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Krasnoselskii-type best proximity point theorem in Banach algebras
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Abstract. The main purpose of this paper is to present some new existence of hybrid best proximity
point theorems involving the sum of two non-self operators in Banach spaces as well as the product of
two non-self operators in Banach algebras. In this way, we extend and revisited the main conclusions of a
recent paper by Kar and Veeramani [S. Kar, P. Veeramani, Best proximity version of Krasnoselskii’s fixed
point theorem, Acta Sci. Math. (Szeged), 86 (2020), 265-271]. Illustrative examples are given to support our
results.

1. Introduction and Preliminaries

In 1955, Krasnoselskii ([14]) combined the Banach contraction principle and the Schauder’s fixed point
problem and obtained the following important fixed point theorem.

Theorem 1.1. (Krasnoselskii’s fixed point theorem) Let A be a nonempty, closed and convex subset of a Banach
space X. Assume that T : A — Xand S : A — X are two operators such that

(i) T is a contraction, that is, there exists a real number k € (0,1) such that ||Tx — Ty|| < kllx — yl| for any x, y € A;
(ii) S is a continuous and compact operator;

(iii) T(A) + S(A) C A.

Then there is an element u € A for which Tu + Su = u.

There are a huge number of papers contributing generalizations or modifications of the Krasnoselskii’s
fixed point theorem and their applications (see for example [1, 2, 6, 7]).

Let (A, B) be a nonempty pair in a metric space (X,d) and T : A — B be a non-self mapping. A point
p* € Ais called a best proximity point of T if

* *\ . —— :
d(p*, Tp™) = dist(4, B) := (a’bl)r€11£x3 d(a,b).
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In fact best proximity point theorems are studied to find necessary conditions to guarantee the existence
of a solution to the minimization problem

mind(x, Tx). (1)

xeA

We refer to [4, 5, 13, 19] for some discussions on the existence, uniqueness and convergence of a best
proximity point.
Let (A, B) be a nonempty pair in a Banach space X. Set

Ap={xeA:|lx—yll = dist(A,B), forsome y € B},

Bo ={y € B :|lx — y|| = dist(A, B), for some x € A}.

The pair (Ag, Bo) is said to be a proximal pair of (A, B). It is remarkable to note that (Ay, By) may by empty, but
in particular if (A, B) is a nonempty, bounded, closed and convex pair in a reflexive Banach space X, then
it’s proximal pair (Ao, By) is also nonempty, closed and convex (see [13] for more details). In what follows
by Sx we denote the unit sphere in a Banach space X, that is,

Sx = {reX: |l =1}.
Definition 1.2. A Banach space X is said to be strictly convex if for any two distinct elements x, y € Sx, we have

=<2

Hilbert spaces and 7 spaces (1 < p < o0) are instances of strictly convex Banach spaces whereas the
Banach spaces ¢! and ¢* are not strictly convex.

In 2011, Snkar Raj introduced the following geometric notion and used to investigate an interesting
extension of the Banach contraction principle.

Definition 1.3. ([17]) Let (A, B) be a nonempty pair in a metric space (X, d) with Ag # 0. The pair (A, B) is said to
have the P-property (d-property in some literatures) if and only if

d(x1,11) = dist(A, B)

d 7 = d 7 7

{d(xz, 12) = dist(A, B) = d(x1,x2) = d(y1,y2)

where x1,x € Ap and y1, y2 € By.

It was announced in [11] that every nonempty, bounded, closed and convex pair in reflexive and
Busemann convex spaces has the P-property. It is interesting to note that the concept of P-property
characterizes the strict convexity of Banach spaces. Indeed, a Banach space X is strictly convex if and only
if every nonempty, closed and convex pair in X has the P-property (see Theorem 3.1 of [18]).

The next lemmas regarding to the notion of P-property will be used in our coming discussions.

Lemma 1.4. (see Lemma 3.1 of [8]) Let (A, B) be a nonempty, closed pair in a complete metric space (X, d) such
that Ay is nonempty and (A, B) has the P-property. Then the proximal pair (Ao, Bo) is closed.

It is well-known in approximation theory that if A is a nonempty subset of a Banach space X a metric
projection operator P, : X 3 A is defined as

Palx):={aeA:|x—al =dist({x}, A)}.

We mention that if A is a nonempty, closed and convex subset of a reflexive and strictly convex Banach
space X, then the metric projection $ is single-valued from X to A.
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Lemma 1.5. ([9, 10]) Let (A, B) be a nonempty, bounded, closed and convex pair in a reflexive Banach space X such
that (A, B) has the P-property. Define a projection mapping P : Ao U By — Ao U By as

Pl) = {PAO(x); if x€ By, 2

Pp,(x); if x€Ap.
Then the following statements hold:
(i) |lx—Px|| = dist(A, B) for any x € Ag U By and so P is cyclic on Ag U By, that is, P(Ao) S By and P(By) S Ao;
(ii) Pla, and Plg, are isometry;
(iif) Pla, and Plg, are affine;
(iv) P24, = ia, and P|p, = ig,, where ig denotes the identity mapping on a nonempty subset E of X.

The first existence result of a best proximity point by using the concept of P-property was established
by Sankr Raj in [17] as follows.

Theorem 1.6. Let (A, B) be a nonempty and closed pair in a complete metric space (X,d) and T : A — B be a
contraction non-self mapping, that is,

dke(0,1) : d(Tx, Ty) <kd(x,y), Vx,y€A.
If (A, B) has the P-property and T(Ao) € By, then T has a best proximity point.

Recently, an extension version of Krasnoselskii’s fixed point theorem was presented in [12] in order to
study the existence of a best proximity point for sum of two non-self mappings by applying the geometric
concept of P-property, as below.

Theorem 1.7. (Theorem 2.1 of [12]) Let (A, B) be a nonempty, closed and convex pair in a Banach space X such
that Ay is nonempty and (A, B) has the P-property. Assume that T : A — X and S : B — X are two operators such
that

(i) T is a contraction, that is, there exists a real number k € (0,1) such that ||Tx — Tyl|| < kl|lx — yl| for any x, y € A;
(ii) S is a continuous and compact operator;
(iii) T(Ao) + S(Bo) € Ao.
Then the mapping (I — T)~'S has a best proximity point in By, that is,
Ay* € Bys.t. ly* — (I - T)"'Sy*|| = dist(A, B).

It is worth mention that if in Theorem 1.7 A = B, then we get the Krasnoselskii’s fixed point theorem.

In this paper we give a generalization of Theorem 1.7 by using a Meir-Keeler contractive condition. We
also establish a counterpart result of Theorem 1.7 for multiplication of two non-self mappings in Banach
algebras .

2. An extension of Karsnoselskii’s fixed point problem

We begin our main discussions by recalling the following extension of the Banach contraction principle
due to Meir and Keeler (see [16]).
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Theorem 2.1. (Meir-Keeler fixed point theorem) Let (X, d) be a complete metric space and T : X — X be an MK
contraction mapping, that is, for every € > O there exists 6 > 0 for which

Vx,yeX, e<dxy)<e+0=d(Tx,Ty) <e.

Then T has a unique fixed point and the Picard iteration sequence {T"x} converges to the fixed point of T for any
xp € X.

Unfortunately, Theorem 2.1 has no an appropriate application in nonlinear differential and integral
equations. Thereby, Lim ([15]) and Suzuki ([20]) presented a more practical and equivalent contractive
conditions w.r.t MK condition.

Definition 2.2. A function 1 : [0, +00) — [0, +00) is said to be a strictly L-function provided that {(0) = 0 and for
every s > 0 there exists a 6 > 0 such that 0 < Y(r) < s forall r € [s,s + J).

It was announced in [20] that the MK contractive condition of the self mapping T defined on a metric
space X is equivalent to the following contractive condition:

d(Tx, Ty) < Y(d(xv,y)), VxyeX,

where 1) is a nondecreasing function and right continuous strictly L-function on [0, +0).
In the next theorem, we generalize Theorem 1.7 by considering the contractive assumption presented
by Meir and Keeler.

Theorem 2.3. Let (A, B) be a nonempty, closed and convex pair in a Banach space X such that Ay is nonempty and
(A, B) has the P-property. Assume that T : A — X and S : B — X are two operators such that

(i) T is an MK contraction;
(ii) S is a continuous and compact operator;
(iii) T(Ao) + S(Bo) C Ao.
Then the mapping (I — T)™'S has a best proximity point in By.

Proof. By the fact that T is an MK contraction, there exists a nondecreasing function and right continuous
strictly L-function ¢ such that ||Tx — Ty|| < ¢(|lx — yl|) for all x, y € A. Thus for any distinct elements x, y € A
we have

I = T)x = (I =Tyl = lI(x = y) = (Tx = Ty)ll > llx — yll = [ITx = Tyl
> [lx = yll = ¢(llx = yl)) > 0.

Also,

(I =T)x = (I =Tyl = lI(x = y) = (Tx = TY)ll < llx = yll + ITx = Tyl
< e =yl + (e = yll) < 2llx = yll,

which implies that the mapping I — T is a homeomorphism on A (see Theorem 2.3 of [2]). Now let y € By
be an arbitrary element and define T, : Ag — Ap with

Ty(x) = Tx+ Sy, VxE€ Ap.
Note that by (iii), T, is well-defined and

ITy(x) = Tyl = ITx = Tzll < Pp(llx —zll),  Vx,z € Ay,
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that is, T, is an MK contraction on the set Ay, where Ay is complete because of Lemma 1.4. It now follows
from Theorem 2.1 that T, has a unique fixed point, say h(y) € Ao. Therefore,

h(y) = Ty(h(y)) = T(h(y)) + Sy, ¥y € By,

and so,
Sy = (I-T)(h(y)) € I - T)(Ap), Yy e By.

Hence, (I - T)‘l(S(BO)) C Ap. Now by considering the projection mapping # in Lemma 1.5, we obtain

P(I - T)"S(By) € P(Ao) C By,

where the mapping P(I - T)~'S : By — By is a continuous and compact operator and so, by the well-known
Schauder’s fixed point result, there exists an element y* € B, for which P(I — T)"!Sy* = y*. Hence, by the
property (i) of Lemma 1.5 we conclude that

dist(4, B) = |l = T)"'Sy* =PI = T)7'Sy*|| = L - T) 7' Sy* ~ y*I,
and this completes the proof. [
Corollary 2.4. Theorem 1.7 is a particular case of Theorem 2.3.

Proof. 1t is sufficient to consider () = kt for some k € (0,1) and for all ¢ > 0 in Theorem 2.3. [
Let us illustrate Theorem 2.3 with the following examples.

Example 2.5. Consider the Banach space X = €' with the canonical basis {e,} and let A = B(0; %) and B = B(0;1).
Then dist(A, B) = 0 and so, (A, B) has the P-property and Ay = By = A. Define the non-self mappings T : A — X
and S : B — X with

X1 X2 X3
T )= —_, =, =, ...
(x1,x2,%3,...) = (0, XXX

1—lyll
Sy, v2,¥3,--.) = ( 4y)€1, Yy:=Wi,Y2Y3...) €EB.

), Vx=:(x1,%,x3,...) €A,

Clearly, T is an MK contraction and S is a continuous and compact operator. Now for any x € A and y € B we have

1=yl x1 x x3

TX+Sy=(T,E,E,7,...

)
and so,

-yl o Il 1
= — —_—< =
[ITx + Syl| 1 + ]E_l > <5

which ensures that T(Ag) + S(Bo) € Ao. Thus the fixed point equation Tp + Sp = p has a solution. Indeed, if
p = (p1,pP2,P3,...) € Aisa fixed point of T + S, then we must have

: _I—lipll p1 p2 ps
(plsz/PSr-u)—Tp"'Sp—( 4 /E/E/Er"')r

which concludes that
1= gl
=—0

A simple calculation shows that p, = % and so,

& P = ’2’—}1, Vi eN.

P1

111 1
p_(6’6x2’6><22’6><23"")‘
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Next example shows that Theorem 2.3 is a real extension of Theorem 1.7.

Example 2.6. Consider the Banach space C[0, 1] renormed according to
WA= 11flz + 11 fllo,  ¥f €CIO,11.
Then (CI0, 11, |I.Il) is strictly convex and it is easy to see that
Iflle < IIf1Il < 2lIflleo,  Vf € CIO,1].
Let
A=|{fecClo1]stt<f(t)<2],

t
B= {9 €C[0,1]s.t. 0 < g(t) < m}

10658

)

Then (A, B) is a bounded, closed and convex pair and so, (A, B) has the P-property. Also, for any (f,g) € A X B we

have |f(t) — g(t)| > t — - for all t € [0,1] and so,

1

! t 2 04 t

te[0,1]

17-24In2 1
S ke Ry 2T
6 T 074

which implies that dist(A, B) ~ 0.744. It is worth noticing that

A=t} & Bo={—=}

Now define the mappings T : A — C[0,1] and S : B — CI0, 1] with

(Tf)®) = %ln(f(t) +1), & (Sg)t) = %t + % fo g(s)ds, Y(f,g) € AXB.

Then T is an MK contraction. In fact for all f1, f, € A we have

1

(TA)D - (TA)®] = 5| (A1) +1) - In (A0 +1)

n(fl(t) + l)|
fz(i’) +1
) —fz(t))|
fz(t) +1

In(1+ 'fl(t) - fz(t)'), Vielo,1].

ln(l +

IA
NI— NI~ NI~ NI
—_

which implies that

In(1+1lfi = folls)-

N|—

ITH = Thllo <
and using the relation (3), we obtain
ITH = Thll <2ITfi - Tfalle
<In(1+IIfi - foll)
<In(1+If - £ll)
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Now if we set P(t) = In(1 + ¢t) for all t € [0,1], then  is a nondecreasing function and right continuous strictly
L-function and we conclude that

ITA-TRI<ydlfi-fl), YA f2e4,

which deduces that T is an MK contraction. Besides, S is a continuous and compact operator. Moreover for
(f,9)=1(t, ﬁ) € Ag X By we have

t
@fﬂﬂ+{5@@)=%ln@+1)+%t+%tL.;;Tds=teAm

that is, T(Ao) + S(Bo) € Ao. It now follows from Theorem 2.3 that (I — T)™S has a best proximity point which is a
point y*(t) = L, where t € [0,1]. It is worth noticing that the existence of a best proximity point for the mapping
(I = T)1S cannot be concluded from Theorem 1.7 due to the fact that T is not a contraction on A.

3. More existence results in Banach algebras

In this section, motivated by Theorem 2.3, we present a best proximity point result for multiplication of
two non-self mappings in the framework of Banach algebras.

We recall that a normed linear space X is said to be an algebra provided that there exists an operator
() : Xx X — X which is associative and bilinear and that the norm of X satisfies the following condition:

eyl < llxllllyll,  Vx,y e X

A complete normed algebra is called a Banach algebra.
Suppose (A, B) is a nonempty pair in a Banach algebra X. Set

AB=lxy : (x,y) e AxB),
Al = sup {lldl : x € A},

In what follows D denotes the class of all upper semi-continuous and nondecreasing functions ¢ : [0, +c0) —
[0, +00) such that ¢(0) = 0. A mapping T : A € X — X is called D-Lipschitz (in the sense of Dhage) if there
exists ¢ € O such that

ITx =Tyl < ol = yll),  ¥x,y € A

It is worth mentioning that , if ¢(t) = kt for some k > 0, then T is a Lipschitz operator.

We mention that the class of D-Lipschitz functions was introduced by B.C. Dhage ([3]) in order to
investigate the multiplication version of Karsnoselskii’s fixed point problem. Using this idea, we give the
following existence theorem.

Theorem 3.1. Let (A, B) be a nonempty, bounded, closed and convex pair in a Banach algebra X such that (A, B) has
the P-property. Let T : A — Xand S : B — X be two operators satisfy the following conditions:

(D1) T is D-Lipschitz with ¢ € D;

(D2) S is a continuous and compact operator on B;

(D3) T(A0)S(Bo) < Ao,

(D4) Forany & > 0 there exists a 6 > 0 such that Lo(t) < € forall t € [¢, € + 6), where L := ||S(B)|l.

Then there is a point y* € By such that

ly* = (TPy")).Sy* = dist(4, B). !
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Proof. By Lemma 1.4 the pair (Ao, By) is closed. Let y € By be an arbitrary and fixed element and define
Ty 1 Ag — Ag with
Ty(x) = (Tx).(Sy), Vx € Ap.

By the condition (D3), T, is well-defined. Using (D1), if x1, x, € Ag and ¢ > 0 be given such that [|x; —xo|| > ¢,
then

ITy(x1) = Ty ()l = I(Tx1)-(Sy) — (Tx2).(SYII < ISYlllITx1 = T2l < Lep([lxr = 2.

It now follows from the assumption (D4) that there exists 6 > 0 such that if [|x; — x2|| € [¢, & + 0), then
Lo(llx1 — x2l) < e. So, [ITy(x1) — Ty(x2)|l < € which ensures that the mapping T, is an MK contraction. Thus
from Theorem 2.1, T, has a unique fixed point, say i(y) € Ao, that is,

n(y) = Ty(h(y)) = (T(y))-(Sy).

In this situation /i maps the set By to Ag. We shall prove that 7 is continuous. Suppose that {y,} is a sequence
in By such that v, — g € Bp. Then

ey, — hgll = I(T(ry))(Syw) — (TCa)) (Sl
< (Ty))(Syw) = (TC)) Syl + 1 T(:9))(Syw) - (T(1))(SI
< IT(hyw) — TS yall + TSy, - Sql
< Lo(lny, — hgll) + ITAgllISy» — Sqll

which deduces that

lim sup |11y, — gl < lim sup (Lw(llhyn = Igll) + ITAISyn — Sqll)

n—oo n—oo

= lim sup Lo(||ry,, — Aqll).

n—oo

Now, if limsup,_, |y, — gl = r > 0, then by the fact that ¢ is upper semi-continuous, we obtain
r < Lo(r),

which is a contradiction. So, we must have r = 0, that is, /i : By — Ag is continuous.
We claim that / is a compact operator. Notice that for a fixed element z € Ay we have
ITxll < [ITzl| + [|Tx — T||
< 1Tzl + @(llx = zl)

< |ITzl + p(diam(Ay)),  Vax € Aq.

Let M :=||Tz|| + (p(diam(Ao)). Then we have ||Tx|| < M for any x € Ay.
Now assume that {v,]} is a sequence in the set By. We prove that {fiv,} has a Cauchy subsequence. By this

reality that S is compact, {Sv,} has a convergent subsequence. We may assume that limsup,, . IS0, —
Sv,|| = 0. Therefore,

0, = Tl = (T (r0m))-(Sv) = (T(04)) (SO

< (T 0))(Svm) = (T(F0))-(Sva)ll + (T (0))-(Svs) = (T(H0))-(Sw)
< SomIlIT(rvn) = Tt + IT(0)ISON — Soul
< L(P(Hhvm = hw,ll) + Ml|Sv,, — Soyl.
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Hence,

lim sup [[fiv,, — o, < lim sup (Lo (v, — o)) + MSvy, — So,ll)

m,n— o0 m,n— 00

= lim sup Lo(||ivy, — ho,l).

mmn— oo

If limsup,, ,,_,., vy, —hv,|| = € for some € > 0, then by the fact that ¢ is an upper-semi continuous function
and by the above inequality, ¢ < Lg(¢). Besides, from the condition (D4) there exists 6 > 0 such that
Lp(t) < e for all t € [¢, & + 0) which is a contradiction and so, limsup,, , ., v, — hiv,|l = 0 ie., {iv,} is a
Cauchy sequence which concludes that 7i(By) is boundedly compact. Thus 7i : By — Ay is compact. Now
the self mapping %7 : By — By is continuous and compact and by applying Schauder’s fixed point theorem
there is an element y* € By for which Phiy* = y*. Using the property (iv) of the Lemma 1.5 we have

hy* = P(Phy*) = Py*,
which yields that
ly* = (TPy)-S@Il = lly* — (T@y*))-Sw*)l

= ly* = hy*|l = lly* — Py*|l
= dist(A, B),

and this completes the proof.
|

It is worth mentioning that if in Theorem 3.1, A = B, then the projection mapping %], ‘is identity and
we get the following corollary which is the main result of [3].

Corollary 3.2. ([3]) Let A be a nonempty, bounded, closed and convex subset of a Banach algebra X and let
T,5: A — X be two mappings such that

(i) There exists a real number k € [0, 1) such that ||Tx — Tyl|| < kllx — yl| for any x,y € A;
(ii) S is a continuous and compact operator;
(iii) T(A)S(A) C A.
IfkL < 1, then
Ax* € As.t. Tx*Sx* = x*, )]
where L := ||S(A)|l.
Let us illustrate Theorem 3.1 with the following example.

Example 3.3. Consider the Banach algebra X = (L*[0, 1], ||./le0) with the pointwise multiplication (fg)x = f(x)g(x).
Let

A= {feX; 0< fx) < i (a.e.)},
B= {g €X;0<g(x)<x? (a.e.)}.

Then (A, B) is bounded, closed and convex with dist(A, B) = 0. Moreover,

Ag=By={heX;0<hx)<2*(@ae)onlo, %], 0 <h(x) < }L (a.e.) on [%,1]}.
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LetT:A— Xand S : B — X be defined as
(THx = %, (Sg)x = x* +f g(t)dt, Vxe][0,1].
0

Then T is contraction and S is a continuous and compact operator. On the other hand, if 0 < x < 1, then for any
hy, hy € Ay we have

X

(Th1Shy )(x) = %(x2+ fo hz(t)dt)géx2+ fo Pt

1 1
= gxz + §x3 <2

Also, for x € [%, 1] we have

(ThiSha)(x) = %(Xu fo : hy(t)dt + f xhz(t)dt)

1
2

1,, (%, Y q
Sg(x +f0tdt+£4dt)

Hence, ThiShy € Ay for all hy, hy € Ao which yields that T(A¢)S(Bo) € Ao. Notice that

X 3 4
L:=|IS(B)llw < sup (x2 + f tzdt) = sup (x2 + x_) ==,
x€[0,1] 0 x€[0,1] 3 3

so for k € (0, 3) we have kL < 1. It now follows from the Theorem 3.1
dheBy st ThSh=h.

It is worth noticing that the function h € By is a solution of the following integral equation:
X
h(x) = éx2 + % fo h(t)dt,

which is h(x) = 16e5* — 2x — 16.

Example 3.4. Consider the Banach algebra X = My, consist of all complex 2 X 2 matrices equipped with the matrix
multiplication and the norm

2
= Z laijl, ¥ [aijlaxa € Moxa.

ij=1

H[ﬂzjhxz

Let
A

an an| (b biaf.
{[ 0 0 ], |aij| < 1}, & B= {[b21 —i]' |bij| < 1}.
Then (A, B) is a bounded, closed and convex pair in X with dist(A, B) = 1. Also,
o i bgl<1),

Ao =4, %=ﬂm ?]
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and that (A, B) has the P-property. In this case the projection mapping P : By — Ao is defined as
bin bio|y _ [bun b
P([o —i])—[o 0]'

lan an b b
Fora.—[o O]GAandb.—[b21 _;

and S is a continuous and compact operator. Moreover, it is easy to see that T(A¢)S(By) € Ag. Using Theorem 3.1

] € Bdefine Ta = ka, Sb = b*, where k € (0, 411)' Then T is a contraction

there exists a point y* € By such that |ly* — (T(Py*)).Sy*II = dist(A, B) and this point is y* = [8 E)z] is a best
proximity point for the mapping (TP).S.

Acknowledgments. The authors would like to thank the anonymous referee for the careful reading of the
manuscript and useful comments.
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