover, if X ∈ C is
a principal curvature vector of M with principal curvature λ, then 2λ , α and ϕX is a principal curvature vector of
M with principal curvature αλ+2

2λ−α .

3. Fundamental Theorem and some Propositions

By using Takagi’s classification of homogeneous real hypersurfaces in the complex projective space CPn

(see [42], [43], and [44]), Kimura [25] gave the following

Theorem 3.1. Let M be a Hopf real hypersurface in the complex projective space CPn, n ≥ 2, with constant principal
curvatures. Then, M is holomorphic congruent to an open part of the following hypersurfaces in CPn.

(A1) geodesic hyperspheres, that is, a tube of radius r around a totally geodesic CPn−1 with 0 < r < π
2 ,

(A2) a tube of radius r around a totally geodesic CPk (1 ≤ k ≤ n − 2) with 0 < r < π
2 ,

(B) a tube of radius r around a totally geodesic real projective space RPn in CPn with 0 < r < π
4 ,

(C) a tube of radius r around the Segre embedding of CP1
× CPk, n = 2k + 1 and n ≥ 5 with 0 < r < π

4 ,
(D) a tube of radius r around a complex Grassmannian G2(C3) = SU(5)/S(U(3)U(2)) and n = 9 with 0 < r < π

4 ,
(E) a tube of radius r around a Hermitian symmetric space SO(10)/U(5) and n = 15 with 0 < r < π

4 .

In literature, a real hypersurface is said to be of type (A) if it is of type (A1) or (A2) in CPn. By using
(2.2) and (2.3), we introduce an important proposition due to Cecil-Ryan [8], Djorić and Okumura [19] as
follows:

Proposition 3.2. Let M be the tube of radius 0 < r < π
2 around the totally geodesic CPk, k ∈ {1, · · · ,n − 2} in CPn,

which is called a real hypersurface of type (A2). Then the following statements hold:

(1) M is a Hopf hypersurface with constant principal curvatures.
(2) The principal curvatures and corresponding principal curvature spaces of M are given by

principal curvature eigenspace multiplicity
λ = cot(r) Tλ = {X ∈ TM |X⊥ξ,AX = λX} 2ℓ
µ = −tan(r) Tµ = {X ∈ TM |X⊥ξ,AX = µX} 2k
α = 2 cot(2r) Tα = RJN = span{ξ} 1

where ℓ = n − k − 1.
(3) The shape operator A commutes with the structure tensor field ϕ as

Aϕ = ϕA.

That is, such a real hypersurface has isometric Reeb flow.
(4) The trace h of the shape operator A and its square h2 becomes the following respectively

h = (2ℓ + 1)cot(r) − (2k + 1)tan(r),

h2 = (2ℓ + 1)2cot2(r) + (2k + 1)2tan2(r) − 2(2ℓ + 1)(2k + 1).



Y. J. Suh, C. Woo / Filomat 38:3 (2024), 833–853 839

(5) The trace of the matrix A2 is given by

TrA2 = (2ℓ + 1)cot2(r) + (2k + 1)tan2(r) − 2.

(6) The scalar curvature γ of the tube M is given by

γ = 4(n − 1)n − 8kℓ + 2(2ℓ + 1)ℓcot2(r) + 2(2k + 1)ktan2(r).

According to Theorem 3.1, there exist another tubes of radius 0 < r < π
2 around the totally geodesicCPn−1

in CPn, which is said to be of type (A1). Such hypersurfaces are tubes over complex projective hyperplanes
and also geodesic spheres. For example, the geodesic sphere centered at πe0 with radius π

2 − r coincides with
the tube of radius r over the totally geodesic CPn−1 = π{z | z0 = 0}. Here, π is the canonical projection from
S2n+1(1)→ CPn with fiber S1. The principal curvatures of one are related to those of the other by replacing
the parameter r by π

2 − r. Thus, these tubes satisfy the following statements:

Proposition 3.3. Let M be the tube of radius 0 < r < π
2 around the totally geodesic CPk in CPn, either k = 0 or

k = n − 1. Then the following statements hold:

(1) M is a Hopf hypersurface with constant principal curvatures.
(2) The principal curvatures and corresponding principal curvature spaces of M are given by

• k = 0

principal curvature eigenspace multiplicity
λ = cot(r) Tλ 2n − 2
α = 2 cot(2r) Tα = RJN 1

• k = n − 1

principal curvature eigenspace multiplicity
µ = −tan(r) Tµ 2n − 2
α = 2 cot(2r) Tα = RJN 1

(3) The shape operator A commutes with the structure tensor field ϕ as

Aϕ = ϕA,

that is, the Reeb flow of M is isometric.
(4) The scalar curvatures γ of the tube M of type (A1) and (A2) are, respectively, given as follows.

• k = 0

γ = 4(n2
− 1) + h2

− TrA2

= 4n(n − 1) + 2(2n − 1) cot2 r,

where TrA = h = (2n−1) cot r− tan r, h2 = (2n−1)2 cot2 r+ tan2 r−2(2n−1) and TrA2 = (2n−1) cot2 r+
tan2 r − 2.

• k = n − 1

γ = 4(n2
− 1) + h2

− TrA2

= 4n(n − 1) + 2(2n − 1) tan2 r,

where h = cot r−(2n−1) tan r, h2 = (2n−1)2 tan2 r+cot2 r−2(2n−1) and TrA2 = (2n−1) tan2 r+cot2 r−2.

Now, let M be a tube of radius r, 0 < r < π
4 , over the real projective space RPn, which is said to be of

type (B) and a contact real hypersurface in the complex projective space CPn. It also can be regarded as a
tube of radius π

4 − r over a totally geodesic complex quadric Qn−1. Then by (2.2) and (2.3), we want to give
an important proposition due to Cecil and Ryan [8] as follows:
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Proposition 3.4. Let M be the tube of radius 0 < r < π
4 around the complex quadric Qn−1 inCPn. Then the following

statements hold:

(1) M is a Hopf hypersurface.
(2) The principal curvatures and corresponding principal curvature spaces of M are

principal curvature eigenspace multiplicity
λ = −cot(π4 − r) Tλ n − 1
µ = tan(π4 − r) Tµ n − 1
α = 2 cot(2r) RJN 1

(3) The shape operator A and the structure tensor field ϕ satisfy

Aϕ + ϕA = kϕ, k , 0 : const.

(4) The trace h of the shape operator A and its square h2 becomes the following respectively

h = TrA = 2cot(2r) − 2(n − 1)tan(2r),

h2 = 4cot2(r) + 4(n − 1)2tan2(2r) − 8(n − 1).

(5) The trace of the matrix A2 is given by

TrA2 = 4cot2(2r) + 4(n − 1)tan2(2r).

(6) The scalar curvature γ of the tube M is given by

γ = 4(n − 1)2 + 4(n − 1)(n − 2)tan2(2r).

(7) For cot2(r) = n − 2, M is pseudo-Einstein such that

Ric(X) = 2nX − 2(2n − 1)η(X)ξ.

4. Hopf Pseudo-Ricci-Yamabe soliton in CPn

Now let us introduce pseudo-Ricci-Yamabe soliton (M, ξ, δ,Ω, ρ, γ, 1) of type (δ, ρ) which is a solution of
the pseudo-Ricci-Yamabe flow as follows:

1
2

(LV1)(X,Y) + δRic(X,Y) + ψη(X)η(Y) = (Ω −
1
2
ργ)1(X,Y),

for any tangent vector fields X and Y on M, where Ω is a Ricci-Yamabe soliton constant, δ, ψ, and ρ any
constants and γ the constant scalar curvature on M, and LV denotes the Lie derivative along the direction
of the vector field V (see Chaubey-Siddiqi-Prakasha [14], and Morgan-Tian [27]). Then let us consider the
Reeb vector field ξ as the pseudo-Ricci-Yamabe soliton vector field V as follows:

1
2

(Lξ1)(X,Y) + δRic(X,Y) + ψη(X)η(Y) = (Ω −
1
2
ργ)1(X,Y), (4.1)

Then by virtue of the Lie derivative (Lξ1)(X,Y) = 1(∇Xξ,Y) + 1(∇Yξ,X), the formula (4.1) can be given by

δRic(X) =
1
2

(Aϕ − ϕA)X − ψη(X)ξ + (Ω −
1
2
ργ)X. (4.2)

From this, by applying the structure tensor ϕ to both sides, we get the following two formulas

δRic(ϕX) =
1
2

(Aϕ2
− ϕAϕ)X − ψη(ϕX)ξ + (Ω −

1
2
ργ)ϕX,
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and
δϕRic(X) =

1
2

(ϕAϕ − ϕ2A)X − ψη(X)ϕξ + (Ω −
1
2
ργ)ϕX.

By using the almost contact structure (ϕ, ξ, η, 1) in the right side above, we know that the generalized
pseudo-anti commuting property holds as follows:

δ(Ric(ϕX) + ϕRic(X)) = 2(Ω −
1
2
ργ)ϕX. (4.3)

Now let us consider (4.3) into the following two cases.
Case 1. δ,0.

Then by Lemmas 2.1 and 2.2, if X∈Tλ, then ϕX∈Tµ, where µ = αλ−2
2λ−α . Then by substituting (2.2) into (4.3),

we have the following for X∈Tλ

λ2 + µ2
− h(λ + µ) = k, (4.4)

where the function k is given by k = − 2
δ (Ω − 1

2ργ) + 2(2n + 1). Then substituting µ = αλ+2
2λ−α into (4.4), it gives

the following

4λ4
− 4(α + h)λ3 + 2(α2 + αh − 2k)λ2

+ 4(α − h + αk)λ + 4 + 2αh − kα2 = 0.
(4.5)

Let λ1, λ2, λ3 and λ4 are the roots of the above biquadric equation. Then from the relations of the roots and
coefficient of the equation (4.4) it follows that

λ1 + λ2 + λ3 + λ4 = α + h

λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 = (α2 + αh − 2k)/2
λ1λ2λ3 + λ1λ3λ4 + λ2λ3λ4 + λ1λ2λ4 = α − h + αk

λ1λ2λ3λ4 = (4 + 2αh − kα2)/4.

(4.6)

Here we consider the trace h of the shape operator A of M in complex projective space CPn. Then it is
defined by

h = α +m1λ1 +m2λ2 +m1
αλ1 + 2
2λ1 − α

+m2
αλ2 + 2
2λ2 − α

.

From this, together with (4.6) and note that the principal curvature α is constant, and the scalar curvature
γ in (2.3) is

γ = −4(n2
− 1) + h2

− TrA2, (4.7)

where TrA2 is given by

TrA2 = α2 +m1λ
2
1 +m2λ

2
2 +m1

(αλ1 − 2
2λ1 − α

)2
+m2

(αλ2 − 2
2λ2 − α

)2
. (4.8)

So substituting h and k into (4.6), and using (4.7) and (4.8), we can see that (4.6) consists of four linearly
independent equations with constant multiplicities m1, m1, m2 and m2 of the principal curvatures λ1, µ1,
λ2, and µ2 respectively. Consequently, it can be asserted that M has at most 5 distinct constant principal
curvatures in CPn. Then we have introduced Theorem 3.1, which is an important result due to Kimura [25],
mentioned in section 3

Now a geodesic hypersphere (k = 0, k = n − 1) and a tube of radius r over CPk in CPn for some
k∈{1, · · ·,n − 2}, belongs to the class of the tube of the first in Theorem 3.1 respectively. So by Theorem A,
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they are characterized by the commuting shape operator. That is, Aϕ = ϕA. Accordingly, from the notion
of pseudo-Ricci-Bourguignon soliton (M, ξ,Ω, ρ, γ, 1) of M, (4.1) becomes

δRic = (Ω −
1
2
ργ)1 − ψη⊗η.

Moreover, by Proposition 3.3 and (2.2), we get the following

δRic(X) = 2δ{(n − 1)cot2(r) + n}X − 2nδη(X)ξ.

Then comparing these two formulas implies Ω − 1
2ργ = 2δ{(n − 1)cot2(r) + n} and ψ = 2nδ.

Now let us consider of type (A2). Then it means that the gradient pseudo-Ricci-Yamabe soliton (4.1)
becomes pseudo-Einstein, δRic(X) = (Ω − 1

2ργ)X − ψη(X)ξ. From this, we assert that Ω − 1
2ργ = 2nδ and

ψ = 2δ for a non-vanishing constant δ,0.

In order to show this, let us put Ric(X) = aX + bη(X)ξ, where a = 1
δ (Ω − 1

2ργ) and b = −ψδ . Then
a+ b = 1(Ric(ξ), ξ) = 2n−2 by virtue of cot2(r) = k

n−k−1 , which is used to be Einstein for real hypersurfaces of
type (A2). Moreover, by using Proposition 3.2, for real hypersurfaces of type (A2) we get easily Ric(X) = 2nX
for any X∈Tλ, and Ric(Y) = 2nY for any Y∈Tµ. So it becomes a = 2n and b = −2 respectively. This gives the
above soliton constants.

In fact, in detail let us consider a real hypersurface of type (A2) in Proposition 3.2. First along the Reeb
direction with cot2(r) = k

n−k−1 and ℓ = n − k − 1 we get

Ric(ξ) ={2(n − 1) + hα − α2
}ξ

=
[
2(n − 1) + {(2ℓ + 1)cot(r) − (2k + 1)tan(r)}2cot(2r) − (2cot(2r))2

]
ξ

=
[
2(n − 1) + (2ℓ + 1)cot2(r) + (2k + 1)tan2(r)

− (2ℓ + 1) − (2k + 1) − {cot2(r) + tan2(r) − 2}
]
ξ

=
[
2n − 2k − 2ℓ − 2 + 2ℓcot2(r) + 2ktan2(r)

]
ξ

={4(n − 1) − 2k − 2ℓ}ξ
=(2n − 2)ξ.

Then it becomes a+b = 2n−2. Next we consider for any X∈Tλ, λ = cot(r) with multiplicities 2ℓ in Proposition
3.2. Then it becomes

Ric(X) ={(2n + 1) + hλ − λ2
}X

=
[
(2n + 1) + 2ℓcot2(r) − (2k + 1)

]
X

=2nX

and for any Y∈Tµ, µ = −tan(r) with multiplicities 2k in Proposition 3.2 we get another formula

Ric(Y) ={(2n + 1) + hµ − µ2
}Y

=
[
(2n + 1) + 2ktan2(r) − (2ℓ + 1)

]
Y

=2nY,

where we have used cot2(r) = k
n−k−1 and ℓ = n − k − 1 in above two equations. Then both two equations

above means that a = 2n, which gives b = (a+b)−a = −2. From this, we give a detailed assertion mentioned
above.

Consequently, by Theorem C there exists such a hypersurface in the complex projective space CPn in
our Main theorem 1 in the introduction.
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Case 2. δ = 0.

For the constant δ = 0, by (4.1) it becomes

1
2

(Lξ1)(X,Y) + ψη(X)η(Y) = (Ω −
1
2
ργ)1(X,Y),

From this, by putting X = ξ, (4.1) reduces to the following

ψ = Ω −
1
2
ργ.

Then, together with (4.2), it follows the following for the vanishing constant δ = 0

1
2

(Aϕ − ϕA)X − ψ(η(X)ξ − X) = 0.

Then from contracting this equation we get

0 = ψ
∑2n−1

i=1
(η(ei)1(ξ, ei) − 1(ei, ei)) = −2(n − 1)ψ.

So the constant ψ = 0 and Ω − 1
2ργ = 0. So it becomes a trivial Yamabe soliton and Aϕ = ϕA.

Next, let us check real hypersurfaces of type (B), that is, the third case (iii) in Theorem 3.1. It is
characterized by Aϕ+ϕA = ℓϕ, where ℓ,0 : constant. Moreover, by Proposition 4.4, the principal curvature
are given by λ = −cot(π4 − r), µ = tan(π4 − r) and α = 2cot(2r). So ℓ = λ + µ = − 4

α . For any X∈Tλ the vector
field ϕX∈Tµ. So (4.2) gives the following for X∈Tλ

δRic(X) =
1
2

(µ − λ)ϕX − ψη(X)ξ + (Ω −
1
2
ργ)X

=
1
2

(µ − λ)ϕX + (Ω −
1
2
ργ)X,

(4.9)

where we have used η(X) = 0 for any X∈Tλ.

On the other hand, by (2.2) the left side of (4.9) becomes the following for any X∈Tλ

δRic(X) = δ{(2n + 1) + (h − λ)λ}X, (4.10)

where the function h denotes the trace of the shape operator A of M in CPn. By virtue of (4.10), the first
term in the right side of (4.9) is skew-symmetric and the other terms are symmetric. Accordingly, if we
take the inner product of (4.9) with any ϕX∈Tµ for X∈Tλ and use (4.10), naturally we get λ = µ. That is,
−cot(π4 − r) = tan(π4 − r), which gives a contradiction. Consequently, it means that there does not exist a
contact hypersurface which admits a pseudo-Ricci-Yamabe soliton in complex projective space CPn.

Finally, in the remained case, we check of type (C), (D) and (E) in Theorem 3.1 due to Kimura [25].
From (4.4) the principal curvatures (λ1, µ1), and (λ2, µ2) satisfies the following respectively

λ2
1 + µ

2
1 − h(λ1 + µ1) = k, (4.11)

and

λ2
2 + µ

2
2 − h(λ2 + µ2) = k. (4.12)

Then by viture above two fomulas we can assert the following lemma

Lemma 4.1. The mean curvature h is given by

h = α −
4
α
.
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Proof. In Theorem 3.1, let us put 5 distinct constant principal curvatures by α = 2cot(2r), λ1 = cot(r),
µ1 = −tan(r), λ2 = cot(r− π

4 ) and µ2 = −tan(r− π
4 ) with multiplicities 1, m1, m1, m2 and m2 respectively. Then

from (4.11) and (4.12) we get the following formulas respectively

α2 + 2 − hα = k,

and
16
α2 + 2 +

4h
α
= k.

Then these two equations imply α4
− hα3

− 4αh − 16 = 0. From this, it follows that αh = α2
− 4. This

gives a complete proof of above lemma.

For a type (C) in Theorem 3.1 the principal curvatures are given by 2cot(2r), cot(r), −tan(r), cot(r − π
4 )

and −tan(r − π
4 ) with its multiplicities 1, n − 3, n − 3, 2 and 2 respectively. Its dimension is dimM = 4p − 3.

So the trace of the shape operator h becomes

h = α + (n − 3)α −
8
α
= α −

4
α
,

where we have used Lemma 4.1 in the second equality. From this, it becomes a tube of radius r such that
cot2(2r) = 1

n−3 around the Segre embedding of CP1
× CPk, n = 2k + 1 and n ≥ 5.

For a type (D) in Theorem 3.1 the principal curvatures are given by 2cot(2r), cot(r), −tan(r), cot(r − π
4 )

and −tan(r − π
4 ) with its multiplicities 1, 4, 4, 4 and 4 respectively. Its dimension is dimM = 17. So the trace

of the shape operator h becomes

h = 5α + 4(−
4
α

).

From this, together with Lemma 4.1, we get the following

α2 = 4cot2(2r) = 3.

It means a tube of radius r with cot(2r) =
√

3
2 around a complex Grassmannian G2(C3) = SU(5)/S(U(3)U(2))

and n = 9 with 0 < r < π
4 .

For a type (E) in Theorem 4.1 the principal curvatures are given by 2cot(2r), cot(r), −tan(r), cot(r − π
4 )

and −tan(r − π
4 ) with its multiplicities 1, 8, 8, 6 and 6 respectively. Its dimension is dimM = 29. So the trace

of the shape operator h becomes

h = α + 8α + 6(−
4
α

).

From this, also together with Lemma 4.2, it follows that

8α2 = 20.

It means a tube of radius r with cot2(2r) =
√

5
2
√

2
around a Hermitian symmetric space SO(10)/U(5) and n = 15

with 0 < r < π
4 .

Summing up all of types (C), (D) and (E) mentioned above, we are now going to make a further process
as follows:

For X∈Tλ1 , we get ϕX∈Tµ1 . Then the following holds from the assumption of pseudo-Ricci-Yamabe for
the non-vanishing soliton constant δ,0 and (2.2)

δRic(X) =
1
2

(µ1 − λ1)ϕX + (Ω −
1
2
ργ)X

=δ{(2n + 1) + hλ1 − λ
2
1}X.

(4.13)
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For X∈Tµ1 , we get ϕX∈Tλ1 . Then the following also holds from the assumption of pseudo-Ricci-Yamabe
and (2.2)

δRic(X) =
1
2

(λ1 − µ1)ϕX + (Ω −
1
2
ργ)X

=δ{(2n + 1) + hµ1 − µ
2
1}X.

(4.14)

Then from (4.13) and (4.14) it follows that

0 = (λ1 − µ1)(h − (λ1 + µ1)).

From this, together with Lemma 4.2, we get

α −
4
α
= h = λ1 + µ1 = 2cot(2r) = α.

This gives a contradiction.
On the other hand, for vanishing soliton constant δ = 0, (4.13) or (4.14) implies λ1 = µ1, that is,

cot(r) = −tan(r). This gives also a contradiction. Accordingly, real hypersurfaces of types (C), (D) and (E)
can not satisfy the assumption of pseudo-Ricci-Yamabe soliton. Consequently, we give a complete proof of
our Main Theorem 1 in the introduction.

5. Gradient Pseudo-Ricci-Yamabe soliton on isometric Reeb flow in CPn

In this section let M be a tube of radius r, 0 < r < π
2 , over a totally geodesic CPk, k ∈ {0, 1, · · · ,n− 2,n− 1}

in CPn, which is said to be of type (A1) or of type (A2). In Theorem A, we have mentioned that the Reeb
flow on M in CPn is isometric if and only if M is locally congruent to a totally geodesic CPk in CPn for
k ∈ {0, 1, · · · ,n−1}. Then for k = 0 or k = n−1 we say that M is a geodesic hypersphere which is said to be of
type (A1) and it has with two distinct principal curvatures. For k ∈ {1, · · · ,n − 2}, M is locally congruent to
a tube over CPk in CPn. Moreover, it is said to be of type (A2) and has with three distinct constant principal
curvatures.

Then the shape operator of M in the complex projective space CPn with isometric Reeb flow can be
expressed as

A =



α 0 · · · 0 0 · · · 0
0 cot(r) · · · 0 0 · · · 0
...

...
. . .

...
... · · ·

...
0 0 · · · cot(r) 0 · · · 0
0 0 · · · 0 −tan(r) · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · −tan(r)


for three constant principal curvatures α = 2cot(2r), cot(r) and −tan(r) with multiplicities 1, 2ℓ and 2k
respectively, where ℓ = n − k − 1.

Then, by putting X = ξ in (2.2), and using Aξ = αξ, we have the following

Ric(ξ) =(2n + 1)ξ − 3ξ + hAξ − A2ξ

=2(n − 1)ξ + (hα − α2)ξ
=κξ,
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where we have put κ = 2(n − 1) + hα − α2. So by Propositions 3.2 and 3.3, the constant κ is given by

κ =2(n − 1) + (hα − α2)

=2(n − 1) + {(2ℓ + 1)cot(r) − (2k + 1)tan(r)}2cot(2r) − (2cot(2r))2

=2(n − 1) + 2{ℓcot2(r) + ktan2(r) − (k + ℓ)}

=2ℓcot2(r) + 2ktan2(r).

Then by taking the covariant derivative we get the following two formulas

(∇XRic)ξ = κϕAX − Ric(ϕAX),

and

(∇ξRic)X = h(∇ξA)X − (∇ξA2)X.

Since M admits the gradient pseudo-Ricci-Yamabe soliton (M,D f , ξ, δ,Ω, ρ, γ, 1), we could consider the
soliton vector field W as W = D f for any smooth function on M. In the introduction we have noted that
Hess( f ) is defined by Hess( f ) = ∇D f for any tangent vector fields X and Y on M in such a way that

Hess( f )(X,Y) = 1(∇XD f ,Y).

Then the gradient pseudo-Ricci-Yamabe soliton (M,D f , ξ, δ,Ω, ρ, γ, 1) can be given by

∇XD f + δRic(X) + ψη(X)ξ = (Ω −
1
2
ργ)X (5.1)

for any tangent vector field X on M. Then by covariant differentiation, it gives

∇X∇YD f + δ(∇XRic)(Y) + δRic(∇XY)
+ ψ(∇Xη)(Y)ξ + ψη(∇XY)ξ + ψη(Y)ϕAX

=(Ω −
1
2
ργ)∇XY

for any vector field X and Y tangent to M in CPn. From this, together with the above two formulas for the
derivative of Ricci operator and the constant scalar curvature γ for the isomeric Reeb flow, it follows that

R(ξ,Y)D f =∇ξ∇YD f − ∇Y∇ξD f − ∇[ξ,Y]D f
=δ(∇YRic)ξ − δ(∇ξRic)Y + ψϕAY

=(δκ + ψ)ϕAY − δRic(ϕAY) − δh(∇ξA)Y + δ(∇ξA2)Y.
(5.2)

Then from the curvature tensir R(X,Y)Z given in (2.1) we have the following for a real hypersurface M
in CPn with isometric Reeb flow

R(ξ,Y)D f =1(Y,D f )ξ − 1(ξ,D f )Y
+ 1(AY,D f )Aξ − 1(Aξ,D f )AY.

(5.3)

From this, let us take a vector field Y ∈ Tλ, λ = cot(r). Moreover, we can decompose the tangent space TCPn

as
TCPn = Tλ ⊕ Tµ ⊕ Tα ⊕RN,

where λ = cot(r), µ = −tan(r) and α = 2cot(2r). Then for Y ∈ Tλ (5.3) gives

R(ξ,Y)D f
=1(Y,D f )ξ − 1(ξ,D f )Y + αλ1(Y,D f )ξ − αλ1(ξ,D f )Y
=(1 + αλ){1(Y,D f )ξ − 1(ξ,D f )Y}.

(5.4)
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Then by taking the inner product of (5.4) with the Reeb vector field ξ and using (5.2), it follows that
(1 + αλ)1(Y,D f ) = cot2(r)1(Y,D f ) = 0. But cot2(r),0 for the radius 0 < r < π

2 of isometric Reeb flow M in
CPn. It means the following for any Y ∈ Tλ

1(Y,D f ) = 0. (5.5)

Now let us check (5.3) for Y ∈ Tµ, µ = −tan(r). Then (5.3) gives

R(ξ,Y)D f = 1(Y,D f )ξ − 1(ξ,D f )Y + αµ1(Y,D f )ξ − αµ1(ξ,D f )Y. (5.6)

Then by taking the inner product (5.6) with the Reeb vector field ξ and Y ∈ Tµ respectively and using (5.2),
we get

(1 + αµ)1(Y,D f ) = 0 and (1 + αµ)1(ξ,D f ) = 0, (5.7)

where 1(R(ξ,Y)D f , ξ) = 0 and the left side 1(R(ξ,Y)D f ,Y) = 0 is given by virtue of the following formulas

1(ϕAY,Y) = µ1(ϕY,Y) = 0,

Ric(ϕAY) = µ{(2n + 1) + µh − µ2
}ϕY,

and
1((∇ξA)Y,Y) = −µ1(∇ξY,Y) = 0.

Since 1 + αµ = 1 + (cot(r) − tan(r))(−tan(r)) = tan2(r) , 0 for 0 < r < π
2 for isometric Reeb flow M in CPn,

(5.7) implies that

1(Y,D f ) = 0 and 1(ξ,D f ) = 0 (5.8)

for any Y ∈ Tµ, µ = −tan r.
For a geodesic hypersphere of type (A1) in CPn it holds either 1(Y,D f ) = 0 for Y∈Tλ = C or for Y∈Tµ = C

from the above decomposition, where C denotes the orthogonal complement of the Reeb vector field ξ in
the tangent space TM of M in CPn. Of course, it also holds 1(ξ,D f ) = 0 for a geodesic hypersphere in CPn.
Moreover, a geodesic hypersphere in CPn, it can be decomposed as

TCPn = Tλ ⊕ Tα ⊕RN,

or otherwise
TCPn = Tµ ⊕ Tα ⊕RN.

Then as in section 4, Ω − 1
2γδ = 2{(n − 1)cot2(r) + n} and ψ = 2nδ.

For another isometric Reeb flow we could consider real hypersurfaces of type (A2) in CPn. Then by
Proposition 3.2, we may put RicX = aX+bη(X)ξ, where a = 1

δ (Ω− 1
2ργ) and b = −ψδ . Then a+b = 1(Ric(ξ), ξ) =

2n − 2 by virtue of cot2(r) = k
n−k−1 , which is used to be pseudo-Einstein for real hypersurfaces of type (A2).

Moreover, by using Proposition 3.2, for real hypersurfaces of type (A2) we get easily Ric(X) = 2nX for any
X∈Tλ, and Ric(Y) = 2nY for any Y∈Tµ. So it becomes a = 2n and b = −2 respectively. This gives the above
soliton constants.

Summing up (5.5), (5.8) and the above documents, the gradient D f of the smooth function f is identically
vanishing, that is, 1(Y,D f ) = 0 for any tangent vector field Y ∈ TzM, z ∈ M. Consequently, we conclude
that the gradient pseudo-Ricci-Yamabe soliton (M,D f , ξ, δ,Ω, ρ, γ, 1) is trivial. That is, D f = 0, the potential
function f is constant on M. This means that the gradient pseudo-Ricci-Yamabe soliton (5.1) becomes
pseudo-Einstein, that is, δRic(X) = (Ω − 1

2γ)X − ψη(X)ξ, where Ω − 1
2ργ = 2nδ and ψ = 2δ for a non-

vanishing constant δ,0.

When the constant function δ = 0 vanishes, it implies that D f = 0 and Ω = 1
2ργ and the constant ψ = 0.

So it becomes a trivial gradient Yamabe soliton. Then by Theorem C, we get a complete proof of our Main
Theorem 2 in the Introduction.
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6. Gradient pseudo-Ricci-Yamabe soliton on contact real hypersurfaces in CPn

In this section, we want to give a property for gradient pseudo-Ricci-Yamabe soliton on a contact real
hypersurface M in the complex projective space CPn. Then by Theorem B the scalar curvature γ is constant.
The gradient pseudo-Ricci-Yamabe soliton (M,D f , ξ, δ,Ω, ρ, γ, 1) gives the following for any tangent vector
field X on M in CPn

∇XD f + δRic(X) + ψη(X)ξ = (Ω −
1
2
ργ)X. (6.1)

Then by differentiating (6.1), the curvature tensor of D f = grad f is given by the following

R(X,Y)D f =δ∇X∇YD f − δ∇Y∇XD f − ∇[X,Y]D f
= − (∇XRic)Y − Ric(∇XY) − ψ(∇Xη)(Y)ξ − ψη(∇XY)ξ

− ψη(Y)∇Xξ + (Ω −
1
2
ργ)∇XY

+ δ(∇YRic)X + δRic(∇YX) + ψ(∇Yη)(X)ξ + ψη(∇YX)ξ

+ ψη(X)∇Yξ − (Ω −
1
2
ργ)∇XY

+ δRic([X,Y]) − (Ω −
1
2
ργ)[X,Y] + ψη([X,Y])ξ

=δ(∇YRic)X − δ(∇XRic)Y − ψ(∇Xη)(Y)ξ + ψ(∇Yη)(X)ξ
− ψη(Y)∇Xξ + ψη(X)∇Yξ

(6.2)

where we have used the Ricci soliton constant θ and gradient pseudo-Ricci-Bourguignon soliton constant
Ω, and the scalar curvature γ is constant on a contact real hypersurface M in CPn in Proposition 3.4.

Now let us assume that M is a contact real hypersurface in CPn, which is characterized by

Aϕ + ϕA = kϕ,where k,0 : const.

Then it is Hopf and the Ricci operator is given by

Ric(X) = (2n + 1)X − 3η(X)ξ + hAX − A2X

for any tangent vector field X on M. From this, let us put X = ξ. Then M being Hopf and Aξ = αξ implies

Ric(ξ) = ℓξ,

where ℓ = 2(n−1)+hα−α2 is constant, and the mean curvature h = TrA is constant for a contact hypersurface
M in CPn. Then by taking covariant derivative to the Ricci operator, we have

(∇XRic)ξ = ∇X(Ric(ξ)) − Ric(∇Xξ) = ℓϕAX − Ric(ϕAX),

and

(∇ξRic)(X) =∇ξ(RicX) − Ric(∇ξX)

=h(∇ξA)X − (∇ξA2)X.

From (6.2), together with above formula, by putting X = ξwe have the following for a contact hypersurface
M in CPn

R(ξ,Y)D f =δ(∇YRic)ξ − δ(∇ξRic)Y
− ψ(∇ξη)(Y)ξ + ψ(∇Yη)(ξ)ξ − ψη(Y)∇ξξ + ψη(ξ)∇Yξ

=(δℓ + ψ)ϕAY − δRic(ϕAY) − h(∇ξA)Y + (∇ξA2)Y.
(6.3)
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Then the diagonalization of the shape operator A of the contact real hypersurface in complex hyperbolic
quadric CPn is given by

A =



2cot(2r) 0 · · · 0 0 · · · 0
0 −cot(π4 − r) · · · 0 0 · · · 0
...

...
. . .

...
... · · · 0

0 0 · · · −cot(π4 − r) 0 · · · 0
0 0 · · · 0 tan(π4 − r) · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · tan(π4 − r)


.

Here by Proposition 3.4 the principal curvatures are given by α = 2cot(2r), λ = −cot(π4 −r) and µ = tan(π4 −r)
with multiplicities 1, n − 1 and n − 1 respectively. All of these principal curvatures satisfy

κ = λ + µ = −cot(
π
4
− r) + tan(

π
4
− r) = −2tan(2r) = −

4
α
.

On the other hand, the curvature tensor R(X,Y)Z of M induced from the curvature tensor R̄(X,Y)Z of
the complex projective space CPn gives

R(ξ,Y)D f =1(Y,D f )ξ − 1(ξ,D f )Y
+ 1(AY,D f )Aξ − 1(Aξ,D f )AY
=(1 + αλ){1(Y,D f )ξ − 1(ξ,D f )Y}

(6.4)

for any Y ∈ Tλ, λ = −cot(π4 − r) for a contact real hypersurface M in the complex projective space CPn.
Consequently, (6.3) and (6.4) give

(δℓ + ψ)ϕAY − δRic(ϕAY) − h(∇ξA)Y + (∇ξA2)Y = (1 + αλ){1(Y,D f )ξ − 1(ξ,D f )Y}.

From this, by taking the inner product with the Reeb vector field ξ, we have

(1 + αλ)1(Y,D f ) = 0. (6.5)

Then for any Y ∈ Tλ in (6.5) it follows that

1(Y,D f ) = 0, (6.6)

where we have noted that 1+αλ = 1+2cot(2r)(−cot(π4−r)),0. Because if we assume that 1 = 2cot(2r)cot(π4−r),
then tan(2r) = 2cot(π4 − r). Then it follows that

(cos(r) − sin(r))sin(r)cos(r) = (cos(r) + sin(r))2(cos(r) − sin(r)),

which gives sin(r)cos(r) = −1. This gives us a contradiction for 0 < r < π
4 . Accordingly, the gradient vector

field D f is orthogonal to the eigenspace Tλ, that is, 1(Y,D f ) = 0 for any Y∈Tλ.

Next, we consider for Y ∈ Tµ, µ = tan(π4 − r) in Proposition 3.4. Then using these properties in (6.3) and
(6.4) implies the following

(δℓ + ψ)ϕAY − δRic(ϕAY) − h(∇ξA)Y + (∇ξA2)Y = (1 + αµ){1(Y,D f )ξ − 1(ξ,D f )Y}.

From this, by taking the inner product with the Reeb vector field ξ, we get

1(Y,D f ) = 0 for any Y ∈ Tµ, (6.7)
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where 1 + αµ,0. If we assume that 1 + αµ = 0, then by Proposition 3.4, we get 1 + 2cot(2r)tan(π4 − r) = 0.
Then it gives −tan(2r) = 2 cos(r)−sin(r)

cos(r)+sin(r) . Since tan(2r) = sin(2r)
cos(2r) , we get the following

(cos(r) + sin(r))sin(r)cos(r) = − (cos(r) − sin(r))(cos2(r) − sin2(r))

= − (cos(r) − sin(r))2(cos(r) + sin(r)).

From cos(r) + sin(r),0 we get sin(r)cos(r) = 1, which gives also a contradiction for 0 < r < π
4 .

Finally, let us take the inner product the above formula with Y ∈ Tµ, and use AY = µY, AϕY = λϕY for
a contact hypersurface in CPn, we have

−(1 + αµ)1(ξ,D f ) =(δℓ + ψ)1(ϕAY,Y) − δ1(Ric(ϕAY),Y)

− h1((∇ξA)Y,Y) + 1((∇ξA2)Y,Y)
=0,

where in the second equality we have used the following formulas

Ric(ϕAY) =(2n + 1)ϕAY + hAϕAY − A2ϕAY

=µ{(2n + 1) + λh − λ2
}ϕY,

1((∇ξA)Y,Y) =1(∇ξ(AY) − A∇ξY,Y)
=1(µ∇ξY − A∇ξY,Y) = 0.

and

1((∇ξA2)Y,Y) =1(∇ξ(A2Y) − A2
∇ξY,Y)

=1(µ2
∇ξY − A2

∇ξY,Y)

=µ21(∇ξY,Y) − µ21(∇ξY,Y) = 0.

From this, together with 1 + αµ,0, we can assert that

1(ξ,D f ) = 0. (6.8)

Consequently, from (6.6), (6.7) and (6.8) it follows that the gradient vector field D f is identically vanishing
on the tangent space TxM = Tλ⊕Tµ⊕Tα, x∈M. Then D f = 0 in (6.1) means that M is pseudo-Einstein, that
is, δRic(X) = (Ω − 1

2ργ)X − ψη(X)ξ, x∈M. Since λ + µ = − 4
α mentioned before, we get the following

Lemma 6.1. Let M be a contact real hypersurface inCPn, n≥3. If M satisfies a gradient pseudo-Ricci-Yamabe soliton,
then M is pseudo-Einstein and

h = λ + µ.

Proof. By the above discussions, we can assert that M is pseudo-Einstein. Then Theorem C gives cot2(2r) =
n − 2. From this and the Reeb function α = 2cot(2r), follows that

h +
4
α
= 2cot(2r) − 2(n − 1)tan(2r) + 2tan(2r)

=2cot(2r) − 2(n − 2)tan(2r)

=2
cot2(2r) − (n − 2)

cot(2r)
=0.

From this, together with λ + µ = − 4
α , it becomes h = λ + µ. This completes the proof of our lemma.
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Then if we put Ric(X) = aX + bη(X)ξ, then the constants a and b can be calculated as follows:

Proposition 6.2. Let M be a contact real hypersurface in CPn, n≥3. If M satisfies gradient pseudo-Ricci-Yamabe
soliton, then M is pseudo-Einstein and the soliton constants are given by

a = Ω −
1
2
ργ = 2n, and b = −ψ = −2(n − 1)δ.

Proof. Since M is pseudo-Einstein, we may put Ric(X) = aX + bη(X)ξ. Then from (3.2) it follows that

a + b =1(Ric(ξ), ξ) = 2(n − 1) + hα − α2

=2(n − 1) + {2cot(2r) − 2(n − 1)tan(2r)}(2cot(2r)) − (2cot(2r))2

=2(n − 1) − 4(n − 1) = −2(n − 1).

Next for any vector field X∈Tλ, (3.2) implies the following

Ric(X) = (2n + 1)X + hAX − A2X = {(2n + 1) + hλ − λ2
}X.

Then by using Lemma 6.1 it follows from λ − cot(π4 r) and µ = tan(π4 − r)

a =1(Ric(X),X) = (2n + 1) + hλ − λ2

=(2n + 1) + (λ + µ)λ − λ2

=(2n + 1) + λµ = (2n + 1) − 1 = 2n.

Then the other constant b = (a+ b)− a == −2(n− 1)− 2n = −2(2n− 1). So from the pseudo-Einstein property

Ric(X) = aX + bη(X)ξ = (Ω −
1
2
γ)X − ψη(X)ξ

we can assert above proposition.

Then summing up the above discussion, together with Lemma 6.1 and Proposition 6.2, we give a
complete proof of our Main Theorem 3 in the introduction.

Remark 6.3. The metric 1 of a Riemannian manifold M of dimension n≥3 is said to be a gradient
η-Einstein soliton [7] if there exists a smooth function f on M such that

Ric(X) + ∇2f + ψη(X)ξ = (Ω+
1
2
γ)X,

where γ denotes the scalar curvature of M and Ω and ψ are η-Einstein gradient soliton constants on M.
Here ∇2 f denotes the Hessian operator of 1 and f the Einstein potential function of the η-gradient Einstein
soliton. So this soliton is an example of gradient pseudo-Ricci-Yamabe soliton of type (δ, ρ) = (1,−1).

Remark 6.4. Let M be a contact real hypersurface in CPn, n≥3, with gradient η-Einstein soliton. Then
Lemma 6.1 implies that M is pseudo-Einstein. So by Theorem C it satisfies cot2(2r) = n − 2. From this and
Proposition 3.4 implies that the scalar curvature is given by

γ =4(n − 1)2 + 4(n − 1)(n − 2)tan2(2r)
=4n(n − 1).

Moreover, by the definition of η-Einstein soliton, the soliton constant ρ is given by ρ = −1. Then by
Proposition 6.2, it gives

Ω = 2n +
1
2
γ = 2n + 2n(n − 1) = 2n2 > 0

for n≥3. This means that the gradient η-Einstein soliton becomes shrinking.
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