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The minimum incidence energy of k-uniform hypergraphs

Yanjie Fu?, Yubin Gao*", Zhihua Li®

?School of Mathematics, North University of China, Taiyuan, Shanxi 030051, China

Abstract. For a k-uniform hypergraph H = (V (H),E (H)) of order n = |V(7-{)| and size r = |E(7{) , let
B(H) be the incidence matrix of H. The incidence energy BE(H) of H is the energy of B(H). In this article,
we determine the unique hypergraph with the minimum incidence energy among all k-uniform hypertrees
of size r with fixed number of pendent edges. We also determine the unique hypergraph with the minimum
incidence energy among all k-uniform unicyclic hypergraphs of size r.

1. Introduction

Spectral graph theory has a long history behind its development. In spectral graph theory, we analyse
the eigenvalues of a connectivity matrix which is uniquely defined on a graph. Many researchers have
had a great interest to study the eigenvalues of different connectivity matrices, such as, adjacency matrix,
Laplacian matrix, etc. Now, a recent trend has been developed to explore spectral hypergraph theory. In
2005, L. Qi [11] introduced the concept of eigenvalues of a real supersymmetric tensor. Then spectral theory
for tensors started to develop. Afterward, many researchers analyzed different eigenvalues of several
connectivity tensors, such as, adjacency tensor, Laplacian tensor, normalized Laplacian tensors, etc. It
is known, however, that to obtain eigenvalues of tensors has a high computational and theoretical cost.
Perhaps for this reason, recently,some authors have renewed the interest to study the matrix representations
of a hypergraph, as for example in [1-5, 9, 12, 13].

Let H = (V(H), E (H)) be a hypergraph with vertex set V() and hyperedge set E(H), where E(H) C
2VH) and 2V stands for the power set of V(). A hypergraph H is said to k-uniform hypergraph (or
a k-graph) if |e| = k for every e € E(H). Especially, 2-uniform hypergraph is the ordinary graph. For
convenience, let [n] = {1,2,...,n}. Let E(v) = {e |v €ee E(H) }, and d(v) = |E(v)| be the degree of v. A edge
e in a hypergraph is said to be a pendent edge at a vertex v € e of degree greater than or equal two, if the
other vertices in e are 1-degree vertices. For u,v € V (H), a walk from u to v in H is defined to be a sequence
of vertices and edges vpejv1e; - - - €,0, with vy = u and v, = v such that edge e; contains vertices v;_1 and v;,
and v;_1 # v; for i € [p]. The value p is the length of this walk. A path # = vgeiv1e; - - - €,0, is a walk with all
v; distinct and all ¢; distinct. If d(v;) = 2 for i € [p — 1], and the other vertices in V() are 1-degree vertices,
then P is a loose path. If d(vg) > 3, d(v;) = 2 for i € [p — 1] and the others vertices in V() are 1-degree
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vertices, then # is a pendent path. A cycle C = vge1v1e; - - - €,0, is a walk containing at least two edges, all ¢;
are distinct and all v; are distinct except vy = v,.

If there is a path from u to v for any u,v € V (H), then we say that H is connected. A hypertree is
a connected hypergraph with no cycles. A unicyclic hypergraph is a connected hypergraph with exactly
one cycle. For m > 2 and k > 3, let Cy,x = v1€1026205 * * - Uy Uim+1 be a k-uniform cycle of length m, where
Ums1 = vy, fori € [m], e; = {vj, un, upp, ..., uix—2,vix1}, Vo = {v; 1 i € [m]}. Let U]" be the k-uniform unicyclic
hypergraph of size r obtained from C,,x by attaching » — m pendent edges to v; in C,, . For a hypergraph
‘H, the subdivision graph S(H) is a graph obtained by adding a new vertex v, and making it adjacent to all
vertices of e for each edge e of H.

For a matrix M, its energy E(M) is defined as the sum of its singular values ([10]). Let H be a k-uniform
hypergraph and B(H) = (b(v, e))|V(W)|X|E<W)| be the incidence matrix of H, where b(v,e) = 1 if v € ¢, and
b(v,e) = 0 otherwise. Cardoso and Trevisan [3] defined the energy of B(H) as the incidence energy BE(H)
of H, and proposed the relation

BE(H) = SE(A), )

where A; is the adjacency matrix of S(H).

On this basis, the authors of [13] obtained the lower and upper bounds on BE(H) for k-uniform hypertrees
and characterized their corresponding extremal hypergraphs. The authors of [5] characterized the k-uniform
hypertrees with the minimum incidence energy among all k-uniform hypertrees of order n with diameter
3 <d <r—1. Motivated by the above research, in this article, we determine the unique hypergraph with
the minimum incidence energy among all k-uniform hypertrees of size r with fixed number of pendent
edges. We also determine the unique hypergraph with the minimum incidence energy among all k-uniform
unicyclic hypergraphs of size r.

2. Preliminaries

Let G be a connected graph with vertex set V(G) = {v1,vy,...,v,} and edge set E(G). The adjacency
matrix of G, denoted by A(G), is an n X n matrix (a;;) in which a;; = 1if v;v; € E(G), and a;; = 0 otherwise. The
characteristic polynomial of A(G), denoted by ¢4(G, A) = |\l — A(G)|, is called the characteristic polynomial
of G. The n roots of the equation ¢4(G, A) = 0, denoted by 11(G), A2(G), ..., 1,(G), are called the eigenvalues
of G. The energy E(G) of G is defined [6] as

EG) = ) M)l

i=1
If G is a bipartite graph, then its characteristic polynomial can be written as
I
$(G) = Y (-1)'br" 2,
i=0

where by = 1 and by; > 0. Let ay; (G) = (—1)ib2i (G). The Sachs theorem [7] states that fori > 1,
mi= Y (=192, 2)

S€eLy;

where Ly; denotes the set of Sachs subgraphs of G with 2i vertices, that is, the subgraphs in which every
component is either K; or a cycle; w (S) is the number of connected components of S, and c (S) is the number
of cycles contained in S.

In particularly, if G is a tree, then by; = m(G, i) foralli=1,..., L%J, where m(G, i) equals to the number of
i-matchings of G (see [7]). For two bipartite graphs G; and G, of order n, we define G; < G if and only if
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byi(G1) € byi(Gy) foralli=1,..., \_%J Moreover, if there exists a index i such that by;(G1) < b2i(G,), we write
G1 < Gy. The following result was proven (see [7]).

G1 <Gy, = E(Gy) < E(Gy),
G1 < Gy = E(Gy) < E(Gy).

A tree is said to be starlike if it has exactly one vertex of degree greater than 2. Let S, denote the
starlike tree with r edges and x pendent paths of almost equal length and S7 ;| be the graph obtained
from S;_4x-1 by j ]ommg a pendent vertex of path P, to the center of S,_;x-1. Let P,, « be the tree obtained
from P, = vgv;---v,-1 by adding k — 2 pendent edges to each vertex vy; with j = 0,1,2,...,[%5* 1221 and
D,k be the tree obtained from P, = vgvy -+ 0,1 by adding k — 2 pendent edges to each vertex v;1 with
j=0,12,... [52]

The definition of a power graph was introduced in [2] as follows:

Definition 2.1 ([2]). Let G = (V,E) be a graph and let k > 2 be an integer. We define the power graph G* as the
k-graph with the following sets of vertices and edges

v(gk):v«;)u[ U ge]andzs(gk)={euQe:eeE<G>},
e€E(G)

where ¢, = { ‘ } is a set of additional vertices of degree one for each edge e € E(G).

Oy k2

Let (S;x)* denote the power graph of S, and (S? _,)* denote the power graph of S
In order to obtain our main results we need the followmg lemmas.

Lemma 2.2 ([7]). Let e = uv be an edge of a tree T with n vertices. Then
m(T, i) = m(T —uv, i)+ m(T —u—-v,i—1)

fori=1,2,..., L%J, where m(T, 0) = 1. Moreover, if u is a pendent vertex, then
m(T,i) =m(T —u, i)+ m(T —u—v,i—1).

Lemma 2.3 ([8]). Let uv be an edge of a bipartite graph G, then

b2(G) = ba(G —uo) + baia(G —u=0) +2 ) (-)'"*hs (G- C),
C1eC(uv)

where C (uv) is the set of cycles containing uv. In particular, if uv is a pendent edge of G with the pendent vertex v,
then

b2i(G) = b2i(G — uv) + by »(G — u — v).

3. The minimum incidence energy of k-uniform hypertrees with fixed number of pendent edges
Lemma3.1. Letn=4torn=4t+2 Thenforj=2,3,...,tand1<i< 3,
M(Pajok U Pnoajrak, i) 2 m(Pajx U Py_sjk, 1).

Proof. We first consider j = 2. It is obvious to see that Py U Py_ox = Ppi — 0102, Paj U Pp_si = Py x — v304. By
Lemma 2.2 we have

m (Poy U Pyok, i) = m(Pyx — 0102 — 0304,1) + m (Pyx — 0102 —v3 — 04,1 — 1),
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and
(P4k U Pn v ) m (P — 0304 — 0102,1) + m (P — 0304 — 01 — 0Up,i — 1).
So
m (Pox U Py gk, i) —m(Pyx U Py gg, i) =m(Pyi— 0102 =03 = 0g,i = 1) = m (Pyx — 0304 — 01 — 02,0 — 1).

Note that for 1 < i < [gJ, m Py UPyog,i) = m(PagUPpy_ag, i), and there exists i = 3 such that
m (Pox U Py, i) > m (P U Pyaf, i).

For ] = ,t, it is obvious to see that Pg] 5 U P]:l 2ji2 = =P, &k — 02j-3U2j-2, and Pk U P]:l 2 = Pn,k — U2j-102;j.

By repeatedly utlhzmg Lemma 2.2 we have
m (Pnk — 02j-302j-2, i)
( nk = U2j-302j-2 — U2j-102j,1 )
( wk — U2j-302j-2 — U2j-1 — U2j — V2j-402j-3,1 1)

— 02j-302j—2 — U2j-1 — U2j — U2j—4 — U2j-3 — 7)2j+102j+2ri - 2)

m (Sk USi1 U pn—4j+3,k/ i— Zj + 3) ’

and
m (Pn,k — 02j-102j, i)
=m (Pnk — 02j-102j — V2j-302j-2, 1 )
+m (Pn,k — V2j-102j — V2j—3 — V2j-2 — V2U2j41,1 — 1)
+m (Pn,k — 02j-102j — V2j—3 — U2j-2 — U2j — V2j41 — V2j-5V2j-4,1 — 2)
+ .o
m (Sic1 U Pycsjeaeri = 2j + 3) .
So

m (sz—z,k U Py2jsok, i) —m (sz,k U Pu2jks i)
=m (Sk USi1 U pn—4j+3,k/ i— 2j + 3) —-m (Sk—l U Pn—4j+4,k/ i— 2j + 3) .
Note that m(P2] 2k UPyojiog, i ) > m(szk UP, ok, i ) forl <i< LgJ and there exists i = 2j — 1 such that
(PZj—Z,k U Pn—2j+2,kr ) >m (P2]k U Pn 2]kr ) The lemma holds. [

Let G be a k-uniform hypertree with size r. Let G;; be a k-uniform hypertree obtained from G by
attaching two loose path of length s and t at the common vertex w of G, as show in Fig. 3.1.

Fig. 3.1. The hypertree G,



Y. Fu et al. / Filomat 38:30 (2024), 10675-10686 10679
Lemma 3.2. Ifs>t+1, then BE(Gs;) > BE (Gs—1,4+1)-
Proof. By Eq. (1), we have
BE(G.s) = 3E(5(6:)), BE G1411) = 3E (5 (Go1011)

where S (G;;) and S (Gs-1,+1) are shown in Fig. 3.2.

S (g s,t)
g} Uy ef U Up3 35*2 Ui gﬁ*l U g’; Uy €§+1 Ups1
w Bl 82 esfz esfl
2 4] 2 2 | Us3 2 Us—2 2 Us-1
S (gs—l,tﬂ)

Fig. 3.2. The graphs S (G;:) and S (Gs-1,441)

Since S (Gs ;) and S (Gs-1,+1) are trees on k (r + s + t) + 1 vertices, we only need to prove that m (S (Gs;) , i) >
m(S(Gs-1441),0) for1 <i < [WJ and at least one of the inequalities 1 (S (Gs4) , 1) = m (S (Gs-1,1+1) , 1) iS
strict.

We first consider 1 < i < 2t + 1. By repeatedly utilizing the Lemma 2.2, we have

m(S(Gst), 1) —m(S(Gs-14+1),1) =0,
m(S(Gsy),2) —m(S(Gs-1441),2) = m (S (Gst) — V51 — €5, 1) -m (5 (Gsrp01) — 1y — €11, 1) =0,
m(S(Gst),3) = m(S(Gs-1,41),3)
=m (S (Gsp) —vs-1 — € — € —u, 1) —-m (S (Goo1p1) —ur — et =5t — vy, 1) =0.
Similarly, for 4 <i <2t + 1, we may also get

m (S (gs,t) 7 1) —-m (S (gs—l,tﬂ) 7 1) =0.

For2t+2<i< LMJ, letting A be the graph as shown in Fig. 3.3, by repeatedly utilizing the Lemma
2.2, it can be concluded that

k-2 k-2 k-2
P U VA VAN V

Cs—t-1

Fig. 3.3. The graph A

m(S (gs,t) ) —m(S (gs—l,t+1) ) =m(Ai-2t-1)-m ((S (G)—w)u Po—t-1yk i—2t— 1) .

Since ((5 (G)-w)u P2(s—t—1),k) C A, then m(5(Gsy), i) — m(S(Gs-1,44+1),i) > 0. Thus BE(Gs) > BE (Gs-1,441)-
The lemma holds. [
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Lemma 3.3. Let 7 be a k-uniform hypertree with size r — a and exactly x — 1 pendent edges. Let T be a k-uniform
hypertree obtained from T~ by adding a loose path of length a at a vertex u in 7' such that there are x pendent edges
inT". Then
BE(T) 2 BE((S!,_,))

with the equation holds if and only if T~ = (S‘;/x_l)k.

Proof. Since S(77) and S ((S”r’x 1)k) are trees on kr + 1 vertices, we only need to prove that for 1 <i < [k”l J,

m(S(7),i) = m( ((S’jx 1)k) ) with all equalities hold if and only if 7~ = (S’j/x_l)k. The result follows for
r < 4. Suppose now that r > 5 and the result is true for the values less than r.

Let Ngiry (u) = {u1,uz,...,usyand S(7) —uu; = S(77) U P’éﬂ, where N (1) denotes the neighbor set of
the vertex uin S(77). Letr —a = b(x — 1) + y, where 0 < y < x — 2. By Lemma 2.2 we have

m(S(T),1) =m(S(T")U Py, i) +m(S(T)—u—-uy,i—-1),

( ((S,x 1) ) ) m(S ((Sr—u,x 1) ) U Py, ) + m(PZa 1k U YPopiop U (x =y — 1) Popp, i — 1)
If x = 3, then (S(77) U Pay) = (S ((Sr_u+1,x_1)k) U P2a,k)- Suppose that x > 4 and Let 7 be a k-uniform

hypertree with size r —a — c and exactly x — 2 pendent edges such that 7 can be regarded as the k-uniform
hypertree obtained from 7 by adding a loose path of length c at a vertex w in 7. By induction hypothesis

and Lemma 3.2, we have that for 1 <i < Lkr” J,
(S (T') U Py, i) = m (S (S5 o)) U Paai i) 2 1 (S ((Srae1)) U Paug ).
In the following we will prove the inequality

m(S(T)-—u-u,i—-1)>2m (p2u—1,k U yPopsox U (x —y = 1) Popi, i — 1).

X—S
for1 <i< [k”lJ There exists x —s edges ¢; 1=1,2,...x—=s) in S(7’)such that S(7) —u—u1 — U g =
i=1
_ x X » x
Pog_1x U Py x and )’ n; = 2(r — a). Therefore Py, 14 U Py k is a spanning subgraph of S(77) — u — uy. Since
j=2 j=2 =2
njis even, by Lemma 3.1 we have
X
m(S(T)—u—uy,i—1)>m|Prp_1x U Py i=-1|zm (PZa—l,k U yPopiop U (X —y — 1) Pop, i — 1),
=2

where the first equality holds if and only if 7 is a power graph of a starlike, and the second equality holds if
and only if | J Py g = yPobiok U(x — y — 1) Py x. These imply all equalities hold if and only if 7~ = (S? xfl)k. O
j=2 g

Theorem 3.4. Let 7 be a k-uniform hypertree with size r and exactly x pendent edges. Then
BE(T") 2 BE((S)"),
the equality holds if and only if T = (S, ).

Proof. By Lemmas 3.2 and 3.3, the result follows. [
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4. The minimum incidence energy of k-uniform unicyclic hypergraphs

Lemma 4.1. Let Ty (t,51,52,...,5:) and T (t,s1,52,...,5;) be two trees as shown in Fig. 4.1. Ift > 3, then
m(Ty (t;81,52,...,50),1) = m(T2(t;81,82,...,5),1) and m(Ty (t;81,52,...,5),1) > m(T2(t;s1,82,...,8;),10) for
t
1+t+) s

any2 <i<|—=

so—1 1 Sp-1—1 1 si—1
u]\.} uz\} HH\/M_] N
(21 ey 51 e 52 (] St-1 ey T
iy Uy U U

Ty (t;51,82,---,51)

Fig. 4.1. The graphs T (t;s1,5,,...,5) and T (t;51,52,...,5¢)
Proof. It is obvious to see that m (Ty (¢;s1,52,...,5:),1) = m(T2 (t;51,52,...,5:),1). If t > 3, we have
m(Ty, i) =m(Ty — equf, i) + m(Ty — ey —uf,i—1)
=m(Ty — eru] —eau, i) + m(Ty —equ —ex —uy,i—1) +m(Ty —e; —uf,i—1)

=m(T; — elui1 —euy — - - et_luif_*i, i)

+m(T1 — e —ui’,i—1)+m(T1 —elui’ —ey—uy,i—1)
+...

51
1

S2

S ey —e — i 1),

+m(T1 —equ* —exu ' P

and

m(To, i) =m(T2 — vie1,i) + m(Ty —v1 —ey,i — 1)
=m(T2 — 0161 — 1162, Z) + m(Tz — 0161 — 01— Ez,i - 1) + m(Tz - 01— €1,i— 1)

-1
=m(T, — U ve;, i)+ (t —Dm(Ty, —vy —eq,i—1).
i=1

It is obvious to see that

t—1 -1
~ s
T, — ve | =T, — e,-ui’ ,
i=1 i=1

(Ty—o1—e1) € (Tr —er —u}),

(T, —v1—e1) C (Tl —eu} —ep— MZZ)/

@

t—

Si St
(T —v1—e1) C [Tl =\ Jeu —era— ut’_é],

[y

N

1
t_
(To—v1—e) =|Tq — e,uj" —e1 — uf’_*i .

i=

—
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t
T+t+) s

Hence m (T (¢,51,52,...,5¢) ,0) > m (T2 (t,51,52,...,5),i) forany 2 <i < ;1 . The lemma holds. O

Lemma 4.2. Let G and G’ be two connected graphs of order n as shown in Fig. 4.2, where Gy is a subgraph of G and
G" with vy € Gy. Then m(G,1) > m(G’,1) and m (G, i) > m(G',i) forany2 <i < [gJ

Utk-1 Un

Fig. 4.2. The graphs G and G’

Proof. The proof method is similar to Lemma 2.1in [13]. O

Lemma 4.3. Let G and G’ be two connected graphs of order n as shown in Fig. 4.3, where Gy is a subgraph of G and
G’ with vy € Gy. Then m(G,1) 2 m(G’,1) and m (G, i) > m(G’,i) forany 2 <i < [%J

U3l U3k Ui U

V2 k-114 soe
€13 €1t Utk-1

e 02, k-2
U cee 12 N s
. » U21

: U1kl a1
< 11

Fig. 4.3. The graphs G and G’

Proof. The proof method is similar to Lemma 2.3 in [13]. O

Let G be a k-uniform unicyclic hypergraph and ey = {v1, v, ..., v} be an edge which is not belonging to
G. Let G1 be the unicyclic hypergraph obtained by identifying vy of ¢y and a vertex w of G, denote the new
vertex vx. Let H; be a unicyclic hypergraph obtained from G; by attaching some pendent edges at some
vertices of eg. Let e11,...,e1; be the edges attaching at v, and let H; be the unicyclic hypergraph obtained
from H; by moving the pendent edges attaching at v; to v, as shown in Fig. 4.4. Let H; be the unicyclic
hypergraph obtained from #; by deleting the pendent edges attaching at v; and adding a loose path of
length t at v1, as shown in Fig. 4.5.

Fig. 4.4 The hypergraphs H; and H,
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Fig. 4.5 The hypergraphs H; and H;

Lemma 4.4. Let H; and H, be the k-uniform unicyclic hypergraphs of size r with unique cycle Cy, x as shown in
Fig. 4.4. Then BE(H:) > BE(H>).

Proof. By Eq. (1), BE(H1) = %E (S(H1)) and BE(H>) = %E (S(H>)). We only need to prove that by; (S(H1)) >
by (S(Hy)) for1 <i < [%’J and at least one of the inequalities by; (S(H1)) > ba; (S(H,)) is strict. It is obvious
to see that by (S(H1)) = by (S(H,)). For2 <i < [’%J, we consider two cases.
Case 1. m is odd.
By Eq. (2) we obtain
byi (S(H1)) = m (S(H), i) + 2m (S(H1) = Cop,i —m),
bai (S(H2)) = m (S(Ha), i) + 2m (S(Hz) — Com, i —m).

By Lemma 4.2, we have m (S(H1), i) > m (S(Hy), i) for2 <i < [’%J If vy is a vertex of Cy,,;, then S(H,) — Cyyy, is

a spanning subgraph of S(H;) — Cay. So m (S(H1) — Com, i —m) > m(S(Hy) — Copy, i —m) form+1<i< [’%J
If v is not a vertex of Cyy, By Lemma 4.2, we have m (S(H1) — Cop, i —m) > m(S(H;) — Cop, i —m) for
m+1<i<|%| Hence by (S(H))) > bai (S(Hy)) for2 <i < | %],

Case 2. m is even.

By Eq. (2) we obtain
byi (S(H1)) = m (S(Hy),1) — 2m (S(H1) — Com, i — m) = m (S(Hy), i) — m (Com, m) X m (S(H1) — Cop, i —m),
byi (S(H2)) = m (S(Hy), 1) — 2m (S(Hz) — Com, i — m).

By Lemma 4.2, we have by; (S(H1)) > bai (S(H,)) for2 <i < [%J The lemma holds. [

Lemma 4.5. Let H and H3 be the k-uniform unicyclic hypergraphs of size r with unique cycle Cy, x as shown in
Fig. 4.5. Then BE(H3) > BE(H)).

Proof. By Eq. (1), BE(Hy) = 3E (S(H)) and BE(H3) = 1E (S(H3)). We only need to prove that by (S(H3)) >
by (S(H;)) for1 <i < [%’J and at least one of the inequalities by; (S(H3)) = bai (S(H1)) is strict. It is obvious
to see that by (S(H)) = by (S(H3). For2 < i < | %),
Case 1. m is odd.
By Eq. (2) we obtain
byi (S(H1)) = m (S(H), 1) + 2m (S(H1) — Co, i —m),
byi (S(H3)) = m (S(H3), i) + 2m (S(H3) — Cop, i — m).

By Lemma 4.3 , we can obtain m (S(H3),i) > m(S(Hy),i) for 2 < i < [’%J and m (S(Hz) — Cop, i —m) >
m (S(Hy) — Copi—m) form+1<i < \_’%J
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Case 2. m is even.
By Eq. (2) we obtain

byi (S(H1)) = m (S(H1),1) — 2m (S(H1) — Com, i — m) = m (S(Hy), i) — m (Com, m) X m (S(H1) — Cop, i —m),
bai (S(H5)) = m (S(H5), i) — 2m (S(H3z) — Com, i — m).
By Lemma 4.3, we have by; (S(H3)) > by; (S(H1)) for2 <i < [’%J The lemma holds. [J

Theorem 4.6. Let G be a k-uniform unicyclic hypergraph of size v > 2 with unique cycle Cy, x, Then

BE(G) > BE(U?),
the equality holds if and only if G = U?.
Proof. By Lemmas 4.4 and 4.5, we can assume that all edges of G except those in C,,x are pendent edges
attaching at some vertices in C,,x. We only need to prove that by; (S(G)) > by (S ((llf)) for any positive
integer i, and all equalities hold if and only if G = U?.

We use induction onr to prove it. If r = m, then G = C,. Itis obvious to see that b, (S (C,x)) = b2 (S ((Llf))
Suppose now 2 < i < r. Then by Lemma 2.3, we have

b (S(Cpi)) =m (Ty (r;k =2,k =1,...,k=1), ) +m(Ty (r = L;k=2,k=1,...,k=1),i - 1),
b (S(UP)) =m (o (r;k =2,k =1,...,k=1),)) + m(Ta (r = Lk = 2,k=1,...,k=1),i = 1)
—2m((r —2) Sk, i—2).
By Lemma 4.1, we have
m(Ty (rk=2,k=1,...,k=1),i) >m(T,(rsk-2,k=1,...,k=1),i),
and
m(Ty(r—1;k=2,k=1,...,k=1),i-1) >m(To(r—;k-2,k-1,...,k=1),i - 1).

Thus by; (5(G)) > by; (S ((Llf)) for 2 < i < r. Hence the result is true for r = m. Suppose now r > m + 1. We
consider two cases.

Case 1. There is at least one pendent edge attaching at v; € Vo in G.

Without loss of generality, we can assume there exist a pendent edge ¢, attaching at v; € Vj in G and
there exist a pendent edge ¢; attaching at v; € Vj in U?. Let v,, be the vertex in S (¢) which is adjacent to all

vertices of ¢;. Let v,, be the vertex in S (7172) which is adjacent to all vertices of ¢;. By Lemma 2.3, we have

b2 (5(G)) = b2 (S(G) — v17e,) + b2i2 (S(G) — v1 — ve,)
=by(S(G—e)US)+m(S(G)—v1-v.,,i—1),

bai (S (U2)) = bai (S (U2) - v10s,) + baia (S (UZ) = 01 - 0
= byi (S(U2,) U Sk) + m (S(U2) = o1 = g0 - 1).

By the induction hypothesis, by; (S (G — e5) U S¢) = by; (S ("Llf_l) U Sk). Therefore
b (S (@) — bai (S (UP)) 2 m (S(G) = 01 = v,y i = 1) = m (S (UP) = 01 = 0,0 - 1).
Since S ((L{rz) — vy — v, is a spanning subgraph of S () — v1 — v,,, we have

m(S(G) —v1 —v,,i—1) 2m<5('LI,2)—01 —ve,,i—l),
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thatis, by (S (G)) 2 ba (S (T4?)). These equalities hold ifand onlyif (G — e;) = (U? — &;)and (S (U?) — v1 — ,,) =
(S(G) —v1 —v,,), thatis, G = U>.

Case 2. There are no pendent edges attaching at v; € Vy in G.

Without loss of generality, we can assume there exist a pendent edge ¢/ attaching at 11; € ¢; in G and
there exist a pendent edge e; attaching at v; € V in U?. Let v, be the vertex in S (G) which is adjacent to all

vertices of ¢/. Let v,, be the vertex in S (71,2) which is adjacent to all vertices of ¢;. It is obvious to see that
b, (S(G)) = by (S (’LI%)) Suppose now 2 <i <r. By Lemma 2.3, we have

b2 (§(G)) = b (5 G) - aneg) +byip (S (G) —un — Ue;)
=0y (S(G —€}) U Sp) + bain (5 (G) —un - Ueg) ,
bai (S (U2)) = b (S (U2) - v12¢,) + baia (S (U2) = 01 — s,
= bi (S(U2Z,) U S) + bai2 (S (U2) =01 — vy,).

By the induction hypothesis, by; (S (G — €;) U S¢) = by (S ((Llf_l) U Sk). Therefore

b2 (S (G)) = bai (S (UP)) = bai2 (S (G) — 1 = vy) = baica (S (UZ) =01 = ).
If m is odd, by Eq. (2) we obtain

bai> (5 (G) —u11 — Ueg) =m (5 (G) —u11 — e, i — 1) +2m (5 (G) —v1— vy — Copyi —m — 1),
bai_s (S ((Llf) -7 — vgf) =m (S ((Llrz) — V] = Uy, 1 — 1) .

Since S ((LI,Z) - U1 — 0, is a spanning subgraph of S (G) — u1; — v, we have
m(S (G) —un —ve,i— 1) > m<5(ﬂf) — V) =V, i — 1),

that is, by;_» (S (g) - U — Ueg) > boin (S (ﬂrz) - U1 — ZJQ).
If m is even, by Eq. (2), we obtain

bi-o (S (G) —u11 — Ue;) =m (S (G) — w11 — vy, i~ 1) —2m (5 (G) —u11 — vy, — Copyi —m — 1)
>m (S ((Llf) — U] = U, i — 1).

Hence by; (S(G)) > bai (S (142)).
The theorem now holds. [
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