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Abstract. In this paper we introduce the generalized inverse of complex square matrix with respect to
other matrix having same size. Some of its representations, properties and characterizations are obtained.
Also some new representation matrices of W-weighted BT-inverse and W-weighted core-EP inverse are
determined as well as characterizations of generalized inverses A †O,A †O,W ,A⋄,A⋄,W .

1. Introduction and preliminary

In this paper, Cm×n stands for the set of all complex matrices of size m × n. The symbols R(A), N(A),
A∗ and rk(A) will denote the range space, the null space, the conjugate transpose and the rank of matrix
A ∈ Cm,n. Let A ∈ Cm×n, the Moore-Penrose inverse of A, denoted by A†, is the unique matrix X ∈ Cn×m

satisfying the equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

From this inverse we put PA = AA† and QA = A†A. The class of matrices satisfying (i) is denoted by A{1},
also the class of matrices satisfying (ii) is denoted by A{2}. The index of a given square matrix A, denoted by
Ind(A), is the smallest nonnegative integer k satisfying rk(Ak+1) = rk(Ak). The Drazin inverse AD of square
matrix A ∈ Cn×n with Ind(A) = k is defined as the unique solution of the equations

XAX = X, AX = XA, XAk+1 = Ak.

The core-EP inverse of square matrix A ∈ Cn×n with Ind(A) = k is given by A †O = Ak((A∗)kAk+1)†(A∗)k (see
[11]), which is the unique solution of these equations

XAX = X, (AX)∗ = AX, XAk+1 = Ak.
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For a given rectangular matrix W ∈ Cm×n, the authors Ferreyra, Levis and Thome extended in [6] the notion
of core-EP inverse to the W- weighted core-EP inverse for rectangular matrix A ∈ Cm×n, denoted by A †O,W

and it is characterized as the unique solution of

WAWX = P(WA)k , R(X) ⊂ R((AW)k).

where k = max{Ind(AW), Ind(WA)}. For a square matrix A ∈ Cn×n, the BT-generalized inverse of A is
defined by A⋄ = (APA)† in [2], and extended by Ferreyra, Thome, Torigino (see [7]) to new generalized
inverse for rectangular matrix A ∈ Cm×n, called the W-weighted BT-inverse of A where W ∈ Cm×n and it is
given by A⋄,W = (WAWAW(AW)†)†. Moreover, it is the unique solution of the system of conditions

AWX = AW(WAWPAW)†, R(X) ⊂ R(PAW(WAW)∗).

We need the following auxiliary lemmas:

Lemma 1.1. [6, Theorem 4.1] Let B ∈ Cn×m be a nonzero matrix, A ∈ Cm×n and k = max{Ind(AB), Ind(BA)}.
Then there exist two unitary matrices U ∈ Cm×m, V ∈ Cn×n, two nonsingular matrices A1,B1 ∈ Ct×t and two
matrices A2 ∈ Cm−t×n−t and B2 ∈ Cn−t×m−t such that A2B2 and B2A2 are nilpotent of indices Ind(AB) and Ind(BA),
respectively, with:

A = U
[

A1 A12
0 A2

]
V∗ and B = V

[
B1 B12
0 B2

]
U∗ (1)

This is known as the core-EP decomposition of the pair {A,B}.

Lemma 1.2. [10] Let C = U
[

C1 C2
0 C3

]
V∗ such that C1 ∈ Ct×t is nonsingular and U ∈ Cm×m, V ∈ Cn×n are

unitary. Then

C† = V
[

C∗1Ω −C∗1ΩC2C†3
(In−t −QC3 )C∗2Ω C†3 − (In−t −QC3 )C∗2ΩC2C†3

]
U∗ (2)

and

PC = CC† = U
[

It 0
0 PC3

]
U∗ (3)

where Ω = (C1C∗1 + C2((In−t −QC3 )C∗2)−1.

This paper is organized as follows. In Section 2 we introduce the generalized inverse of square matrix with
respect to other matrix having same size and its some representations. In Section 3 we give some properties
of generalized inverse of square matrix with respect to other. Section 4 contains some characterizations
of generalized inverse of square matrix with respect to other matrix. In Section 5 some new representa-
tion matrices of W-weighted BT-inverse and W-weighted core-EP inverses are obtained as well as other
characterizations of A †O,A †O,W ,A⋄,A⋄,W .

2. Definition of A(B) and some representations

We start this section with a theorem by giving a decomposition of square matrix by other of same size,
for A,B ∈ Cn×n we called B-decomposition of A or decomposition of A with respect to B.

Theorem 2.1. [12] Let A,B ∈ Cn×n with rk(A) = r and rk(B) = s. Then there exist unitary matrices U,V ∈ Cn×n

and A, B can be represented as follows

A = U
[
ΣAA1 ΣAA2

0 0

]
V∗ and B = V

[
ΣBB1 ΣBB2

0 0

]
U∗ (4)
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where ΣA ∈ Cr×r and ΣB ∈ Cs×s are diagonal positive definite matrices, blocks A1 ∈ Cr×s, A2 ∈ Cr×(n−s), B1 ∈ Cs×r

and B2 ∈ Cs×(n−r) satisfy A1A∗1 + A2A∗2 = Ir and B1B∗1 + B2B∗2 = Is.

Definition 2.2. Let A,B ∈ Cn×n. The matrix A(B) = (ABB†)† is called the generalized inverse of A with respect to B.

Remark 2.3. If B = A, we recover the BT-generalized inverse since A(A) = (A2A†)† = A⋄. Also if B = Ak with
k = Ind(A) we recover the core-EP inverse because A(Ak) = (AAk(Ak)†)† = (Ak+1(Ak)†)† = A †O.

Now we present a canonical form for the generalized inverse of A with respect to B by using the B-
decomposition of A.

Theorem 2.4. Let A,B ∈ Cn×n written as in (4) with rk(A) = r. Then

A(B) = V
[

(ΣAA1)† 0
0 0

]
U∗. (5)

Proof. From (4) it follows

B† = U
[

B∗1Σ
−1
B 0

B∗2Σ
−1
B 0

]
V∗.

Some computations yield

ABB† = U
[
ΣAA1 ΣAA2

0 0

] [
ΣBB1 ΣBB2

0 0

] [
B∗1Σ

−1
B 0

B∗2Σ
−1
B 0

]
V∗

= U
[
ΣAA1 ΣAA2

0 0

] [
Is 0
0 0

]
V∗

= U
[
ΣAA1 0

0 0

]
V∗.

Then, A(B) = (ABB†)† = V
[

(ΣAA1)† 0
0 0

]
U∗.

We present a representation for generalized inverse of A with respect to B by using the core-EP decompo-
sition of the pair {A,B}.

Theorem 2.5. Let A ∈ Cn×n and let B ∈ Cn×n be a nonzero matrix as in (1.1). Then

A(B) = V
[

A∗1Ω −A∗1ΩMN†

(In−t −QN)M∗Ω N† − (In−t −QN)M∗ΩMN†

]
U∗ (6)

where Ω = (A1A∗1 +M((In−t −QN)M∗)−1, M = A12PB2 ,N = A2PB2

Proof. Since B1 is nonsingular, it results from (3) that

PB = U
[

It 0
0 PB2

]
U∗.

So

ABB† = V
[

A1 A12PB2

0 A2PB2

]
U∗.

If we apply (2) of Lemma 1.2 to ABB†, we get the representation (6).
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3. Some properties of A(B)

For two given square matrices A,B ∈ Cn×n, in this section some properties of generalized inverse A with
respect to B are obtained.

Theorem 3.1. Let A,B ∈ Cn×n. Then

a) R(A(B)) = R(BB†A∗) and N(A(B)) = N((AB)∗),
b) A(B)

∈ A{2},
c) A(B)

∈ A{1} if and only if rk(AB) = rk(A).

Proof. a) Clearly that R(A(B)) = R(BB†A∗). We have N((AB)∗) = N(B†A∗) ⊂ N(A(B)) = N(BB†A∗) ⊂ N(B†A∗) =
N((AB)∗), so we get N(A(B)) = N((AB)∗).
b) It follows from (4) and (5).
c) Since dim R(A(B)) = dim R(ABB†) = dim R(AB) so by item b) and [3, pg 46, Corollary 1] we deduce that
the item c) holds.

Theorem 3.2. Let A,B ∈ Cn×n. Then

a) AA(B) is the orthogonal projector on R(AB),
b) A(B)A is the oblique projector onto R(BB†A∗) along N(B∗A∗A).

Proof. From (4) and (5) we get

AA(B) = U
[

(ΣAA1)(ΣAA1)† 0
0 0

]
U∗. (7)

A(B)A = V
[

(ΣAA1)†ΣAA1 (ΣAA1)†ΣAA2
0 0

]
V∗. (8)

Clearly that (7) yields to AA(B) is an orthogonal projector with

R(AA(B)) = R(ABB†(ABB†)†) = R(AB).

Then results the item a). From the item b) of above theorem, A(B)A is projector, moreover R(A(B)) = R(BB†A∗)
and N(A(B)A) = N((ABB†)†A) = [A∗R(ABB†)]⊥ = [R(A∗AB)]⊥ = N(B∗A∗A), so the item b) holds.

Theorem 3.3. Let A,B ∈ Cn×n as in (4). Then

a) A(B) = 0 if and only if AB = 0,
b) A(B)† = ABB†,
c) BB†A(B) = A(B),
d) A(I) = A(A†) = A†,
e) A(A(B)) = A(B),

f) A(B)[A(B)]†
= A(B)†,

g) AB = BA if and only if [A(B)]†B = [B(A)]†A,
h) A(B) = A† if and only if A2 = 0.

Proof. We have
A(B) = 0 ⇐⇒ (ABB†)† = 0 ⇐⇒ ABB† = 0 ⇐⇒ AB = 0.

So the item a) holds. The items b), c), d), e), f ) and 1) are easy to check by using (4) and (5). We prove the
item h): the equality A(B) = A† means by (4) and (5) that ABB† = A which is

U
[
ΣAA1 0

0 0

]
V∗ = U

[
ΣAA1 ΣAA2

0 0

]
V∗ (9)

This last is equivalent to A2 = 0 because ΣA is nonsingular.
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Theorem 3.4. Let A ∈ Cn×n and let W ∈ Cn×n be a nonzero matrix. Then

a) For any A,W ∈ Cn×n, then A⋄,W = (WAW)(AW),
b) For any A,W ∈ Cn×n, then A †O,W = (WAW)((AW)k)

where k = max{Ind(AW), Ind(WA)}.

Proof. a) In fact, for two given square matrices A,W, if we take C = WAW and F = AW we have that
C(F) = (CFF†)† = (WAWAW(AW)†)† = A⋄,W .
Similarly we obtain the item b).

In [7, Theorem 3.3], the W- weighted BT-inverse of A is given by A⋄,W = (WAWAW(AW)†)† and in the [6,
Theorem 5.2], the W-weighted core-EP inverse of A is given by A †O,W = (WAW(AW)k((AW)k)†)† accordingly
to assertions a) and b) of Theorem 3.4 A †O,W ,A⋄,W are a particular cases of A(B), but the contrary not valid,
the following example illustrate that A(B), A †O,W and A⋄,W are not coincident

Example 3.5. Let: A =

 1 0 0
0 1 2
0 0 0

 and B =

 1 0 0
0 0 0
0 0 1


Then

A(B) =

 1 0 0
0 0 0
0 1

2 1

.
Let W =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

, then we have

AW =
[

S T
0 0

]
and (AW)† =

[
S∗(SS∗ + TT∗)† 0
T∗(SS∗ + TT∗)† 0

]

AW(AW)† =
[

(SS∗ + TT∗)(SS∗ + TT∗)† 0
0 0

]
where

S =
[

a11 a12
a21 + 2a31 a22 + 2a32

]
and T =

[
a13

a23 + 2a33

]
.

It is clear that WAWAW(AW)† has the form

WAWAW(AW)† =
[

M 0
N 0

]
.

This gives us

A⋄,W = (WAWAW(AW)†)† =
[

M† N†

0 0

]
.

Let k = max{Ind(AW), Ind(WA)}, Now from the above, the expression of (AW)k of the form

(AW)k =

[
Sk Sk−1T
0 0

]
.

In the same way we get

A †O,W = (WAW(AW)k((AW)k)†)† =
[

X† Y†

0 0

]
.
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For same matrices X and Y, finally note that for any W ∈ C3×3

A(B) =

 1 0 0
0 0 0
0 1

2 1

 , A⋄,W =
[

M† N†

0 0

]
And

A(B) =

 1 0 0
0 0 0
0 1

2 1

 , A †O,W =
[

X† Y†

0 0

]
.

4. Some characterizations of A(B)

In this section, we present some characterizations of generalized inverse A(B) where the matrices A,B
are of same size.

Theorem 4.1. Let A,B ∈ Cn×n. Then the matrix A(B) is characterized as the unique solution of the following system

XA = (ABB†)†A and R(X∗) ⊂ R(AB). (10)

Proof. We have A(B)A = (ABB†)†A and R(A(B)∗) = R(ABB†) = R(AB), then A(B) satisfies (10). Now let X be
an other solution, we get A(B)A = XA which means that A∗(A(B)∗

− X∗) = 0, consequently R(A(B)∗
− X∗) ⊂

N(A∗) ∩ R(AB) ⊆ R(A)⊥ ∩ R(A) = {0} so X = A(B), thus A(B) is the unique solution of (10).

Theorem 4.2. Let A,B ∈ Cn×n. Then

A(B) = B(AB)† (11)

and A(B) is characterized as the unique solution of the equations

XAX = X, AX = PAB, XA = B(AB)†A (12)

Proof. It is easy to check from (4) that

(AB)† = U
[

B∗1Σ
−1
B A†1Σ

−1
A 0

B∗2Σ
−1
B A†1Σ

−1
A 0

]
U∗ (13)

thus, pre-multiplying (13) by B we get A(B) = B(AB)† and we conclude that A(B) is solution of (12), remaining
prove that the system (12) has unique solution. We suppose X is other solution, we have

X = XAX = XPAB = XAA(B) = B(AB)†AA(B)

and from A(B) = B(AB)† we get X = A(B)AA(B) = A(B), then it has unique solution.

Let A ∈ Cn×n with rk(A) = r and let T ⊂ Cn be a subspace of Cn with dim T = t ≤ r and let S be a subspace of
Cn of dimension n− t, then there exists a unique generalized inverse X of A satisfying XAX = X having the
range T and the null space S denoted by A(2)

T,S if and only if A(T) ⊕ S = Cn×n. In the following theorem the
generalized inverse of A with respect to B is characterized as the generalized inverse of A having the range
R(BB†A∗) and null space N((AB)∗)

Theorem 4.3. Let A,B ∈ Cn×n. Then

A(B) = A(2)
R(BB†A∗),N((AB)∗)

(14)
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Proof. We put rk(A) = r, we have dim R(BB†A∗) = dim R(ABB†) = dim R(AB) ≤ dim R(A) = r and the rank
theorem for matrices give us dim N((AB)∗) = n − dim R(BB†A∗). It follows from the Theorem 3.1 that A(B) is
an outer inverse of A having the range R(BB†A∗) and null space N(AA(B)) = N(A(B)) = N((AB)∗), in addition

AR(BB†A∗) ⊕N((AB)∗) = Cn×n = R(AB) ⊕N((AB)∗) = Cn×n

so (14) holds.

Theorem 4.4. Let A,B ∈ Cn×n. Then the following statements are equivalent

a) X = A(B),
b) X satisfies the equations

XAX = X, AX = A(ABB†)
†
, XA = (ABB†)

†
A,

c) X satisfies the system
AX = PAB, R(X) ⊂ R(BB†A∗).

Proof. a) implies b) It follows from the item b) of Theorem 3.1.
b) implies c) Using the equations XAX = X, XA = (ABB†)†A it results that

R(X) ⊂ R(XAX) ⊂ R(XA) ⊂ R(BB†A∗)

thus R(X) ⊂ R(BB†A∗) and by item c) of Theorem 3.3 and R(ABB†) = R(AB) we obtain that AX =

(ABB†)(ABB†)† = PAB.
c) implies a) clearly that X := A(B) satisfies the item c), we suppose that X is a solution of system of c), note
that R(X) ⊂ R(BB†),R(A(B)) ⊂ R(BB†), so

A(ABB†)
†
= AX =⇒ ABB†((ABB†)

†
− X) = 0

Consequently, R((ABB†)† − X) ⊂ N(ABB†) ∩ R(BB†A∗) = {0} thus X = A(B).

5. Some characterizations of A †O,A †O,W ,A⋄,A⋄,W

In this section, we give some new representation matrices of weighted-BT inverse and weighted core-
EP inverse by using the decomposition of matrix with respect to other and some characterizations of
A †O,A †O,W ,A⋄,A⋄,W are obtained.

Theorem 5.1. Let A ∈ Cn×n with Ind(A) = k. Then the core-EP inverse of A is the unique solution of this system

XAX = X,AX = AAD(AAD)†,XA = AD(AAD)†A (15)

And A †O can be written follows

A †O = A(AD) = AD(AAD)† (16)

Proof. It is easy to see that this system has unique solution, and AD(AAD)† satisfies it. On the one hand the
applying of (11) and (14) yields to

A(AD) = AD(AAD)† = A(2)
R(ADAD∗A∗),N((AAD)∗)

.

On the other hand, we have N((AAD)∗) = N(Ak∗) and from

N(A∗k) = N(AD∗) ⊂ N(AADAD∗) ⊂ N(ADAD∗) = N(AD∗) = N(A∗k).
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We derive that R(ADAD∗A∗) = R(Ak). Thus

A(AD) = AD(AAD)† = A(2)
R(Ak),N(A∗k)

= A †O.

The following theorem allows us to define the weighted core-EP inverse by only the index of AW under
suitable conditions for the matrices A and W without the need of index of WA.

Theorem 5.2. Let W ∈ Cn×m be a nonzero matrix, A ⊂ Cm×n with Ind(AW) = k. Then

A †O,W = (WAWP(AW)k )†. (17)

Proof. We consider k′ = max{Ind(AW), Ind(WA)}, since R((AW)k′ ) = R((AW)k), we get P(AW)k = P
(AW)k′ , thus

A †O,W = (WAWP
(AW)k′ )

† = (WAWP(AW)k )†. (18)

Theorem 5.3. Let A,W ∈ Cn×n be as in (4) where W = B and k = Ind(AW). Then A †O,W can be written as

A †O,W = U
[

(ΣAA1) †O,(ΣWW1) 0
0 0

]
V∗ (19)

Proof. We have

AW = U
[
ΣAA1ΣWW1 ΣAA1ΣWW2

0 0

]
U∗

by [5, Lemma 7.7.2], Ind(ΣWW1ΣAA1) = k − 1, and it is easy to see (AW) †O has the following matrix from

(AW) †O = U
[

(ΣAA1ΣWW1) †O 0
0 0

]
U∗.

We known that (AW)k((AW)k)† = (AW)(AW) †O, so we obtain

(AW)k((AW)k)† = U
[

(ΣAA1ΣWW1)(ΣAA1ΣWW1) †O 0
0 0

]
U∗.

this means that

(AW)k((AW)k)† = U
[

(ΣAA1ΣWW1)k((ΣAA1ΣWW1)k)†

0 0

]
U∗. (20)

Thus

A †O,W = U
[

[(ΣWW1ΣAA1ΣWW1)(ΣAA1ΣWW1)k((ΣAA1ΣWW1)k)†]†

0 0

]
V∗ (21)

which is

A †O,W = U
[

(ΣAA1) †O,(ΣWW1) 0
0 0

]
V∗

which is (19).

Theorem 5.4. Let A,W ∈ Cn×n with k = Ind(AW). Then the following statements are equivalent

a) X = A †O,W ,



A. Kara et al. / Filomat 38:30 (2024), 10605–10614 10613

b) X = A(2)
R((AW)k[(AW)k]†(WAW)∗),N(WAW[(AW)k]∗)

,

c) XWAW = (WAWP(AW)k )†)†WAW and R(X∗) ⊂ R(W(AW)k+1),
d) XWAWX = X , WAWX =WAW(WAWP(AW)k )† and XWAW = X(WAWP(AW)k )†,
e) WAWX = PW(AW)k+1 and R(X) ⊂ R(P(AW)k (WAW)∗).

Theorem 5.5. Let A ∈ Cn×n. Then A⋄ is the unique solution of the following equations

XAX = X, AX = PA2 , XA = A(A2)†A (22)

Proof. It follows from (12) when we replace B by A.

Theorem 5.6. Let A,W ∈ Cn×n be as in (4) where W = B. Then A⋄,W can be written as

A⋄,W = U
[

(ΣAA1)⋄,(ΣWW1) 0
0 0

]
V∗ (23)

Proof. From the expression A⋄,W = (WAWPAW)† and (4), it follows (23).

Theorem 5.7. Let A,B ∈ Cn×n. Then the following statements are equivalent

a) X = A⋄,W ,
b) X = A(2)

R(AW(AW)†(WAW)∗),N((W∗(AW)2)∗)
,

c) XWAW = (WAWP†AW)†A and R(X∗) ⊂ R(W(AW)2),
d) XWAWX = X , WAWX =WAW(WAWPAW)† and XWAW = X(WAWPAW)†,
e) WAWX = PW(AW)2 and R(X) ⊂ R(PAW(WAW)∗),

f) X = XWAWX, WAWX = XPW(AW)2 , XWAW = AW(W(AW)2)†WAW.
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