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Abstract. In this paper, we investigate the geometry of the trans-para-Sasakian manifolds. Finally, an
example of a three-dimensional trans-para-Sasakian manifold is constructed to verify the results.

1. Introduction

In [11], Oubina has introduced two new classes of almost contact structures, called trans-Sasakian and
almost trans-Sasakian structures, which are obtained from certain classes of Hermitian manifolds. Also,

the author proved that an almost metric structure (¢, &, 1, g) is a trans-Sasakian structure if and only if it is
normal and

dd =20 N, dn = ad, (1)
where a = 5-60(&) and B = 5-div(&). This may be expressed as a condition [3]:
(VEQ)F = alg(E, F)E — n(F)E] + Blg(PE, F)E — n(F)PE]. (2)

Trans-Sasakian manifolds arose in a natural way from the classification of almost contact metric struc-
tures by Chinea and Gonzales [6]. The local structure of trans-Sasakian manifolds of dimension n > 5 has
been completely characterized by Marrero [10]. Different types of almost contact structures are defined
[1,2,7,11]. Many authors have studied some properties of trans-Sasakian structure [5, 12].

In geometry, one of the important idea is symmetry. It also plays a significant role in the nature. In

local perspective, a locally symmetric manifold was defined independently by Shirokov [13] and Levy[9]
satisfying

VR =0, 3)

where R and V are the Riemann curvature tensor and Levi-Civita connection on M, respectively.
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Many notions have been introduced to generalize locally symmetric manifolds. One of them is semi-
symmetric manifold which was introduced by Cartan [4]. A Riemannian manifold is called semi-symmetric
if

R(E,F).R =0, 4)

where R(E, F) acts as a derivation on R.
The set of locally symmetric manifolds is a proper subset of the class of semi-symmetric manifolds. A
Riemannian manifold is said to be Ricci symmetric if

VS =0, (G))

where S and V are the Ricci tensor of type (0,2) and Levi-Civita connection on M, resp. Semi-symmetric
manifolds were classified by Szabo. The weakend notion of Ricci symmetry introduced by Szabo [14] as
Ricci semi-symmetric satisfying

R(E,F).S =0, (6)

where R(E, F) acts as a derivation on S.

The class of Ricci semi-symmetric manifolds includes the set of Ricci symmetric manifolds as a proper
subset. Moreover, every semi-symmetric manifold is Ricci semi-symmetric but the converse is not true.

The study of trans-para-Sasakian manifold was initiated by Zamkovoy [16]. He introduced the trans-
para-Sasakian manifolds and studied some curvature properties. A trans-para-Sasakian manifold is a
trans-para-Sasakian structure of type (a, ), where a and f are smooth functions. The trans-para-Sasakian
manifolds of types (a,) are respectively the para-cosympletic, para-Sasakian and para-Kenmotsu for
a=p=0a=1=0anda =0, =1. If @ and p are constants, then trans-papa-Sasakian manifold of types
(o, 0) and (0, p) is called a-para-Sasakian and p-para-Kenmotsu, respectively. In literature, there are a lot of
studies about trans-Sasakian manifolds. So, these considerations motivate us to study trans-para-Sasakian
manifolds. The paper is organized in the following way. In section 2, we recall the common properties for
(2n + 1)-dimensional trans-para-Sasakian manifolds. Section 3 deals with the curvature properties of trans-
para-Sasakian manifolds. Moreover, we show that in a trans-para-Sasakian manifold, the Ricci operator
Q does not commute with the structure tensor ¢. In Section 4, especially we give the expressions of Ricci
tensor and Riemannian curvature tensor in three dimensional trans-para-Sasakian manifolds. We find the
sufficient and necessary condition for a three dimensional trans-para-Sasakian manifold to be n-Einstein.
In the last section, we consider Ricci semi-symmetric trans-para-Sasakian manifolds and we present the
Ricci tensor equation of Ricci semi-symmetric trans-para-Sasakian manifolds. Finally, a three dimensional
trans-para-Sasakian manifold example that satisfies our results is constructed.

2. Preliminaries

A (2n + 1)-dimensional manifold M is called almost paracontact manifold if it admits a triple (¢, &, )
satisfying the followings:

& =1 ¢P*=I1-1®& ?)

and ¢ induces on almost paracomplex structure on each fiber of D = ker(n),where ¢, £ and n are (1, 1)—tensor
field, vector field and 1—form, resp. One can easily checked that ¢& = 0,1 0 ¢ = 0 and rank¢ = 2n, by the
definition. Here, & is a unique vector field dual to n and satisfying dn(&, E) = 0 for all E. When the tensor
field Ny, := [¢, ¢] — 2dn ® & vanishes identically, the almost paracontact manifold is said to be normal [15].
If the structure (M, ¢, &, 1) admits a pseudo-Riemannian metric such that

9(QE, pF) = —g(E, F) + n(E)n(F) 8)
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then we say that (M, ¢, &, 1, g) is an almost paracontact metric manifold. Note that any pseudo-Riemannian
metric with a given almost paracontact metric manifold structure is necessarily of signature (n + 1, n). For
an almost paracontant metric manifold, one can always find an orthogonal basis {Es, ..., E,, Fi,...,Fy, &},
namely ¢—basis, such that g(E;, E;) = —g(F;, F;) = 6;j and F; = ¢E;, for any i,j € {1,...,n}. Further, we can
define a skew-symmetric tensor field (2-form), usually called fundamental form, ® by

D(E,F) = g(E, ¢F).
An almost paracontact metric manifold is said to be n-Einstein if its Ricci tensor S is of the form
S=Ag+un®n, )

where A and p are smooth functions on the manifold. For the sake of the shortness, we denote the following
tensors on trans-para-Sasakian manifolds

A(E,EU) = g(F, U)E - g(E, U)F,
AE,EU V) = g(A(E,EU), V),
Bu(a, B) = ¢p(grada) + (2n — 1)gradp,
Bu(a, B, E) = =pE(a) + (2n — 1)E(B),
Cu(a, B) = —¢(gradp) + (2n — 1)grada,
and
Cul(a, B, E) = PE(B) + (2n — 1)E(a),

for all vector fields E, F, U and V on X(M), where a and f are smooth functions. In case n = 1, we will say
B(ar ,B) = Bl(al ﬁ)r C(ar ,B) = Cl(ar ,8) and B(Oé, ﬁr E) = Bl(a/ ﬁ/ E)r C(al ﬁ/ E) = Cl(a/ ﬁr E)

Definition 2.1. [16] If
(VEQ)F = aA(E, &, F) + BA(PE, &, F), (10)
then the manifold (M1, ¢, 1, ¢, 9) is said to be a trans-para-Sasakian manifold.

In a (2n + 1)-dimensional trans-para-Sasakian manifold, the following identities hold [16]:

VeS = aA(E, OE, &) + BA(E,E, &), (11)
(VENF = aA(, E, §F, &) + BA(E, &, F &), (12)
R(E,F)& = —(a* + B*)A(E, F, &) — 2aB(A(PE, E, &) + A(E, ¢F, &))

+ O(A(E, E, grada)) + $*(A(E, E, gradp)), (13)

N(R(E, PU) = (&® + )A(E, F, &, U) + 2ap[A(QE, F, &, U) + A(E, §F, &, U)]
+ A(F, E, U, grada) + A(E, F, ¢*U, gradp), (14)
R(E, E)E = (a® + B2 = E(BDALE, £, 9), (15)
S(E, &) = —(2n(a” + B*) — E(B))N(E) + Bu(a, , E), (16)
S(&, &) = =2n(a” + B* = E(B)), (17)
20— &(a) =0, (18)
Q& = —(2n(a® + B%) = &(B))E + Bu(a, B), (19)

where R is the Riemannian curvature tensor, S is the Ricci tensor and Q is the Ricci operator defined by
S(E, F) = g(QE, F).

Corollary 2.2. [16] If B,(«, B) = 0 in a (2n + 1)-dimensional trans-para-Sasakian manifold, then

) = 96, gradf) = 5= (&, Glgrade)) = 0. 20)
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3. Some Properties of Trans-para-Sasakian Manifolds

In this section, we discuss some curvature properties of trans-para-Sasakian manifolds. We start with
the following relation for Riemannian curvature tensor.

Lemma 3.1. In a trans-para-Sasakian manifold (M*"*1, $, &, 1, 9) the following relation holds:
R(E, F)¢pU — $R(E, F)U = (a® + P*)[A(PE, F, U) + A(E, ¢F, U)]
+ 2aBlA(E,F, U) + A(QE, ¢F, U)]
— E(@A(, EU) + F(o)A(E,E, U)
— E(B)A(E, ¢F, U) + F(B)A(E, oE, L) (21)
forall E, F and U on X(M).
Proof. From (10), (11) and the Ricci identity, we get (21) by a straightforward calculation. [
Lemma 3.2. Let (M*"™*1, ¢, &, 1, g) be a trans-para-Sasakian manifold. Then the following identity holds:
J(GR(PE, pF)U, §V) = g(R(E, F)U, V) + (@® + B*)[A(E, E, U, V)
+A(QE, ¢F, U, V)] - 2aB[A(E, oF, U, V) + A(PE, F, U, V)]
— U(0)A(E,F, &, V) = V(0)A(E, F, ¢oU, &) — U(B)A(E,E &, V)
= V(BA(E E U, &) + n(V)IPE@A(E E U, &) = pF(@)A(E, E, U, &)
— A(GE, OF, gradp, U)] (22)
for all vector fields E, F, U and V on ¥(M).
Proof. Using (8), we get

J(PR(PE, oF)U, ¢V) = —g(R(PE, ¢F)U, V) + n(R(PE, pF)U)n(V).
Then by (7) and (14) and the Riemannian curvature tensor properties, we have
9(PR(PE, pF)U, V)
== gR(U, V)PE, pF) + n(V)IPE(A(E, F U, £)
— pF(@)A(E, E, U, &) — A(QE, pF, gradB, U)].
By virtue of (8) and (21), we find
9(PR(PE, pF)U, pV) = —g(¢pR(U, V)E, ¢F)
+ (@ + )-g(U D)A(E, V,E &) + g(V, DA, U, F, &) + A(E, ¢F, U, V)]
—2aB[A(E, oF, U, V) — g(U, pE)A(E, V, E &) + g(V, E)A(E, U F, £)]
+ N(E)IA(V, U, @F, grada) + UB)A(E, V, F, &) — V(B)A(E, E U, &)]
+ N(VIPE@A(E, E U, &) — pF()A(E, E, U, &) — A(PE, PF, gradp, U)].
Finally, using (8), we get
J(PR(PE, P, pV) =
g(R(U, V)E, F) = n(R(U, V)E)n(F)
+ (@ + p)-g(U, DA, V,E &) + g(V, E)A(E, U E, &) + A(GE, 9F, U, V)]
—2aB[A(E, ¢FE U, V) — g(U, pE)A(E, V, E &) + g(V, E)A(E, U F, €)]
+ N(E)A(V, U, §F, grade) + UB)A(E, V, F, €)
= VBA(E, E U, &) + n(VY(PE(@A(E, E U, €)
- QF(@)A(E, E, U, &) — A(QE, ¢F, gradp, U)).
One can get (22) by using (14) in the last equation. O
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Lemma 3.3. Let (M?"*1,$, &, 1, 9) be a trans-para-Sasakian manifold. Then the following relation holds:

g(R(PE, pF)pU, pV) = g(R(U, V)E, F) + (a* + B*)[A(E, E, U, E)n(V)
— A(E,F V,&n(U)] - 4aB[A(E, ¢F, U, V) + A(QE, F, U, V)]
+ 2aB[A(E, E, ¢V, En(U) — A(E, F, oU, E)n(V)]
— U(mA(E,E &,¢V) = V(A(E, E ¢U, &) + UB)A(E, E V, €)
~ V(B)A(E,F, U, &) — pE(a)A(U, V,F, &) + ¢F(a)A(U, V,E, &)
+ @EB)A(V, U, pF, &) — pF(B)A(V, U, pE, &) (23)

for all vector fields E, F, U and V on X(M).

Proof. Replacing in (21), E, F by ¢E, ¢F, resp, and taking the inner product with ¢V, we get

JR(GE, pF)OU, ¢V) = g(OR(E, pF)U, pV) + (a® + B[A(PE, $°F U, ¢pV)
+ A(Q’E, ¢F, U, ¢V)] + 2aBLA(DE, OF, U, ¢V) + A(GE, ¢F, pU, ¢*V)]
+ n(U)[A(PE, ¢F, ¢V, grada) — A(QE, PF, ¢)2V gradp)]. (24)

On the other hand, using (7) and (8) in (24), we have

gR(PE, pF)PU, pV)
=g(OR(PE, pF)U, ¢V) + (a® + BA)A(GE, F, V, U)
—A(E,E U, V) +n(VA(E E U, &) - n(A(E, E V, )]
+ 2aB[nU)A(E, E, ¢V, &) = n(V)A(E, E, ¢U, &) - A(E, 9F, U, V)
— A(QE, E U, V)] + n(W)A(PFE, ¢E, V, gradp) — pE()A(E, E, V, €)
+ PF(@)A(S E, V, )]

Finally, in order to prove (23), we use (22) in the last equation.
|

Theorem 3.4. In a trans-para-Sasakian manifold (M*"*1, ¢, &, 1, g), the following relation holds:

(Q¢ ~ Q)E =Bu(a, B, PE)E ~ P(Bula, B))(E) — 8ap(n — 1)¢°E (25)

for all vector field E on X(M).

Proof. Let {e;, pe;, &} (1 =1,2,...,n) be alocal orthonormal ¢-basis. Setting F = U = ¢; in (23) and taking the
summation over i, we have

n

— ), cig(GROE, gede;, V) =¢; Y_[9(R(E,ee;, V) = ei@)g(V, pen(E)
i=1

i=1
+ ei(B)g(ei, VIN(E) — dpei(a)g(E, e)n(V)
+ ¢E(a)g(ei, e)n(V) — ¢pei(B)g(PE, en(V)
— 4ap{g(E, eg(ei, V) — g(PE, ei)g(ei, V)
— g(ei, e)g(E, V)} = V(B)g(ei, e)n(E)
+ (@ + BA)g(ei, enENn(V)I. (26)
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On the other hand, putting F = U = ¢e; in (23) and using (7), we get

= Y g ORGE, ee;, V) =¢; Y [9(R(E, pedipes, V) - dei@)g(V en(E)
i=1 i=1

+ dei(B)g(pei, VIn(E) — ei(@)g(E, pe)n(V)

+ QE(a)g(pe;, pe)n(V) — ei(B)g(PE, pei)n(V)

— 4aBlg(E, de)g(pei, ¢V) — g(OE, pei)g(cei, V)

— g(¢e;, pei)g(E, pV)} = V(B)g(cpei, pei)n(E)

+ (@ + B2)g(er, penn(Eyn(V)]. 27)

Using the definition of the Ricci operator, (26) and (27), we obtain by direct calculation

P(Q(PE) — R(PE, £)&) =QE — R(E, )& + 2n(a® + p)n(E)E
- 8ap(n — 1)QE + Cu(a, B, PE)E
— Bu(a, B)N(E) — n(E)E(B)E. (28)

From (15), we have
R(QE, &)& = (o + > — E(B))PE. (29)
With the help of (15) and (29), the relation (28) becomes

O(Q(PE)) =QE + 2n(a’ + B)n(E)E — 8ap(n — D)GE — n(E)E(B)E
+ Cu(a, B, E)E = B(a, B)n(E). (30)

Finally, applying ¢ to (30) and using (7), we have

Q(PE) — P(QE) =S(@E, £)& — 8ap(n — 1)¢’E
— ¢(Bu(a, B))N(E). (31)

From (16), we get

S(PE, &) = Bu(a, B, $F). (32)
In the sense of (31) and (32), we obtain the assertion. [J
Proposition 3.5. Let M be a three-dimensional trans-para-Sasakian manifold. If B(ar, ) = 0, then Q¢ = ¢Q.
Proof. The assertion follows from (18) and (25). [
Theorem 3.4 gives following.
Corollary 3.6. If M*"*! is a-para-Sasakian, B-para-Kenmotsu or paracosymplectic manifold, then Q¢ = pQ.
Proposition 3.7. In a trans-para-Sasakian manifold (M1, ¢, &, 1, 9), the following relation holds:

S(OE, ¢F) = — S(E, F) + (21 — 1)A(E, F, gradp, £)1(E)
+[~(@2n(a® + %) = E(B)N(E) + Bu(a, B, E)In(F)
+8ap(n —1)g(¢E, F) — pF(a)n(E), (33)

for all vector fields E, F on X(M).
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Proof. Taking the inner product of (25) with ¢F, we have

S(pE, pF)A(E, QE, F, &) =8ap(1 — n)g(E, oF) + (2n — 1)A(¢, E, gradp, E)n(E)

— ¢F(@)n(E).

By virtue of (16) we get (33). O

10647

Proposition 3.8. In an n-Einstein trans-para-Sasakian manifold (M>**1, ¢, &, 1, g), the Ricci tensor is expressed as

S(EF) =[5 + (@ + B ~ E@(E, P
- I3 + @1+ 1)@ + B2 = EE)INEN®),
for all vector fields E, F on X(M).
Proof. From (9) we have
r=0C2n+ 1A+ p,
where r is the scalar curvature. On the other hand, (17) and (9) implies that
~2n(a + B~ EB) = A+ .

From (35) and (36), it follows that

r
A= g+ @+ =)

and
== = @n+ 1)@ + - ().

It completes the proof. [

4. 3-Dimensional Trans-para-Sasakian Manifolds

(34)

(35)

(36)

Itis well-known that in a three-dimensional Riemannian manifold the curvature tensor is of the following

form:
R(E,F)U =A(QE,F U) - A(QF E, U) - %A(E, F U),

where 7 is the scalar curvature of the manifold.
Letting U = £ in (37) and using (13) and (16), we obtain
[QF — (5 = £(8) + (@ + B)E + 2aBOE ~ E@)EIn(F)
— F(a)¢E - pF(a)E
= [QF = (5~ &(B) + (@ + F)F +2aBOF ~ FB)EIN(E)
— E(a)¢F — pE()F.

(37)

(38)

So, we can obtain the expression of the Ricci operator for a 3-dimensional trans-para-Sasakian manifold.
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Theorem 4.1. In a 3-dimensional trans-para-Sasakian manifold, the Ricci operator is given by
QE =[5 = &(B) + (@ + PIE - [~ &(B) +3(a? + PIIN(E)E
+ B(a, B)n(E) + B(a, B, E)E,
for all vector field E on X(M).
Proof. Setting F = £ in (38) and then using the formulas (18) and (19) we find (39). O

From (39), we have the following corollary.

Corollary 4.2. In a 3-dimensional trans-para-Sasakian manifold, the Ricci tensor is given by
S(E,F) =[5 = &(B) + (@* + BI(E, F) = [5 = &) + 3 + FAI(E(E)
+ B(a, B, F)n(E) + B(a, B, E(F),
for all vector fields E, F on X(M).
Corollary 4.3. If B(«, B) = 0 then the 3-dimensional trans-para-Sasakian manifold is n-Einstein.
Proof. From the assumption we have
E(B) = g(gradp, E) = ~g(¢(grada), E) = GE(a).
Using (41) and Corollary 2.2 in (40), we get the result. [
Theorem 4.4. A 3-dimensional trans-para-Sasakian manifold is an n-Einstein manifold if and only if
B(a, B, E) = E(B)N(E),
for all vector field E € X(M).
Proof. If a 3-dimensional trans-para-Sasakian manifold is an 7-Einstein manifold, from (40) we get
Bla, B, F)n(E) + Bla, p, Eyn(F) = ag(E, F) + bn(E)n(F),
where 2 and b are smooth functions and E, F € X(M). Letting E = ¢E and F = ¢F in (43), we obtain
0 = ag(¢E, OF),
which implies a = 0. On the other hand, putting E = F = £ in (43), we get
26(8) = b.
Therefore, using (44) and (45) in the equation (43), we have
B(a, B, F)n(E) + Bla, B, E)yn(F) = 2&(B)n(E)n(F).
Letting E = F in the above equation gives
B(a, B, E) = EB(E).
Conversely, if (42) holds, from (40) we have
S(EF) = [5 = () + (@2 + BIg(E, P) ~ [5 = 3¢(B) +3(e + FI(EN(F).

Hence, it completes the proof. O

10648

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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We can note that Proposition 3.8 coincide with Theorem 4.4.

Corollary 4.5. In a 3-dimensional trans-para-Sasakian manifold, the Riemannian curvature tensor is given by
R(E, F)U =[5 = 2£(B) +2(a* + FA(E, F, L)

- g(E W15 - £6) + 3 + FIN(E)E

- Ble, pyn(E) ~ B, B, E)E)

+g(E, U5 — &(B) +3(0” + P)I(F)E

~ B, pin(F) — Bla, B, P)E)

- ([~ &) +3(” + B In(Ey(LD)

- Blet, B, U)n(F) ~ Blav, B, Yp(LD)E

+ ([~ &) + 3 + FEN(W)

- Bl B, Un(E) = B, B, (U, (49)
for all vector fields E, F, U on X(M).

Proof. By using (39) and (40) in (37), we have the Riemannian curvature tensor for a 3-dimensional trans-
para-Sasakian manifold by (49). O

Moreover, from (42) and (49) we can state the following lemma.
Lemma 4.6. In a 3-dimensional n-Einstein trans-para-Sasakian manifold, the curvature tensor is given by
R(E, A)U =[5 —2£(B) +2(a* + FA(E, E, L)
r
—l7 -3+ 3(a® + B)IA(E, F, U, £)& + n(LDA(E, F &), (50)
for all vector fields E, F, U on X(M).
Using (49) and Corollary 2.2, we can give the following lemma.
Lemma 4.7. In a 3-dimensional trans-para-Sasakian manifold, if B(«t, B) = O, then the curvature tensor is given by
R(E,A)U =[5 +2(a? + BJA(E, E, L)
r
=[5 +3(® + BNAE E U, &)E + n(LDA(E, E 8)), (51)

for all vector fields E, F, U on X(M).

5. Ricci semi-symmetric Trans-para-Sasakian Manifolds

In this section, we give the expression of Ricci tensor for Ricci semi-symmetric trans-para-Sasakian

manifold. Then we construct a three dimensional trans-para-Sasakian manifold example which satisfies
our results.

Definition 5.1. [14] A semi-Riemannian manifold (M>"*1, g) is said to be Ricci semi-symmetric if we have R(E, F)S =
0 on M, where R(E, F) is the curvature operator.
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Theorem 5.2. In a Ricci semi-symmetric trans-para-Sasakian manifold (M?"*1,¢, &, 1, g), the Ricci tensor satisfies
(@ + B2 = S(BNS(E, F) =[2n(a? + f2){28() — a® = ) = (£(B))?
— (2n = D)ligradpll* + P(gradp)(e)1g(E, F)
+ [(2n — Dllgradpl* — ¢(gradB)(c)
+42FIEN(E) + 111 - 20)F () + SF@IE)
+(2n = 1)apPE(p) — 2apF(a)ln(E)
#1101 - 20E@) + 50E@)EH)
+ (2n = DapoE() — 2aBE(a)]n(F)
+ E@F(@) - 5 [FOOE@) + EGPF@)
+(@2n = DIF(@)PE(B) + E()PF(B)}]
+(2n = 1EPB)FPB), (52)
for all vector fields E, F on X(M).
Proof. From the assumption, we have R(E, F)S = 0. This condition is equivalent to
S(R(E,F)C, V) + S(C,R(E,F)V) = 0.
From the above equation, we get
S(R(E, E)E, F) + 5(8,R(E, E)F) = 0. (53)
Using (14) and (15) in (53), we obtain

(@® + B> = E(B)S(E, F) =[(a® + B)g(E, F) — F(B)n(E) + 2apg(E, $F)]
S(&,&) +[F(B) - (@® + B)n(F)IS(E, E)
+ [2an(F) - F(@)]S(&, pE)
+ g(QE, pF)S(&, gradp) — g(E, pF)S(E, grada)
+(a? + B> — E(B)N(E)S(, F). (54)

Since S is a symmetric tensor, we also have

(@® + B = E(B)S(E, F) =[(a® + B)g(E, F) — E(B)1(F) + 2aBg(¢E, F)]
S(&,€) + [E(B) — (a® + BAN(E)IS(E, F)
+ [2apn(E) — E(@)]S(&, ¢F)
+ 9(OF, QE)S(E, gradp) — g(¢E, F)S(E, gradar)
+(a® + g% = EB)N(F)S(E, E). (55)
Adding (54) and (55), we get

2(a” + B = £(BNS(E, F) =[2(a” + p*)g(E, F) = F(B)n(E) - E(B)n(F)]
S(E, &) + [F(B) — E(BNB)IS(E, E)
+[E(B) = £(BN(E)IS(E, F)
+ [2apn(F) — F(@)]S(E, $E)
+ [2apn(E) — E(@)]S(E, HF)
+29(PE, F)S(E, gradp). (56)
By the help of (16), (17) and (18), one can get (52). O
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Corollary 5.3. [8] A three-dimensional para-Sasakian (para-Kenmotsu) manifold is Ricci semi-symmetric manifold
if and only if the manifold is an Einstein manifold.

Example 5.4. We consider the three dimensional manifold M and the vector fields

d d d Jd 9

e =5 €2=a—y, e3=(x+y)£+(X+y)@+£,

where

0 0 0
One can observe that
glei, e1) = gles,e3) =1, g(e2,e2) = —1,9(e1, €2) = gler, e3) = glez, e3) =0
and
Pler) =ex, @Ple2) =e1, Ples) = 0.
We get

[er,e3] = e +ey, [er,e3] =1 +ey, [er,e2] =0.

Taking es = & and using Koszul formula, we can calculate

Veer ==&, Ve,er =0, Veer=-—e
Veer =0, Veer =&, Veer=—e
Veez=e1, Vees=e, Veez=0.

We also see that

(VK1 @)el = mep(el) - ¢(Ve1 31) =-0
= 0(=g(e1, e1)& + nler)er) — 1(gler, Pler))& + nler)Pler)),

(V€1¢)82 = Vﬁ(Ib(EZ) - ¢(Ve1€2) =-¢
= 0(—g(e1, e2)& + n(ex)er) — 1(gler, p(e2))& + nea)pler)),

(Ve,P)es = Ve, ples) — P(Ve,e3) = —€2
= 0(—g(e1, e3)E + nez)er) — 1(g(er, P(e3))E + nles)pler)).

In the above equations, we see that the manifold satisfies (10) for X = e, @ = 0,8 = =1 and e3 = &. Similarly, it is
also true for X = e; and X = es.

The 1-form n = dz and the fundamental 2-form @ = dx A dy — (x + y)dx A dz + (x + y)dy A dz defines a trans-
para-Sasakian manifold, where dn = a®, dD = -2 A @. Hence, the manifold is a trans-para-Sasakian manifold of

type (0, -1).

Then the expressions of the curvature tensor is given by
R(e1,e2)e3 =0, Roez,e3)e3 = —e2,  Roer,e3)e3 = —ey,
R(e1,e2)e2 =1,  R(ez,e3)e2 = =&, Rley,es)ez =0,
R(e1,e2)e1 = €2, R(ez,e3)e1 =0,  Rley, e3)er = &.
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Therefore, we have S(e1,e1) = =2, 5(ez, €2) = 2 and S(es, e3) = —2. It implies that the scalar curvature r = —6. Then
the equation (39) becomes

QX = —2X. (57)

From the equation (57), we have QpX = $(QX) = —2¢X and hence the Theorem 3.4 is verified.
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